A Appendix

A.1 Derivation of the bound

As described in Sec 4, using a decoding network defined by the causally conditional distribution

qg;")(r| |y) from eq. (7), we use a standard variational inequality [9] to lower bound the mutual

information at each stept =1,...,7T

T — Qo (Tt|rt71a yzf)
Iyt et Y > E e |] Ta 23
we Y7177) Z Ep o (ye) | log p(re|rt=1) (23)
=Ep . (ytrt) llog Gua(re|r ™yl)|+ H(r|r' ™). (24)
Summing over the time-steps, we then obtain
T T
ISy =) > Y By [mg Gt (Pal Syl)|+ Y Hrlr'™) (25)
t=1 t=1
T
=By () [Z log qwd(rt\rtfl, y}f_Td) + H(r) (26)
t=1
= Eppe () [bg gy (rlly) | + H(r), @7

where the entropy of the target signals H (7) is independent of the model parameters w® and can be
ignored for the purpose of training.

To bound the second information term in (6), we introduce an arbitrary auxiliary distribution ¢(y) =

[1, ¢(y:ly*™") on the readout layer. As in the implementation in [9], we will consider it to be fixed,
although it can potentially be optimized on. Using a standard variational inequality [9], we then
obtain the upper bound the mutual information of the encoder foreach ¢t = 1,...,7 as
Pwe (yelzf_r y' ")
Le (mt;yt) <E, .(yt.zt) | log < (28)
Pwe (Y" ") q(yelyt=1)
Summing over time-steps ¢t = 1,...,7T, we obtain
(Te)
Pwe (Yllz)
Lwe (@ = y) < By gy | log T2 20 | (29)
e

Combining bounds (25)-(29), we obtain the variational DIB loss £y prp(w®, w?) as an upper
bound on the negative DIB objective

+8- Ep(w)

Lyvprp(w® wh) =E, . ym [— log ¢'79 (7| |y) KL(pizzkynw)Hq(y))] . (30)

This completes the derivation. The proposed method is detailed in Algorithm 1.

A.2 Neuron models

Deterministic SRM. For hidden neurons ¢ € #, synaptic and feedback filters are chosen as the
alpha-function spike response oy = exp(—*/Tmem) — €xp(—t/7Tgyn) and the exponentially decaying
feedback filter 3; = — exp(—t/7f) for t > 1 with some positive constants Timem, Tsyn, and Ter. It
is then common to compute the membrane potential (15) using the following set of autoregressive
equations [24]

Pjt = €Xp (- 1/Tlnem)pj,t—1 + qjt—1, (333)
with qjt = €Xp (- 1/Tsyn)qj,t—1 + Sjt—1, (33b)
and rit = exXp (— 1/Tref)ri,t—1 + Sit—1- (33¢)

Equations (33a)-(33b) define the computation of the pre-synaptic contribution via a second-order
autoregressive (AR) filter, while the feedback of neuron ¢ is computed in (33c) via a first-order AR
filter.

12

1 initialize parameters w®, w

Algorithm 1: Learn to Time-Decode via Variational Directed IB (VDIB)

Input: Exogeneous spiking signal x, reference natural signal r, reference distribution ¢(y),
learning rate 7, moving average parameter s, regularization strength 3

Output: Learned model parameters w®, w

d

d.
s

2 for each iteration do

3
4

5
6

11
12
13

14
15

16

17
18

for

end
end

draw a sample (x,) from the data set

eachtimet=1,...,7 do

- generate spike outputs from the encoding SNN y; ~ Daye (3¢ ||z?)
- a central processor collects the log-probabilities 1og paye (yi ¢||x*) for all readout
neurons ¢ €) and updates the encoder loss

we\Yi, $t
e (Yo, e,) = Zlog <ZM>

iy q(yis)

- generate outputs from the decoding network 7y ~ qy,a(7:||y")

- a central processor collects the log-probabilities log g, (7||y?) and updates the decoder
loss

Coa (Y1, 1) = — 108 G (7] |y")
for each encoding network readout neuron ; €) do
compute update A; ; using (19) as

Az’,t =€t

end
for each encoding network hidden neuron ¢ € H do
compute update A; ; using (20) as

Ai,t = Li,t C €4t
end
update the encoding SNN model parameters as
W < w1 (Lt (Yr, 1) + B Lo (Y1, 1, hy)) - DAy (31)

update decoding ANN model parameters as

w? e w? — 0 Vgalyd(yi,) 62

SRM with stochastic threshold. For readout neurons, we associate each synapse with K, > 1
spike responses {af}ngl and corresponding weights {wa k}f:“l, so that the contribution from
pre-synaptic neuron j to the membrane potential in (15) can be written as the double sum [34]

K,
Z ng’k,(af *2j1).- (34)

JEP; k=1

By choosing the spike responses a/f to be sensitive to different synaptic delays, this parameterization
allows SRM with stochastic threshold neurons to learn distinct temporal receptive fields [4, Fig. 5].

13

Table 2: Hyperparameters used in the different experiments.

Parameter \ Experiment Predictive coding MNIST MNIST-DVS

I6] 1 le—3 le—3

n le — 2 le—5 le—4
Nx 20 784 676

Ny 10 256 256

Ng 210 784 784
Decoder Linear MLP/Conv Conv
Encoder architecture Ny 600 — Ny 800 — Ny
T4 5 T T

Te 5 T T

P 0.2 0.3 0.3

encoding window 7,
w [N} —_

e

0.18
0.16
0.14
0.12
‘ 0.10
, 0.08
0.06
5 0.04
3 4 5

1 2
decoding window 74

Figure 4: MSE for efficient filtering (6 = 3) as a function of the window sizes 7, and 7.

A.3 Experimental details

Decoder architectures. As explained in Sec. 6, we use three types of decoders: a fully-connected
linear model, an MLP, and a convolutional ANN. The MLP comprises two layers, with architecture
(Ny X 74)/2 — Ng. The convolutional ANN has two convolutional layers with ReLU activation and a
fully-connected layer, with architecture %c3p1s2 — 20c3pls2 — Npg, where X cY'pZsS represents
X 1D convolution filters (Y x Y') with padding Z and stride S.

Training hidden neurons with SG. Part of the code used for feedback alignment has been adapted
from https://github.com/ChFrenkel/DirectRandomTargetProjection/, dis-
tributed under the Apache v2.0 license.

Efficient predictive coding. In this experiment, we consider a logistic regression model for the

decoder, i.e., qgj)(rt|y§d) = S(7¢|fwa(yL,)) where S(-) is the softmax function and f,,q(x) =
w?x + b with learnable bias b. We choose Nx = Ny = 20, which gives Np = (210) + (220) = 210.
Other hyperparameters are precised in Table 2. Results are averaged over five trials with random

initializations of the networks.

In Fig. 4, we analyze the effect of the window lengths 7. and 7 for filtering (lag § = —3). The MSE
is seen to decrease as the window sizes 7. and 74 grow larger, which allows the SNN and ANN to
access more information when estimating an input sample. The encoding window is seen to have a
prominent effect, with a large improvement in MSE for 7. > 3, i.e., when the system is fed the signal
to reconstruct.

14

51015 20 25 5 5 5 52025 0 510152025 0 5 101520 25 510152025 0 510152025 0 5 10152025 0 5 101520 25

u 0 0 0 oy 0 0
5 5 = 5 5 5 5 5 5
10 il] 10 10
5 5 5 5 5 15 15 5
20 2 2 2 20
2 5 25 25 25 5
. T 0 15 20 95 5 10 15 9 5 10 15 2

5 10 15 20 25 5 10 15 20 2

5 5 5 520 25 5 5 20 2 5 5 2
0 0 D D 0
5 5 3 5 3 5 5
u) u) 1()
5 5 5 15 15 15 5
20 zl) zlJ 2
25 25 o 25 25

Figure 5: Top: Reconstructed MNIST digits. Bottom: Corresponding original target images.

Table 3: Comparison of classification accuracy with various encoding and decoding strategies for
naturalization of MNIST digits, with MLP and convolutional ANN decoders.

Encoding \ Decoding Rate (MLP) VDIB (MLP) VDIB (Conv)

Rate 60.50+0.32% 91.32+£0.27% 88.73 £ 1.06%
Time-to-First-Spike ~ 86.43 +£0.84% 92.82 £ 0.25% 90.72 £+ 0.39%

MNIST. The MNIST dataset is freely available online and has been obtained from https://
pytorch.org/vision/stable/_modules/torchvision/datasets/mnist.html.
It consists of 60,000 training examples from ten classes, and 10,000 test examples. Results
are averaged over three trials with random initializations of the networks. In Fig. 5, we show
examples of reconstructed digits with time encoding, and an MLP decoder. This validates that,
as well as being able to be classified with high accuracy, the reconstructions look accurate.
We also provide additional results on accuracy, using a convolutional decoder. This choice
causes a small degradation in the performance of the system, but alleviates requirements
on the GPU memory. Code and weights for the LeNet network have been obtained from
https://github.com/csinva/gan-vae-pretrained-pytorch and are freely
available.

Table 4: Comparison of the reconstruction MSE of MNIST-DVS digits for a convolutional ANN
decoder under two decoding schemes (for the output of the SNN).

Decoding Rate VDIB
MSE 0.19 £0.02 0.02 £+ 0.0006

MNIST-DVS. The MNIST-DVS dataset is freely available online from http://www2.
imse-cnm.csic.es/caviar/MNISTDVS.html. Examples have been obtained by displaying
MNIST digits on a screen to a DVS camera. More information on the dataset can be found from [29].

In Table 4, we provide a quantitative measure of the results obtained for the reconstruction of MNIST-
DVS digits. Specifically, we report the MSE between reconstructed and target MNIST digits with
two decoding strategies. VDIB is shown to clearly outperform rate decoding.

Reproducibility. Code for this work can be found at https://github.com/kclip.

15

