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A Theory

Preliminaries on Gaussian measures

Since we are working in a setting beyond Rd, we need a suitable notion of a multivariate Gaussian
that can be employed in a coordinate-free manner. We employ the notion of a Gaussian in the sense
of duality, given below. These notions are standard and classical, but since they are not well-known
in machine learning, and for completeness, we prove the necessary properties ourselves.
Definition 8. Let (Ω,F ,P) be a probability space. Let V by a finite-dimensional real topological
vector space, equipped with the standard topology, Borel σ-algebra, and the canonical pairing
〈· | ·〉 : V ∗ × V → R with its topological dual V ∗. A random vector v : Ω→ V is called Gaussian
if, for all φ ∈ V ∗, the random variable 〈φ | v〉 : Ω→ R is univariate Gaussian.

Remark. It is not hard to show that in the setting of the definition above, the random vari-
ables 〈φ1 | v〉, . . . , 〈φk | v〉 are jointly Gaussian for any finite collection φ1, . . . , φk ∈ V ∗. Indeed,
this is equivalent to the Gaussianity of every linear combination α1〈φ1 | v〉 + . . . + αk〈φk | v〉 =
〈α1φ1 + . . .+ αkφk | v〉, which is also ensured by the definition since α1φ1 + . . .+ αkφk ∈ V ∗.
We begin by showing that a Gaussian random vector in the sense of duality is characterized by a
mean and a covariance, just like Gaussians in the standard, coordinate-dependent sense, starting with
defining appropriate analogs of both notions in this setting.
Lemma 9. For every Gaussian random vector v, there is a unique vector µ ∈ V and unique
symmetric positive semi-definite bilinear form k : V ∗ × V ∗ → R such that for all φ ∈ V ∗, we
have E〈φ | v〉 = 〈φ | µ〉 and k(φ, ψ) = Cov(〈φ | v〉, 〈ψ | v〉). We say that µ is its mean and k is its
covariance form, and write v ∼ N(µ, k).

Proof. Consider the map E〈· | v〉 : V ∗ → R. This map is a linear functional on the space V ∗. Since
V is finite-dimensional, V is reflexive, so there is exactly one vector µ ∈ V such that

〈φ | µ〉 = E〈φ | v〉 (11)

for all φ ∈ V ∗. Next, define k as

k(φ, ψ) = Cov(〈φ | v〉, 〈ψ | v〉) (12)

for all φ, ψ ∈ V ∗. Clearly, k is bilinear and positive semi-definite, that is k(φ, φ) ≥ 0 for all φ ∈ V ∗.
Thus the claim follows.

This tells us that every Gaussian random vector admits a mean and covariance: we now show that
such Gaussians exist and are uniquely determined by this pair. Recall that for a measure π, and a
measurable function φ, the pushfoward measure φ∗π is defined as (φ∗π)(A) = π(φ−1(A)) for all
measurable sets A.
Lemma 10. For any vector µ ∈ V and any positive semi-definite bilinear form k : V ∗ × V ∗ → R,
there exists a random vector v ∼ N(µ, k). Moreover, if w : Ω → V is another Gaussian random
vector in the sense of Definition 8 with w ∼ N(µ, k), then v and w are identically distributed.

Proof. Choose a basis (ei) on V , and let (ei) be the dual basis. Define the vector µ ∈ Rd and matrix
K ∈ Rd×d by

µ =


〈
e1
∣∣ µ〉
...〈

ed
∣∣ µ〉

 K =

k(e1, e1) . . . k(e1, ed)
...

. . .
...

k(ed, e1) . . . k(ed, ed)

 . (13)

By positive semi-definiteness of k, the matrix K is a positive semi-definite matrix, so there exists a
random vector v ∼ N(µ,K) in the classical Euclidean sense. Let E : V → Rn be the continuous
linear isomorphism induced by the basis and define

v = E−1v. (14)

We claim that (a) v is Gaussian, that is, if we test it against any covector, we obtain a univariate
Gaussian, (b) the mean vector of v is µ, and (c) the covariance form of v is k. To show (a), let vi

14



denote the components of v (scalar Gaussian random variables) so that v =
∑d
i=1 v

iei and for any
φ ∈ V ∗, write φ =

∑d
i=1 φie

i, where φi =
〈
φ
∣∣ ei〉. Then we have

〈
φ
∣∣ v〉 =

〈
d∑
i=1

φie
i

∣∣∣∣∣∣
d∑
j=1

vjej

〉
=

d∑
i=1

d∑
j=1

φiv
j
〈
ei
∣∣ ej〉
δij

=

d∑
i=1

φiv
i. (15)

Since each vi is a univariate Gaussian, the linear combination on the right hand side is also a univariate
Gaussian, which proves (a). To prove (b) and (c), we see that for any φ ∈ V ∗,

E
〈
φ
∣∣ v〉 = E

〈
φ
∣∣ d∑
i=1

viei
〉

= E
d∑
i=1

vi〈φ | ei〉 (16)

=

d∑
i=1

(
E vi

)
〈ei | µ〉

〈φ | ei〉 =
〈
φ
∣∣ d∑
i=1

〈ei | µ〉ei
〉

= 〈φ | µ〉. (17)

Thus v has the right mean. Now take an additional ψ ∈ V ∗ and write

Cov
(〈
φ
∣∣ v〉, 〈ψ ∣∣ v〉) = E

((〈
φ
∣∣ v〉− 〈φ ∣∣ µ〉)(〈ψ ∣∣ v〉− 〈ψ ∣∣ µ〉)) (18)

= E

(
d∑
i=1

(
vi −

〈
ei
∣∣ µ〉)〈φ | ei〉)( d∑

j=1

(
vj −

〈
ej
∣∣ µ〉)〈ψ | ej〉) (19)

=

d∑
i=1

d∑
j=1

〈φ | ei〉E
((
vi − 〈ei | µ〉

)(
vj − 〈ej | µ〉

))
k(ei,ej)

〈ψ | ej〉 (20)

= k

(
d∑
i=1

〈φ | ei〉ei,
d∑
j=1

〈ψ | ej〉ej
)

= k(φ, ψ), (21)

hence v has the right covariance form.

Now let w : Ω → V be another Gaussian random vector with w ∼ N(µ, k), and let πw be its
pushforward measure. Similarly, let πv be the pushforward measure of v. Reversing the above
argument, we see that pushforwards of measures πv and πw through E , which we denote by πv
and πw, are both Gaussian distributions (in the classical sense) in Rd with the same mean vectors
µ and covariance matrices K. Hence πv = πw in distribution, but since E is a measurable space
isomorphism,6 we have πv = πw, which proves the claim.

Lemmas 9 and 10 show that a pair µ, k defines a unique probability distribution on V which we
call the Gaussian distribution with mean vector µ and covariance form k on the vector space V and
denote by N(µ, k). This establishes a notion of Gaussianity that is suitable and natural for describing
finite-dimensional marginals in a coordinate-free manner.

Existence and uniqueness (Proof of Theorem 4)

Here, we prove that Gaussian vector fields exist and are uniquely determined by their mean vector
field and cross-covariance kernel. Our goal now is, from a cross-covariance kernel, to construct a
projective family of finite-dimensional marginals.
Definition 11 (Preliminaries). Let X be a smooth manifold. Let

Γnns(TX) = {f : X → TX : projX ◦f = idX} (22)

be the vector space of not necessarily smooth sections.
Definition 12 (Cross-covariance kernel). A symmetric function k : T ∗X × T ∗X → R is called
fiberwise bilinear if at any pair of points x, x′ ∈ X , we have

k(λαx + µβx, γx′) = λk(αx, γx′) + µk(βx, γx′) (23)

6A measurable space isomorphism is a measurable bijection with a measurable inverse.
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for any αx, βx ∈ T ∗xX , γx′ ∈ T ∗x′X and λ, µ ∈ R, where we note by symmetry that the same
requirement applies to its second argument. A fiberwise bilinear function k is called positive
semi-definite if for any set of covectors αx1 , . . . , αxn ∈ T ∗X , we have

n∑
i=1

n∑
j=1

k(αxi , αxj ) ≥ 0. (24)

We call a symmetric fiberwise bilinear positive semi-definite function a cross-covariance kernel.

We show in the following example that this definition of the cross-covariance kernel is compatible
with the notion of matrix-valued kernels used in classical vector-valued GPs and extends it naturally.
Example 13 (Euclidean case). Consider X = Rd with a fixed inner product and an orthonormal
basis, under which Rd is identified with

(
Rd
)∗

. Consider a matrix-valued kernel κ : Rd×Rd → Rd×d
in the standard sense. Let k((x, v), (x′, v′)) = vTκ(x, x′)v′. Then k : T ∗Rd × T ∗Rd → R is a
cross-covariance kernel in the above sense.

Indeed, k is symmetric and fiberwise bilinear. Moreover, since κ is positive semi-definite in the
regular sense, we have that for arbitrary x1, . . . , xn ∈ Rd, the nd× nd matrix

Γ(x1, . . . , xn) =

κ(x1, x1) . . . κ(x1, xn)
...

. . .
...

κ(xn, x1) . . . κ(xn, xn)

 (25)

is positive semi-definite, meaning that for an arbitrary collection v1, . . . , vn ∈ Rd, we have

0 ≤
[
vT1 . . . vTn

] κ(x1, x1) . . . κ(x1, xn)
...

. . .
...

κ(xn, x1) . . . κ(xn, xn)


v1

...
vn

 =

n∑
i=1

n∑
j=1

vTi κ(xi, xj)vj

k((xi,vi),(xj ,vj))

. (26)

Condition (24) thus follows, proving that this is a valid cross-covariance kernel.

We proceed to introduce the system of coordinate-free finite-dimensional marginals that will be used
to construct the vector-valued GP.
Definition 14. Let µ ∈ Γnns(TX) and k : T ∗X ×T ∗X → R be a cross-covariance kernel. For any
x1, . . . , xn ∈ X , let Vx1,...,xn

= Tx1
X ⊕ . . .⊕ Txn

X and V ∗x1,...,xn
= T ∗x1

X ⊕ . . .⊕ T ∗xn
X . Define

µx1,...,xn
∈ Vx1,...,xn

and kx1,...,xn
: V ∗x1,...,xn

× V ∗x1,...,xn
→ R by

µx1,...,xn
= (µ(x1), . . . , µ(xn)) kx1,...,xn

(α, β) =

n∑
i=1

n∑
j=1

k(αxi
, βxj

) (27)

for any α = (αx1
, . . . , αxn

), β = (βx1
, . . . , βxn

) ∈ V ∗x1,...,xn
. We denote πx1,...,xn

=
N(µx1,...,xn

, kx1,...,xn
) the system of marginals induced by k.

We now prove existence and uniqueness of a measure on Γnns(TX) from the Gaussian measures
defined on Vx1,...,xn for any {x1, . . . , xn} ⊆ X . We do this by means of the general form of
the Kolmogorov extension theorem formulated below. Recall again that for a measure π, and a
measurable function φ, the pushfoward measure φ∗π is defined as (φ∗π)(A) = π(φ−1(A)) for all
measurable sets A.
Result 15 (Kolmogorov Extension Theorem). Let (Xα,Bα,Oα)α∈A be a family of measurable
spaces, each equipped with a topology. For each finite B ⊆ A, let µB be an inner regular probability
measure on XB =

∏
α∈B Xα with σ-algebra BB and with the product topology OB obeying

(projC)∗µB = µC (28)

whenever C ⊆ B ⊆ A are two nested finite subsets of A. Here projections projC : XB → XC are
defined by projC({xα}α∈B) = {xα}α∈C and (projC)∗ denotes the pushforward by projC . Then
there exists a unique probability measure µA on BA with the property that (projB)∗µA = µB for all
finite B ⊆ A.

Proof. Tao [42], Theorem 2.4.3.
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By showing the existence of a probability measure on the space Γnns(TX), one can start speaking
about random variables f : Ω → Γnns(TX) with said measure as their distribution: these are the
Gaussian vector fields we seek. However, in order to apply the above result, we first need to verify
condition (28). This is done in the following.
Proposition 16. The family of measures (πx1,...,xn){x1,...,xn}⊆X is a projective family in the sense
that for any {x1, . . . , xm} ⊆ {x1, . . . , xn} ⊆ X , we have

(projx1,...,xm
)∗πx1,...,xn

= πx1,...,xm
(29)

where projx1,...,xm
: Vx1,...,xn → Vx1,...,xm is the canonical projection induced by the direct sum.

Proof. Take two random variables vx1,...,xn : Ω → Vx1,...,xn and vx1,...,xm : Ω → Vx1,...,xm with
vx1,...,xn ∼ πx1,...,xn and vx1,...,xm ∼ πx1,...,xm . It suffices to show that for the random variable
vx1,...,xn : Ω→ Vx1,...,xm we have

vx1,...,xm

d
= projx1,...,xm

vx1,...,xn
(30)

where d
= denotes the equality of distributions. We first show that projx1,...,xm

vx1,...,xn is Gaussian.
Let φ ∈ V ∗x1,...,xm

and write〈
φ
∣∣ projx1,...,xm

vx1,...,xn

〉
= 〈(φ, 0) | vx1,...,xn

〉 (31)

where (φ, 0) ∈ V ∗x1,...,xn
is the natural inclusion of φ ∈ V ∗x1,...,xm

in the space V ∗x1,...,xn
by padding

with the zero vector over all components of the direct sum whose indices are not x1, . . . , xm. This
identity holds for all vectors, hence it holds for random vectors, and projx1,...,xm

vx1,...,xn
is Gaussian.

Now, we compute its moments: write

E
〈
φ
∣∣ projx1,...,xm

vx1,...,xn

〉
= E〈(φ, 0) | vx1,...,xn〉 (32)

= 〈(φ, 0) | µx1,...,xn
〉 (33)

=
〈
φ
∣∣ projx1,...,xm

µx1,...,xn

〉
(34)

= 〈φ | µx1,...,xm
〉 (35)

where the last line follows by definition of µx1,...,xm
, and

Cov(
〈
φ
∣∣ projx1,...,xm

vx1,...,xn

〉
,
〈
ψ
∣∣ projx1,...,xm

vx1,...,xn

〉
) (36)

= Cov (〈(φ, 0) | vx1,...,xn
〉, 〈(ψ, 0) | vx1,...,xn

〉) (37)
= kx1,...,xn

((φ, 0), (ψ, 0)) (38)
= kx1,...,xm

(φ, ψ) (39)

where the last line follows by bilinearity and the definition of kx1,...,xm
.

So far we have shown that projx1,...,xm
vx1,...,xn

is Gaussian over Vx1,...,xm
and its mean vector and

covariance form coincide with those of vx1,...,xm . Hence, by the uniqueness part of Lemma 10 we

have vx1,...,xm

d
= projx1,...,xm

vx1,...,xn
. This finishes the proof.

We are now ready to apply the Kolmogorov extension theorem to show existence of the desired
distribution.
Proposition 17. There exists a unique measure π∞ on the infinite product space

∏
x∈X TxX .7

Proof. We apply the prior result 15. Let X be the index set, and take (TxX)x∈X , equipped with the
standard topology and Borel σ-algebra as our measurable spaces. For each finite {x1, . . . , xn} ⊆ X ,
take πx1,...,xn as our probability measure, and note that since each πx1,...,xn is a finite measure on a
finite-dimensional real vector space Vx1,...,xn , it is automatically inner regular. Moreover, the family
of measures (πx1,...,xn){x1,...,xn}⊆X is projective by Proposition 16. The claim follows.

This gives our GP as a measure on an infinite Cartesian space: we now map this measure into the
space of sections.

7Note that this is the Tychonoff product of topological spaces rather than a direct product of linear spaces.
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Corollary 18. There exists a unique measure πΓnns(TX) on Γnns(TX) equipped with the pushforward
σ-algebra.

Proof. Define the operator I :
∏
x∈X TxX → Γnns(TX) by

(Is)(x) = (x,projx s) (40)

for all x ∈ X and s ∈
∏
x∈X TxX . Take πΓnns(TX) = I∗π∞.

This is the probability distribution of our Gaussian process. We are now ready to define Gaussian
vector fields, and show that each Gaussian vector field in turn possesses a mean vector field and
cross-covariance kernel.

Definition 19. Let X be a manifold. We say that a random vector field f : Ω → Γnns(TX) is
Gaussian if for any finite set of locations (x1, . . . , xn) ∈ Xn, the random vector f(x1), . . . , f(xn) ∈
Tx1

X ⊕ . . .⊕ Txn
X is Gaussian in the sense of Definition 8.

Definition 20. Let f : Ω→ Γnns(TX) be a Gaussian vector field. Define µ to be the unique vector
field for which, for any x ∈ X and any φ ∈ T ∗x , we have that

〈φ | µ(x)〉 = E〈φ | f(x)〉. (41)

Next taking an additional x′ ∈ X and ψ ∈ T ∗x′ , define the cross-covariance kernel k by

k(φ, ψ) = Cov(〈φ | f(x)〉, 〈ψ | f(x′)〉). (42)

Summarizing, we obtain the following claim.

Theorem 21. Every pair consisting of a mean vector field and symmetric fiberwise bilinear positive
definite function k : T ∗X × T ∗X → R, which we call a cross-covariance kernel, defines a unique
(distribution-wise) Gaussian vector field in the sense of Definition 19. Conversely, every Gaussian
vector field admits and is characterized uniquely by this pair.

Proof. Corollary 18, Definition 19, and Definition 20.

Embeddings (Proof of Proposition 2)

Proposition 22. Let emb : X → Rp be an embedding, let f be a Gaussian vector field on X , and
denote by f emb : emb(X)→ Rp its pushforward along the embedding, that is, for any x ∈ X ,

f emb(emb(x)) = dxemb(f(x)), (43)

where dxemb : TxX → Temb(x)Rp is the differential of emb. Then f emb is a vector-valued Gaussian
process in the standard sense.

Proof. Let x1, . . . , xn ∈ Xn be a finite set of arbitrary locations. In what follows, we use a slight
abuse of notation by letting xi denote both xi and emb(xi) for simplicity. We claim that the random
vector (f emb(x1), . . . ,f emb(xn)) ∈ Rnp is multivariate Gaussian, which is sufficient to prove our
result. Since f is a Gaussian vector field, we have that

(f(x1), . . . , f(xn)) ∼ N(µx1,...,xn
, kx1,...,xn

) (44)

is a Gaussian random vector on Tx1X ⊕ . . . ⊕ TxnX . Now consider the map φx1,...,xn : Tx1X ⊕
. . .⊕ TxnX → Temb(x1)Rp ⊕ . . .⊕ Temb(xn)Rp ∼= Rnp defined as

φx1,...,xn(fx1 , . . . , fxn) = (dx1emb(fx1), . . . ,dxnemb(fxn)), (45)

for all (fx1 , . . . , fxn) ∈ Tx1X ⊕ . . . ⊕ TxnX , which is linear, owing to the linearity of dxemb.
Since linear maps preserve Gaussianity, it follows that the vector φx1,...,xn

(f(x1), . . . , f(xn)) =
(f emb(x1), . . . ,f emb(xn)) ∈ Rnp is multivariate Gaussian and the claim follows.

18



Coordinate Expressions (Proof of Proposition 5)

We recall the definition of a frame on X and its dual object, namely, the coframe.
Definition 23. A frame F on X is defined as a collection (ei)

d
i=1 of not necessarily smooth sections

of TX such that at each point x ∈ X , the vectors (ei(x))di=1 form a basis of TxX . The corresponding
coframe F ∗ is defined as a collection (ei)di=1 of not necessarily smooth sections of T ∗X such that〈
ei(x)|ej(x)

〉
= δij for all x ∈ X .

Proposition 24. Let f : Ω → Γnns(TX) be a Gaussian vector field on X with cross-covariance
kernel k : T ∗X × T ∗X → R. Given a frame F = (e1, . . . , ed) on X and F ∗ = (e1, . . . , ed) be its
coframe, define f i =

〈
ei
∣∣ f〉 for all i = 1, . . . , d. Then f = (f1, . . . , fd) : Ω × X → Rd is a

vector-valued GP in the usual sense with matrix-valued kernel KF : X ×X → Rd×d given by

KF (x, x′) =

k(e1(x), e1(x′)) . . . k(e1(x), ed(x′))
...

. . .
...

k(ed(x), e1(x′)) . . . k(ed(x), ed(x′))

 . (46)

Conversely, given a vector-valued GP f = (f1, . . . , fd) : Ω×X → Rd and a frameF = (e1, . . . , ed)

on X , f(·) :=
∑d
i=1 f

i(·)ei(·) defines a Gaussian vector field on X .

Proof. First, we note that f i(x) =
〈
ei(x)

∣∣ f(x)
〉

are jointly Gaussian for all i = 1, . . . , d and
all x ∈ X . Thus for any x1, . . . , xn ∈ X , the vector (f(x1), . . . ,f(xn)) ∈ Rn×d is multivariate
Gaussian and therefore f is a vector-valued GP in the usual sense. Now for any x, x′ ∈ X , the kernel
of f evaluated at these points reads

KF (x, x′) =

Cov(f1(x), f1(x′)) . . . Cov(f1(x), fd(x′))
...

. . .
...

Cov(fd(x), f1(x′)) . . . Cov(fd(x), fd(x′))

 (47)

=

k(e1(x), e1(x′)) . . . k(e1(x), ed(x′))
...

. . .
...

k(ed(x), e1(x′)) . . . k(ed(x), ed(x′))

 , (48)

which follows from Definition 20. This concludes the first part of the proof.

To prove the converse direction, for any collection of points x1, . . . , xn ∈ X , define the random
vector vx1,...,xn

= (f(x1), . . . , f(xn)), where f is given by f(x) =
∑d
i=1 f

i(x)ei(x). Now for any
φx1,...,xn = (φx1 , . . . , φxn) ∈ V ∗x1,...,xn

, we have〈
φx1,...,xn

∣∣ vx1,...,xn

〉
=

n∑
i=1

〈
φxi

∣∣ f(xi)
〉

(49)

=

n∑
i=1

〈
φxi

∣∣ d∑
j=1

f j(xi)ej(xi)
〉

(50)

=

n∑
i=1

d∑
j=1

f j(xi)
〈
φxi

∣∣ ej(xi)〉. (51)

Since f j(xi) is univariate Gaussian for all i = 1, . . . , n and j = 1, . . . , d, the above linear combi-
nation is univariate Gaussian and therefore vx1,...,xn is Gaussian in the sense of Definition 8. Since
x1, . . . , xn were chosen arbitrarily, f is a Gaussian vector field.

Gauge Independence (Proof of Corollary 6)

Given two frames F, F ′ on X , an abstract vector fx ∈ TxX has two vector representations fx,f
′
x in

the respective frames. Recall that F ′ is said to be obtained from F by a gauge transformation with
respect to a matrix field A : X → GL(d,R), if

f ′x = A(x)fx (52)
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holds for all x ∈ X , and we write F ′ = AF . In the following, we compute an explicit expression for
the gauge-transformed frame AF and its coframe.
Lemma 25. Let F = (e1, . . . , ed) be a frame on X , A : X → GL(d,R) be a matrix field
of gauge transformations, AF = (ε1, . . . , εd) be the gauge transformed frame as above and let
(AF )∗ = (ε1, . . . , εd) be the corresponding coframe. Then we have the following explicit expressions

εi(x) =

d∑
j=1

ej(x)[A−1(x)]ji, εi(x) =

d∑
j=1

[A(x)]ije
j(x). (53)

Proof. For any x ∈ X , let fx ∈ TxX be an abstract vector, which has the vector representations fx
and A(x)fx in the frames F and AF respectively. Letting fx = (f1

x , . . . , f
d
x ), we have

fx =

d∑
i=1

f ixei(x) =

d∑
i=1

d∑
j=1

([A(x)]jif
i
x)εj(x) =

d∑
i=1

f ix

 d∑
j=1

εj(x)[A(x)]ji

. (54)

Thus, ei(x) =
∑d
j=1 εj(x)[A(x)]ji, or identically, εi(x) =

∑d
j=1 ej(x)[A−1(x)]ji. We now

claim that εi(x) =
∑d
j=1[A(x)]ije

j(x), which we prove by showing that it satisfies the relation〈
εi(x)

∣∣ εj(x)
〉

= δij as follows:

〈
εi(x)

∣∣ εj(x)
〉

=

〈
d∑
k=1

[A(x)]ike
k(x)

∣∣∣∣∣
d∑
l=1

el(x)[A−1(x)]lj

〉
(55)

=

d∑
k=1

d∑
l=1

[A(x)]ik
〈
ek(x)

∣∣ el(x)
〉

δkl

[A−1(x)]lj (56)

=

d∑
k=1

[A(x)]ik[A−1(x)]kj (57)

= [A(x)A−1(x)]ij

δij

. (58)

This concludes the proof.

The following is, then, straightforward to show.
Corollary 26. Let F be a frame on X and KF : X × X → Rd×d be the corresponding matrix
representation of a cross-covariance kernel k : T ∗X × T ∗X → R. This satisfies the equivariance
condition

KAF (x, x′) = A(x)KF (x, x′)A(x′)T , (59)
where A : X → GL(d,R) is a gauge transformation applied to each point on X . All cross-
covariance kernels in the sense of Proposition 4 arise this way.

Proof. Let F = (e1, . . . , ed) and AF = (ε1, . . . , εd). Then by the previous lemma, we have

[KAF (x, x′)]ij = k(εi(x), εj(x′)) (60)

=

d∑
k=1

d∑
l=1

k
(
[A(x)]ik e

k(x), [A(x′)]jl e
l(x′)

)
(61)

=

d∑
k=1

d∑
l=1

[A(x)]ik [KF (x, x′)]kl [A(x′)]jl, (62)

which proves the identity (59).

The second claim is obvious: take some cross-covariance kernel in the sense of Proposition 4
and some frame—this induces a gauge independent matrix-valued kernel that correspond to the
cross-covariance kernel in the sense of Proposition 4 from which it was constructed in the first
place.
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Projected Kernels (Proof of Proposition 7)

Here we formally describe the projected kernel construction. We start by noting some properties of
the projection matrices associated with differentials of isometric embeddings.
Lemma 27. Let (X, g) be a Riemannian manifold and emb : X → Rd′ be an isometric embedding.
Given a frame F = (e1, . . . , ed) on X , denote by P(·) : X → Rd×d′ its associated projection
matrix, defined for every x as the matrix representation of dxemb within F , and Γ : X → Rd×d, the
matrix field representation of the Riemannian metric g, that is, [Γ(x)]ij = gx(ei(x), ej(x)) for all
i, j = 1, . . . , d and x ∈ X . Then we have

PxP
T
x = Γ(x). (63)

Proof. Since the embedding is isometric, for any v, v′ ∈ TxX , we have
gx(u, v) = 〈dxemb(v),dxemb(v′)〉, (64)

which, in the corresponding vector representation with respect to a frame F , reads
vTΓ(x)v′ =

〈
PT
x v,P

T
x v
′〉 = vT (PxP

T
x )v′. (65)

for any v,v′. This implies that Γ(x) = PxP
T
x for all x and proves the claim.

We proceed to describe the projected kernel construction, which lets us transform a matrix-valued
kernel on an ambient space into a cross-covariance kernel on the manifold.
Proposition 28. Let (X, g) be a Riemannian manifold, emb : X → Rd′ be an isometric embedding
and F be a frame on X . We denote by P(·) : X → Rd×d′ the associated projection matrix
under F , and let f ′ : X → Rd′ be any vector-valued Gaussian process with matrix-valued kernel
κ : X ×X → Rd′×d′ . Then, the vector-valued function f = Pf ′ : X → Rd defines a Gaussian
vector field f on X using the construction in Proposition 24, whose kernel under the frame F has
matrix representation

KF (x, x′) = Pxκ(x, x′)PT
x′ . (66)

Moreover, all cross-covariance kernels k : T ∗X × T ∗X → R arise this way.

Proof. We demonstrate the first part by computing the covariance of f . For any x, x′ ∈ X , we have
KF (x, x′)ij = Cov(f i(x), f j(x′)) (67)

= Cov([Pxf
′(x)]i, [Px′f

′(x′)]j) (68)

=

d∑
k=1

d∑
l=1

Cov([Px]ik f
′
k(x), [Px′ ]jl f

′
l (x
′)) (69)

=

d∑
k=1

d∑
l=1

[Px]ik Cov(f ′k(x), f ′l (x
′)) [Px′ ]jl (70)

=

d∑
k=1

d∑
l=1

[Px]ik κ(x, x′)kl [Px′ ]jl, (71)

which proves the identity (66).

Conversely, let k : T ∗X×T ∗X → R be a cross-covariance kernel. We first construct a matrix-valued
kernel KF as in Proposition 24. Define

κ(x, x′) = PT
xKΓ−1F (x, x′)Px′ , (72)

where Γ : X → Rd×d is the matrix field representation of the metric g as given in the statement of
Lemma 27. Then by the same lemma, we have

Pxκ(x, x′)PT
x′ = (PxP

T
x )KΓ−1F (x, x′)(Px′P

T
x′) (73)

= Γ(x)KΓ−1F (x, x′)Γ(x′) (74)

= KF (x, x′), (75)
where we used that Γ(x)T = Γ(x) and Corollary 26 to deduce the last equality. Thus, any cross-
covariance kernel k can be obtained from a matrix-valued kernel κ on the ambient space and therefore
we do not lose any generality by working with the latter.
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B Experimental details

Here, we include further details about the experiments conducted in Section 4. All experiments were
conducted on a single workstation with 64GB RAM, using CPU-based computation.

Fourier features for product kernels

Throughout this paper we use the sparse GP formulation of Wilson et al. [47, 48] to work with GPs.
In order to apply this method we need to be able to sample a Fourier feature approximation of the
kernel. For stationary kernels supported on Euclidean space one typically uses a random Fourier
feature (RFF) approximation [33]

f̃(·) =
1√
l

l∑
i=1

wiφi(x), wi ∼ N(0, 1), (76)

where the φi are Fourier basis functions sampled from the spectral density of the kernel—see
Sutherland and Schneider [41] for details. The resulting random function f̃(·) is then a Gaussian
process with zero mean and kernel l−1Φ(·)TΦ(·), where Φ is a vector of the l basis functions. This
approximates the true GP with a dimension-free error of the order l−1/2.

For kernels supported on compact spaces we use a Karhunen–Loéve (KL) expansion. If we have a
Gaussian process f(·) on a compact space, then we can optimally approximate this function (in terms
of L2-norm) by truncating its KL expansion

f(·) =

∞∑
i=1

wiψi(x) wi ∼ N(0, λi) (77)

where φi, λi are the ith eigenfunctions and values of the kernel,
∫
X
ψ(x)k(x, ·) dx = λiψi(·), sorted

in descending order of the eingenvalues. For the squared exponential and Matérn kernels on compact
manifolds, these eigenfunctions are the eigenfunctions of the Laplacian of the manifold, and the
eigenvalues are given by a transformation of the Laplacian eigenvalues [2].

The question then arises of what to do in the case of a product of kernels, each taking as input some
different space, where some are suited to RFF approximation, and some to a KL approximation. We
propose the following approach.

1. All the RFF-appropriate kernels can be combined into one approximation by sampling the
basis functions from the product measure of their Fourier transforms.

2. All of the KL-appropriate kernels can be combined into one approximation by computing
the k largest eigenvalues of the product manifold the kernels are defined on. If we have two
compact manifolds with eigenvalue-function pairs (αi, fi(·))∞i=1 and (βj , gj(·))∞j=1, then
the eigenvalue-function pairs on the product manifold are (αi + βj , fi(·)gj(·))∞,∞i,j=1 [4]. We
can repeatedly apply this to find the approximation for the kernel on arbitrary products of
compact manifolds.

3. Define the Fourier feature approximation of the combination of this RFF and KL approxi-
mations as

f(e,m) =
1√
l

l∑
i=1

k∑
j=1

wi,jφi(e)ψj(m) wi,j ∼ N (0, λj) (78)

where e,m are the inputs to the RFF and KL appropriate kernels respectively, φi are the
basis functions of the Euclidean kernels sampled from the product measure, and λj , ψj , are
the product eigenpairs on the product manifold. In the limit of infinite basis functions in
both l and k this will give the correct kernel, and therefore the true prior.

Dynamics experiment

In this experiment, the base manifold is the state space of the single pendulum system. The position
of the pendulum is represented by a single angle in [0, 2π), which corresponds to the circle S1. The
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momentum lies then in its respective cotangent space. The phase space is the product of these,
S1 × R1.

This product manifold naturally embeds into R3 by embedding the circle into R2 in the canonical
way, and leaving R1 unchanged. The embedding is then

emb(q, p) = (cos q, sin q, p), (79)

where q is the position and p is the angular momentum. The global projection matrix given by

Pq,p =

[
− sin q cos q 0

0 0 1

]
. (80)

The Euclidean vector kernel we use is a separable kernel, produced by taking the product of an
intrinsic squared exponential manifold kernel with the identity matrix to give a matrix valued kernel,
κ = kS1×R1I3×3. The intrinsic manifold kernel is produced by the product of a typical Euclidean
squared exponential kernel with a squared exponential kernel defined on S1 by Borovitskiy et al. [2],
so that kS1×R1 = kS1kR1 . The length scales of these kernels are set to 0.3 and 1.2 respectively, and
the amplitude set to give k(x, x) = 1.

To learn the dynamics, we initialise the system at two start points, and evolve the system using leapfrog
integration. From these observations of position, we backward Euler integrate the momentum of
the system, pi = 1

2ml(qi+1 − qi), and from these position-momentum trajectories we estimate
observations of the dynamics field

∇t(q, p)i =

(
qi+1 − qi

h
,
pi+1 − pi

h

)
(81)

where h = 0.01 is the step size. Using these observations, we condition a sparse GP using all the
data using the analytic expression for the sparse posterior kernel matrix. The result is an estimate
of the system dynamics with suitable uncertainty estimates. In order to compute rollouts of these
dynamics, we follow Wilson et al. [47, 48] and employ linear-time pathwise sampling of this sparse
GP together with leapfrog integration [16].

Wind interpolation experiment

In this experiment, the base manifold is the sphere S2, which we embed naturally in R3 as

emb(φ, θ) = (cos θ sinφ, sin θ sinφ, cosφ), (82)

where we used spherical coordinates φ ∈ (0, π), θ ∈ [0, 2π) to parametrise the sphere

(φ, θ) ∈ {(0, 0)} ∪ {(π, 0)} ∪ (0, π)× [0, 2π) (83)

We choose a frame F = (e1, e2), where e1(φ, θ) = φ̂ and e2(φ, θ) = θ̂ are the unit vectors in the φ, θ
directions respectively for all φ ∈ (0, π), θ ∈ (0, 2π). The choice of points on the North and South
poles determines the choice of gauge at these points. The corresponding orthonormal projection
matrix reads

Pφ,θ =

[
cos θ cosφ sin θ cosφ − sinφ
− sin θ cos θ 0

]
, (84)

for all points, with the choice of θ = 0 giving the choice of frame at the poles.

For the data, we used the following publicly available data sets.

• The ERA5 atmospheric reanalysis data. In particular, the variables 10M-U-COMPONENT-OF-
WIND and 10M-V-COMPONENT-OF-WIND from the REANALYSIS-ERA5-SINGLE-LEVELS
dataset for the date 01/01/2019 09:00-10:00, regridded from 0.25◦ to 5.625◦ resolution
using python’s XESMF package.

• The WeatherBench dataset [35], which can be found at https://github.com/pangeo-da
ta/WeatherBench. In particular the variables 10M-U-COMPONENT-OF-WIND and 10M-
V-COMPONENT-OF-WIND at 5.625◦ resolution for the entire available period 1979/01/01 -
2018/12/31.
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• The Aeolus trajectory data, which can be read using Python’s SKYFIELD API from Aeolus’
two-line element set given below.
1 43600U 18066A 21153.73585495 .00031128 00000-0 12124-3 0 9990
2 43600 96.7150 160.8035 0006915 90.4181 269.7884 15.87015039160910

Instead of using actual observations from the Aeolus satellite, we generated our own by interpolating
the ERA5 data along the satellite track, whose locations are available minutely. This is so that we
can compare the predictions against the ground truth to assess the performance. We use one hour of
data, and hence 60 data points, to perform a spatial interpolation instead of a space-time interpolation,
which is reasonable as the atmosphere hardly moves during that time period at the spatial scale of
interest. Moreover, we include the weekly climatology as prior information (computed by taking
the temporal average of historical global wind patterns for each of the 52 calendar weeks during
the period 1979-2018 in WeatherBench), which captures general circulation patterns such as trade
winds in the poles and the equator. This is equivalent to training the GP on the difference of the wind
velocity from the weekly climatology.

For the kernel, we used Matérn-3/2 on the sphere and the Euclidean space (see Borovitskiy et al. [2]
for the construction of Matérn kernels on the sphere), where the prior amplitude parameter was set to
a fixed value (11.5 in the spherical case and 2.2 in the Euclidean case) and the length scale parameter
was learnt from data. We have tried to learn the length scale initially by fitting the GP on the satellite
observations and maximizing the marginal likelihood. However, this gave an unrealistically small
value, likely due to the observations being too sparse: so, instead, we first trained a sparse GP on
150 randomly chosen time slices of the weatherbench historical wind reanalysis data and minimizing
the Kullback–Leibler divergence of the variational distribution from the posterior (using the Adam
optimizer with learning rate 1e-2). The mean of the learnt length scales of the 150 samples was
then used as the final length scale. Denoting by kS2 the scalar Matérn-3/2 kernel on the sphere, we
construct a matrix-valued kernel on the ambient space R3 by taking κ = kS2I3×3 as in the dynamics
experiment, which is then used to construct the projected kernel with the projection given by (84).
Finally, we note that when fitting the GP on the satellite observations, we use an observation error of
1.7m/s, which reflects the sum of the random and systematic error in the Aeolus satellite, as detailed
by its technical specifications [12].
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