
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DEFINITIONS OF SUBSEQUENCE, WIDTH AND DEPTH OF AN EXPRESSION

Let T be the expression tree, with root node UR, sequences of unary operators S1
i and S2

j at different
levels, and n leaf nodes {Ik}nk=1. Each leaf node Ik is denoted by an unary operator Uk element-
wise applied to variables from the set V .

Definition 1(Subsequence of an Expression). The subsequence of the expression represented by
h-level tree T is defined as the ordered set of unary and binary operators encountered along a path
from the root node UR to a specific leaf node.

Formally, for each leaf node Ik in a h-level tree T , the subsequence of the expression is given by:

Subsequence(Ik) = {UR, B
1, S1, B2, S2, ...Bh, Sh, Uk}, k ∈ {1, ..., n}

where:
- UR is the unary operator at the root node,
- B1, B2, ..., Bh are the binary operators encountered along the path, connecting sequences
S1, S2, ..., Sh

- S1, S2, ..., Sh are the sequences of unary operators encountered along the path from the root node
to the leaf node Ik
- Ui is the unary operator applied at the leaf node to variables in V .

Definition 2(Width of an Expression). The width of an expression is defined as the total num-
ber of first-level sequences. Formally, for the tree T with outermost unary operator sequences
{S1

1 , S
1
2 , . . . , S

1
m}, the width is given by:

Width(T) = m

where m is the number of unary operator sequences connected to the root node.

Definition 3(Depth of an Expression). The depth of an expression is defined as the length of the
longest subsequence in the expression tree T . This corresponds to the maximum number of unary
operators encountered along any path from the root node UR to a leaf node Ik. Formally, the depth
is given by:

Depth(T) = max
1≤k≤n

(Length of Subsequence(Ik))

where the length of the subsequence is the number of unary operators from the root to the leaf node
Ik. Figure 2 presents two illustrative examples,

Figure 6: Examples of two expression trees, illustrating their subsequences, width, and depth.

• Left tree: The subsequences are {tan,+, exp, (·)2, Id}, {tan,+, exp,+, (·)2, Id}, and
{tan,+, exp,+, exp, (·)2, Id}. The width of this tree is 2, as there are 2 first-level se-
quences connected directly to the root node. The depth of the tree is 7, representing the
longest path from the root to a leaf node.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• Right tree: The subsequences are {√,+, (·)2, Id} and {√,+, (·)2, Id}. The width of this
tree is 2, with 2 first-level sequences connected directly to the root node. The depth of the
tree is 4, indicating the longest path from the root to a leaf node.

To ensure the consistency of our representation method, we stipulate that the operator Id can appear
in the root node, leaf nodes, and sequences S. However, Id can only be selected in sequences S when
there is exactly one unary operator. An unnecessary Id increases the length of the expression and
negatively affects our later process of collecting symbol priors. Additionally, we aim to minimize
the occurrence of Id at leaf nodes to maintain efficient and meaningful representations.

B CASE STUDY

In this section, we compare the priors defined in the previous section. By analyzing and evaluat-
ing the vertical and horizontal symbol priors, along with additional priors derived from root and
leaf node distributions and structural characteristics, we aim to understand their individual contribu-
tions and collective impact on the symbolic regression process. This comparative analysis provides
insights into the effectiveness of incorporating domain-specific knowledge and informs the opti-
mization of our learning framework.

Figure 7: The figure presents the statistical analysis of expression depth, width, and root node dis-
tributions across four different scientific fields: Physics, Biology, Chemistry, and Engineering. The
top row shows the probability distribution of expression depths, indicating the common structural
complexity in each field. The middle row illustrates the distribution of expression widths, highlight-
ing the variation in the number of terms involved. The bottom row displays the distribution of root
nodes (Here we only consider conmmonly used unary operators) in expressions, reflecting the
types of operations that typically form the foundation of mathematical models within each domain.
This comprehensive analysis provides insights into the typical characteristics and structural patterns
of expressions used in these fields.

In all four domains—physics, chemistry, biology, and engineering—expressions with large depth are
rare. When there is no unary operator between binary operators, we introduce an identity operator,
which increases the actual depth of the expression. Thus, the true depth is often greater than initially
perceived.

Physics and engineering expressions tend to have greater depth due to nested functions and layered
operations required to model complex phenomena. For example, physics expressions often involve

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

nested trigonometric or exponential functions, differential equations, and integrals. Engineering
models may include multiple layers of system dynamics and control mechanisms.

The width of expressions is generally concentrated at moderate levels across all domains. Although
expressions like

∑n
i=1 suggest potentially large widths due to variable n, in practice, the width re-

mains manageable because n varies widely and cannot be statistically determined. Expressions in
all four areas often exhibit wide structures at the topmost binary operator due to the combination
of multiple particles, reactants, products, species, or factors. This reflects the parallel interactions
inherent in these systems. For instance, chemical reaction equations sum several reactants and prod-
ucts, and biological models may aggregate the effects of multiple genes or environmental factors.
In engineering, the total impedance of parallel circuits is calculated by summing the reciprocals of
individual impedances, leading to wider expressions. Similarly, in physics, summing over multiple
particles or states, such as in partition functions, results in expressions with greater width. However,
We can still estimate where to begin by considering the number of variables in the system and the
complexity of the phenomena that need to be captured.

The root node distribution reveals that Id is the most common across all fields, indicating a frequent
need to directly combine terms without immediate transformations. Engineering shows a higher
probability for exp, reflecting its use in dynamic systems and signal processing. Chemistry and
biology exhibit a notable presence of log, due to its role in reaction kinetics, pH calculations, and
data normalization. Chemistry also shows a more balanced distribution among log, exp, (·)2 and√
·, highlighting its diverse mathematical nature in modeling reaction rates, equilibria, and molecular

properties.

Vertical Information: As an example in figure 5, we present the distribution of the binary oper-
ator B1 conditioned on different root nodes. This vertical analysis explores how the selection of
a root node, such as Id, log, exp, sin, cos, tan,

√
· and (·)2, influences the probability distribution

of subsequent binary operations within the expression. This approach allows us to understand the
hierarchical dependencies and patterns in the construction of expressions across different domains.
Additionally, we collect patterns in subsequences that are seldom or almost never encountered in
Physics, Biology, Chemistry, and Engineering. These rare examples further emphasize the im-
portance of adhering to established rules to maintain simplicity, interpretability, and mathematical
validity in expression trees. For example,

√
log(tan(·)) and

√
tan(log(·)), such combinations do

not correspond to typical engineering models or measurable physical quantities, making them rare
and generally avoided.

Horizontal Information: In our analysis of horizontal information, we focus on the relationships
between sibling nodes connected by a common parent node, specifically when the parent is a binary
operator. Assume a parent node B(a binary operator) has two child nodes (siblings), s1 and s2.
We aim to estimate the distribution of one sibling node given the parent node and the other sibling
node. This analysis captures the domain-specific patterns of how operands are combined using bi-
nary operators. Here is an example in figure 6, Across various scientific domains, combinations such
as exp+Id and exp+ exp are frequently observed, reflecting fundamental models like exponential
growth and decay, as well as the summation of exponential functions in differential equations. In
contrast, combinations like exp+ tan or exp+(·)2 are rare across all fields due to limited physical
or practical relevance and potential stability issues in modeling contexts. The prevalence of specific
combinations varies among domains: physics tends to favor combinations of exponential functions
with trigonometric functions (e.g., exp+ sin or exp+ cos) to model oscillatory behaviors; biology
often relies on combinations of exponential functions with the identity function or logarithms, re-
flecting simpler growth models; chemistry exhibits a unique affinity for combinations like exp+ log
due to their relevance in reaction rates and equilibrium processes; and engineering demonstrates di-
verse combinations, including exp+

√
· and exp+(·)2, representing stress-strain relationships and

signal modulations. This domain-specific variation in operand combinations underscores the im-
portance of incorporating horizontal information into our symbolic regression framework, enabling
the model to capture these nuances and enhance the relevance and interpretability of the generated
expressions.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 8: Across Physics, Biology, Chemistry, and Engineering, various root unary operators (Id,
log, exp, trig, sqrt, square) predominantly connect with addition (+) and multiplication (∗), under-
scoring their essential roles in aggregating and scaling expressions. However, the specific propor-
tions of these binary operators vary among disciplines, reflecting each field’s unique mathematical
modeling requirements

Figure 9: Probability Distributions of Second Sibling Unary Operator Given Parent Binary Operator
”+” and First Sibling ”exp” in Various Fields’

C FEX-BASED ALOGORITHM

The agent AΨ is implemented as a recurrent neural network (RNN) with parameters Ψ. The KL-
Regularized training objective of the agent trades off maximizing returns with staying close to the
sequences associated with our symbolic prior. This objective is formulated as:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

J (Ψ) = Ee∼AΨ

[
R(e)− β

1

N

N−1∑
i=0

KL (P ∗(si | Si, sp, h) ∥ yi)
]
,

where yi is the i-th output of AΨ, β is the hyperparameter.

To optimize the controllerAΨ, we employ a policy gradient-based updating method in reinforcement
learning (RL). In practice, we compute an approximation of this gradient using a batch of k sampled
operator sequences e(1), e(2), . . . , e(k) as follows:

∇ΨJ (Ψ) ≈ 1

k

k∑
n=1

R(e(n))

N−1∑
i=0

[
∇Ψ log(y

(n)
i)− β

N
∇ΨKL (P ∗(si | Si, sp, h) ∥ yi)

]
.

To update the parameters Ψ of the agent, we use the gradient ascent method with a learning rate η:

Ψ← Ψ+ η(∇ΨJ (Ψ)).

The goal of the objective function J (Ψ) is to improve the average reward of the sampled operator
sequences. To enhance the probability of obtaining the best equation expression, we modify the
objective function using the risk-seeking policy gradient approach:

J (Ψ) = Ee∼AΨ
[R(e) · I(R(e) ≥ RΨ)],

where RΨ represents the (1−α)-quantile of the reward distribution generated byAΨ, and α ∈ [0, 1].
The gradient computation is updated as:

∇ΨJ (Ψ) ≈ 1

N

N∑
n=1

(
R(e(n))− R̂α

)
I(R(e(n)) ≥ R̂α)

k∑
i=1

∇Ψ log(y
(n)
i),

where R̂α is an estimate of Rα based on the sampled operator sequences. This adjustment improves
the convergence of the controller AΨ by focusing on higher-reward sequences. To obtain the final
symbolic expression generated by our tree-structure RNN, we employ a FEX-based algorithm.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 1 Regularized FEX with tree structure RNNs
Input: Data X , a tree structre T , search loop iteration T , coarse-tune iterations T1(using Adam)
and T2(using BFGS), fine-tune iteration T3, pool size K and batch size N .
Output: The expression (T ∗, θ∗)

1: Initialize an agent AΨ for the tree T and an empty P
2: for t from 1 to T do
3: Sample N sequences {e(1), ..., e(N)} from the agent.
4: for n from 1 to N do
5: Optimize the NRMSE using both coarse-tune iterations T1 + T2

6: Compute the reward for each sequence.
7: Compute KL divergence
8: if en belongs to the top-K then
9: P.append(en)

10: end if
11: end for
12: g ← 1

N

∑N
n=1

(
R(e(n))− R̂α

)
I(R(e(n)) ≥ R̂α)

∑k
i=1∇Ψ log(y

(n)
i)

13: gKL ← − β
N

∑N
n=1

∑|T |−1
i=0

1

|T |
∇ΨKL (P ∗(si | Si, sp, h) ∥ yi)

]
14: Ψ← η(g + gKL)
15: end for
16: for e in P do
17: Fine-tune NRMSE using T3 iterations
18: end for
19: return the expression with smallest fine-tune error

D DESCRIPTIONS OF EXPRESSIONS

In physics, we compare different SR method to recover Hamiltonian expression. The Hamiltonian
H for a nuclear system with a simplified model involving three momentum variables p1, p2, p3 is
given by:

H =
Â− 1

Â

3∑
i=1

p2i
2mN

− 1

mN Â

3∑
i<j

pi · pj +
3∑

i<j

Vij .

Where mN (Nucleon Mass) represents the average mass of a nucleon (either a proton or a neutron)
in the nuclear system. It is used in kinetic energy calculations. The average nucleon mass simplifies
computations, as the system contains multiple nucleons. Â(Particle-Number Operator) is an operator
representing the total number of nucleons (particles) in the system. In the given context, Â can
be treated as the scalar number of nucleons, often denoted by A. The operator form is used in
many-body physics to handle systems with varying particle numbers. pi(Momentum) represents the
momentum of the i-th nucleon. In this simplified model, only three momentum variables (p1, p2, p3)
are considered. Vij (Two-Body Potential) represents the interaction energy between nucleons i and
j . This term accounts for forces between pairs of nucleons and can take various forms depending
on the nature of the interaction. We use a simplified form, such as Vij =

g
rij

, where g is a constant.
Given these variables and terms, the simplified Hamiltonian expression for the system involving
three momentum variables (p1, p2, p3) is:

H =
Â− 1

Â

3∑
i=1

p2i
2mN

− 1

mN Â

3∑
i<j

pi · pj +
3∑

i<j

g

rij
,

We set Ahat = 2.0 mN = 1.5, g = 0.8.

In biology, we always describe the evolution of four distinct cell populations within a tumor mi-
croenvironment during the course of treatment. These populations include two sub-populations of

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

tumor cells and two types of interacting cells (CAR T-cells and bystander cells). The model uses a
system of differential equations to capture the dynamics of these populations. The simplified form
of Equation (4) now looks like:

dB

dt
= b− γBB − µB log

(
B + C

K2

)
+

(
dB + s

(
B
Ts

)2
)2

k +

(
dB + s

(
B
Ts

)2
)2B − ωBB(Ts + Tr).

Where Ts and Tr are variables representing the tumor sub-populations. B is the bystander cell
population. C is the CAR T-cell population. We set b = 0.5, gammaB = 0.1,muB = 0.3,K2 =
1.0, dB = 0.05, s = 2.0, k = 0.8, omegaB = 0.2.

In chemistry: Reaction Rate Equation for n = 3:

Given three substrates (S1, S2, S3) and an inhibitor I , the equation can be written as:

v =
Vmax · [S1] · [S2] · [S3]

(Km + [S1] + [S2] + [S3])
(
1 + [I]

Ki

)
We keep Vmax = 1.0, Km = 0.5, and Ki = 0.3. You can modify these parameters as needed.

□ Random Concentrations: We generate random concentrations for three substrates
(S1, S2, S3) and one inhibitor (I) within specified ranges.

□ Reaction Rate Calculation: The reaction rate is computed using the updated equation that
involves three substrates.

In Engineering, A deep function in the context of engineering can be a composition of multiple
nested unary and binary operators, often found in fields like control systems, fluid dynamics, signal
processing, or structural engineering. The more nested or ”deep” the operations, the more challeng-
ing it becomes for symbolic regression to approximate.

Here’s an example of a complicated ”deep” function inspired by fluid dynamics and turbulence mod-
eling. This function includes multiple layers of unary operations such as logarithms, trigonometric
functions, and nested square roots:

f(x) = log
(
α
√
x+ β sin(γx+ δ)

)
+

ϵ

cos (η
√
x+ θ log(x)) + ζ exp (−λx2)

.

α, β, γ, δ, ϵ, η, θ, ζ, λ are coefficients that control the function’s shape and behavior. We set coeffi-
cients α = 1.2, β = 0.8, γ = 2.0, δ = 0.5, ϵ = 0.1, η = 1.5, θ = 0.3, ζ = 0.05, λ=0.01.

20

