A Theoretical Results

: Given a policy m4 and demonstrator 7 and environment horizon length H, the
distribution shift:
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Note that show a similar theorem, however they make the strong assumption of the f-

divergence satisfying the triangle inequality, which is not true for the KL divergence we use in
, and also yields a different bound. Furthermore, the implications of the divergence

relationship on data quality (i.e. the data generating policy distribution) is not examined within this

prior work. They are focusing more on the algorithmic perspective, as is common in prior work.
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: Given learned policy 74 and expert 7, define assume that the policy is learned such
that when s € supp(pk ), DkL(ma(:]s),7£(-|s)) < B. Then Esnpt [DkL(ma(¢]s), me(:|s))] <

Esepe , [BL(s € supp(pf,)) + L(s ¢ supp(py,, ) Dxe(ma(-]s), ma(-]s))]

Proof. This follows by simple substitution:
Eswpt  [DxL(ma(ls), me(-]s))] = Esepr | [11(8 € supp(py,, ) Dxe(ma(t]s), e(-]s))
+1(s ¢ supp(pf,,)) Dxe(ma(*[s), mE(-]s))]
< Esepr, [B1(s € supp(pr,,))
)

+1(s & supp(pr,,)) Dxe(ma(]s), 75 (:]5))]
O

: Given a policy m4 and demonstrator 7, assume that for state s, if pﬁfEl(s) > 0,
then 74 (als) = g (als). Assume that transitions are normally distributed with fixed and diagonal
variance, p(s'|s,a) = N'(u(s,a),o?I), then the next state coverage probability is Ps(s; N,€) >
1—(1— (<) exp (- 2d))N — exp (—(a — 1)2d), where d is the dimensionality of the state, c is
a constant, and o > 11is a parameter chosen to maximize the bound.

Proof. The proof follows by first discretizing the state space into length e bins. Denote the probability
mass of bin b as py. First we note that for two independent samples from the same distribution s” and
we can say that P(|s" — s; .| > €) is upper bounded by the probability that neither sample

lands in the same bin. This is because of the fact that if |s" =5 .|oc > €, then that implies the samples
did not land in the same bin (1f they did the infinity norm Would be less than epsilon). Thus, we can
also say that P(min; [s" — s} ,[oc > €) is upper bounded by the probability that all of the samples

s; . land in a different bin than s’. Thus:

P(min|s" — s} ,|oc > €) < P(none lands in same bin)
<> (1 —pp)N
b

Next define a ball of radius R around the mean p(s, a) as Ball(R). Using this ball we can partition
the above inequality into two terms to yield an upper bound.

P(mins' =5 Joo > €) <Y pp(1—pp)™
b
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We can upper bound everything inside the ball using the minimum Gaussian mass for the given radius
R,orpy > (% )4 exp 2

ﬁ. For the second term, if R is large enough, then we can
assume py is sufﬁmently small such that (1 — p,)N =~ 1.
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The second term is upper bounded by the probability that the d-dim Gaussian s is farther in euclidean
distance than R from the mean, which can be written using the tail probability of the x? distribution.

) ce\d AN
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We know that for a x* random variable Y over d sub Gaussians, P(% > (1+6)?) < exp (%‘52)
for § > 0 [52]. Thus assuming R > a\/a, we can write:
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Now, for any o = O’L\;E > 1, we can rewrite the above bound as:

: It _ E d 2 N _ _1)2
P(min|s" — s} oo > €) < | 1 (U) exp (—a’d) | +exp (—(a—1)d)

Starting from

Ps(s;N,€) = P(min|s" = s ;loc <€)

=1- P(Iniin |s" — 5} uloo =€)

>1- (1 — (%) exp (_a2d)>N —exp (~(a — 1)%d)

g

A.1 Generalization under System Noise

Definition 2. Given a policy w4, a data generating policy g and a starting state s, define the
probability of next state coverage Pp(s,ju; N) = 1 — 0P (||s) — pl[* > ||}, — pl[?), where
8} . ~ ph, (|s) are next state samples from the expert starting at s, and s; ~ pl (-|s) are next state
samples from 7 4 starting at s.

Intuitively Pp(s; N) is the probability that given N chances, the hyper-sphere defined by the L2
distance from p to a sampled data point contains a sample from the learned policy. Here the hyper-
sphere represents the set of next states that the policy can generalize to. The IV chances approximate
the effect of having more data samples to leverage for generalization. For policies learned with neural
networks, this aims to represent the “interpolation” capacity of these models among the training
samples.

Theorem A.1. Given a policy 7 and deterministic demonstrator Tg, assume that for state s, if
P t(s) > 0, then ma(als) = N (wp(s), 021). Assume that transitions are normally distributed with

fixed and diagonal variance, p(s'|s,a) = N (u(s,a), o0?1), where ji(s,a) = s + aa are simplified
linear dynamics for scalar o € R. Then the next state coverage probability is Pg(s, u(s,a); N) =

N
1- (1 - Fy (M)) , where Fy(x) is the CDF of the f-distribution of dimension d.

(%
:

Proof. First we note that both A; = s} — (s, a) and A; . = s; , — (s, a) are zero mean, and the
events for A; > A, , for all ¢ are independent. Thus:
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Pp(s, 1 N) = 1= iP(|A][* > [|A4]7)
=1- (1 =P(JAl* < [|Ai.]%)

N

A2 ) >

=1- (1 - P ( <1
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Note that ||A;]|? is just a x% random variable with d degrees of freedom, and likewise for ||A; .||2.
The former has variance 02 + (ao,)? (transition plus learned policy noise), while the latter has
variance o2 (just transition noise). The f-distribution is defined for two x? variables X and Y of

X/d

dimension d as the distribution of Z = via Thus with a change of variables to X and Y, and

denoting Fy; as the CDF of the f-distribution of dimension d:

A (0 + (a0y)) X
P2 <) =p( P2 <
(IAi,*II2 - o?Y -
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Plugging the above expression into the expression for Pg:

1 N

In , while the probability of next state coverage is not immediately interpretable, we
can still intuitively recognize that high o, can improve the coverage likelihood of the learned policy
even under notable o, and as N gets bigger even less o, is needed, despite the fact that system
noise is present even under the learned policy. Intuitively, we once again see that increasing /V has a
significant effect on the coverage likelihood. In terms of noise, what matters is the ratio of policy to
system noise, where increasing this ratio leads to sharp drops in performance at some cutoff based on
N. We visualize this coverage probability in under increasing ratios of policy to system noise
for different values of V.

N

O

B Maetrics of Data Quality

Having formalized action divergence and transition diversity in Sec. 4 as two fundamental considera-
tions in a dataset, how can we measure these properties in a given dataset?

Action Variance: To measure action consistency, the empirical form of the objective in Eqn. 7 is
intractable without access to the underlying expert action distribution 7g. Instead we propose using
the empirical variance of the action distribution in the data to approximate the “spread” of the data. In
continuous state spaces, we can estimate variance using a coverage distance ¢ to cluster nearby states,
and then measuring the per dimension variance across the corresponding actions within said cluster.

Defining a cluster to be C(s, D) = {3,d,s' € D : ||s — 3|| < €}, we can compute the variance as:

ActionVariance(D) = ﬁ Z (a— Z a)? )

s,a€D 5,a,8'€C(s,D)
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Figure 4: Pg(s, u; N) (y-axis) from plotted for four-dimensional state under N € [2, 10, 50, 100],
but varying the ratio of policy to system noise (x-axis is %p). We see that under this more loose coverage model,
with lots of samples, adding system noise can make coverage likely even under double or triple the noise in the
learned policy.

The choice in € corresponds to the generalization of the learning model to nearby states, similar to
the notion of coverage in Definition |. We use this metric of action consistency in Sec. 5 to study
human generated datasets of various quality.

State Similarity: To measure the consistency of states, we approximate the number of “nearby”
states using the same clustering process as in the Action Variance metric, and measure the expected
cluster size as a fraction of the overall data.

1
StateSimilarity (D) = > |C(s, D) (10)
| | s,a€D
While these approximate forms do not encapsulate the full spectrum of possible metrics, we believe
these metrics help advance our empirical understanding of data quality for imitation learning. In

section 5.2 in the main text, we analyze these metrics of data quality in several environments across
different dataset sources.

C Results

The performance results under system noise, policy noise, and both noises are shown with a broader
sweep for both PMObstacle and Square in the tables below.

0s =001 05=0.02 0 =0.03 05 =0.04|05s =0.01 05 =0.02 0, =0.03 05 =0.04
SCRIPTED 100 100 99 96

o, =0.01 | 97.7(1.5) 95.7(0.7) 96.7(1.1) 93.3(0.7) | 90.3(7.1) 90.0(8.2) 94.0(2.9) 87.7(3.7)
o, =0.02 | 98.7(0.5) 98.0(0.5) 97.7(1.0) 92.7(1.2) | 99.7(0.3) 98.0(0.9) 94.3(1.4) 92.3(2.0)
o, =0.03 | 98.3(0.7) 98.0(0.8) 99.0(0.5) 95.0(0.9) | 99.7(0.3) 98.7(0.5) 97.7(0.5) 95.7(1.1)

o5 = 0.04 [100.0(0.0) 100.0(0.0) 99.3(0.3) 96.7(0.7) [100.0(0.0) 99.0(0.5) 98.7(0.5) 96.7(1.4)

Table 2: System Noise: Success rates (and standard error) for BC in PMObstacle, for 1000 episodes (left) and
10 episodes (right) of data, under system noise. Rows correspond to injecting gaussian system noise () into
the dataset of increasing variance, and columns correspond to injecting noise during evaluation. The diagonal
in both sub-tables represents evaluating in distribution. Left: For large datasets, higher system noise during
evaluation tends to decrease the performance of each model (rows left to right), but more system noise during
training generally produces the best models (columns top to bottom). Right: For small datasets, we observe a
similar but exaggerated effect as the left table.
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o5 =0.01 05 =0.02 0y =0.03 7, =0.04|0, =0.01 0y =0.02 7 =0.03 7, = 0.04
SCRIPTED| 100 100 99 96

op =0.01 |94.0(1.7) 94.0(2.4) 94.7(1.8) 91.3(1.4) | 78.0(8.6) 78.7(6.7) 81.3(5.0) 81.3(5.8)
op =0.02 | 87.7(2.0) 92.3(2.0) 90.7(2.0) 91.3(2.2) [88.0(9.4) 78.7(4.4) 80.7(3.1) 80.3(3.2)
op = 0.03 | 97.0(0.9) 99.0(0.5) 97.0(0.0) 95.0(0.8) | 88.7(3.2) 82.7(5.4) 88.7(5.2) 85.7(4.4)
op=0.04 | 86.7(4.3) 91.0(2.4) 93.3(1.4) 92.7(1.5) | 88.3(6.5) 88.0(4.5) 86.0(5.9) 82.3(2.0)

Table 3: Policy Noise: Success rates (and standard error) for BC in PMObstacle, for 1000 episodes (left) and 10
episodes (right) of data, under learned policy noise. Rows correspond to injecting gaussian policy noise (o) into
the expert of increasing variance, and columns correspond to injecting system noise during evaluation. Left: For
large datasets, unlike system noise in , more policy noise during training often produces the worst models
(columns top to bottom). Right: For small datasets, adding policy noise produces large variance in performance
across runs. Importantly, the datasets in each row have the same observed state diversity as the corresponding
row in , but performance is almost universally lower in both sub-tables here, supporting the idea that state
diversity is a coarse metric for success.

0s =001 0y =0.02 05 =0.03 04 =0.04] 0, = 0.01 o, =0.02 5, =0.03 o, =0.04
SCRIPTED| 100 100 99 96

op = 0.01 96.3(2.2) 99.3(0.5) 97.7(0.3) 93.3(1.0) | 99.7(0.3) 98.0(1.2) 96.7(0.5) 96.3(1.4)
op = 0.02 | 98.0(0.5) 98.3(0.5) 97.7(0.7) 94.7(1.0) | 99.3(0.5) 98.7(1.1) 96.0(2.2) 94.7(1.7)
op = 0.03 | 98.0(0.8) 96.7(1.0) 98.3(1.0) 96.3(0.7) | 95.0(2.1) 97.7(0.5) 97.7(0.5) 93.3(2.2)
op = 0.04 | 98.7(0.5) 99.0(0.5) 97.3(0.3) 95.0(0.8) [100.0(0.0) 99.7(0.3) 99.0(0.8) 93.7(3.1)

Table 4: System Noise + Policy Noise: Success rates (and standard error) for BC in PMObstacle, for 1000
episodes (left) and 10 episodes (right) of data, under learned policy noise for a fixed amount of system noise
(o0p = 0.03). Here we see how system noise improves the robustness of the model to added policy noise.

os = 0.05 os = 0.1 0s=02 0s=03 o05s=04
0s =0.05 | 55.7(5.3) 50.0(5.4) 27.0(3.9) 12.0(2.4) 7.3(2.2)
os=0.1 | 69.7(5.5) 69.0(3.7) 57.3(6.0) 50.3(6.0) 22.7(3.5)
os =02 | 67.7(9.6) 68.7(12.6) 82.0(3.4) 74.3(2.7) 50.3(1.7)
os =03 | 47.0(4.9) 53.3(5.9) 54.3(3.0) 50.7(4.3) 38.7(7.3)
os =04 | 31.3(5.0) 37.7(8.2) 48.3(9.7) 49.0(8.7) 44.0(5.3)

Table 5: System Noise, 200ep: Success rates for BC in Square, for 200 episodes of data, under system noise.
Rows correspond to injecting gaussian system noise (o) into the dataset of increasing variance, and columns
correspond to injecting noise during evaluation. The diagonal in both sub-tables represents evaluating in
distribution. In both sub-tables we see how policies with low data coverage (low system noise) generalize the
worst to increasing noise at test time. More system noise during training generally produces the best models
(columns top to bottom).

0s=005 05=01 05=02 0s=03 o0s=04
os =0.05 | 40.0(1.2) 33.7(3.1) 16.7(1.4) 4.3(1.0) 2.0(0.5)
os =0.1 | 42.3(4.0) 39.7(3.8) 31.3(3.7) 19.7(3.1) 10.0(1.6)
0s=0.2 | 70.0(7.0) 73.7(5.4) 69.7(0.7) 55.3(1.2) 27.0(2.2)
0s=0.3 | 57.3(3.1) 58.7(3.1) 64.7(1.4) 60.7(0.3) 44.7(2.2)
os =04 | 30.0(7.0) 33.7(6.4) 39.7(5.7) 39.7(6.5) 36.7(6.9)

Table 6: System Noise, 50ep: Success rates for BC in Square, for 50 episodes of data, under system noise.
Rows correspond to injecting gaussian system noise (o) into the dataset of increasing variance, and columns
correspond to injecting noise during evaluation. The diagonal in both sub-tables represents evaluating in
distribution. In both sub-tables we see how policies with low data coverage (low system noise) generalize the
worst to increasing noise at test time. More system noise during training generally produces the best models
(columns top to bottom).
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| 0.=005 0.=01 0.=02 0.=03 0.,=04

op =0.005 | 69.0(3.7) 59.0(3.7) 34.0(1.7) 20.7(2.4) 7.0(1.6)

op =0.01 | 80.7(3.7) 78.0(4.2) 57.7(2.4) 38.0(1.7) 23.0(2.2)

op =0.02 | 62.3(7.8) 71.7(6.1) 73.0(3.9) 65.3(2.8) 43.3(3.6)
Table 7: Policy Noise, 200ep: Success rates for BC in Square, for 200 episodes of data, under learned policy
noise. Rows correspond to injecting gaussian policy noise (o) into the dataset of increasing variance, and
columns correspond to injecting noise during evaluation. In the high data regime, we see that more policy noise

tends to improve performance (columns top to bottom), since the noise is unbiased so with enough samples from
the scripted policy, the model will recover an unbiased policy.

| 0.=005 0.=01 0.=02 0.=03 0.=04

op =0.005 | 32.7(3.8) 30.3(3.2) 18.0(3.6) 7.0(0.8) 5.7(1.2)

op =0.01 | 61.3(4.3) 59.0(6.7) 48.3(3.7) 29.7(1.7) 19.3(1.4)

op =0.02 | 57.7(3.2) 58.3(3.1) 49.3(0.5) 41.3(0.5) 28.3(2.4)
Table 8: Policy Noise, 50ep: Success rates for BC in Square, for 50 episodes of data, under learned policy noise.
Rows correspond to injecting gaussian policy noise (o) into the dataset of increasing variance, and columns
correspond to injecting noise during evaluation. As the amount of data is reduced, there is a significant drop in

performance for added policy noise in the dataset, along with higher performance variation compared to 200eps,
since the policy can no longer recover an unbiased policy.
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