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Figure 1: AnimateDiff directly turns existing personalized text-to-image (T2I) models to the corre-
sponding animation generators with a pre-trained motion module. First row: results by combining
AnimateDiff with three personalized T2Is in different domains; Second row: results of further com-
bining AnimateDiff with MotionLoRA (s) to achieve shot type controls. Best viewed with Acrobat
Reader. Click the images to play the animation clips.

ABSTRACT

With the advance of text-to-image (T2I) diffusion models (e.g., Stable Diffusion)
and corresponding personalization techniques such as DreamBooth and LoRA,
everyone can manifest their imagination into high-quality images at an afford-
able cost. However, adding motion dynamics to existing high-quality personal-
ized T2Is and enabling them to generate animations remains an open challenge.
In this paper, we present AnimateDiff, a practical framework for animating per-
sonalized T2I models without requiring model-specific tuning. At the core of
our framework is a plug-and-play motion module that can be trained once and
seamlessly integrated into any personalized T2Is originating from the same base
T2I. Through our proposed training strategy, the motion module effectively learns
transferable motion priors from real-world videos. Once trained, the motion mod-
ule can be inserted into a personalized T2I model to form a personalized animation
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generator. We further propose MotionLoRA, a lightweight fine-tuning technique
for AnimateDiff that enables a pre-trained motion module to adapt to new motion
patterns, such as different shot types, at a low training and data collection cost. We
evaluate AnimateDiff and MotionLoRA on several public representative personal-
ized T2I models collected from the community. The results demonstrate that our
approaches help these models generate temporally smooth animation clips while
preserving the visual quality and motion diversity. Codes and pre-trained weights
are available at https://github.com/guoyww/AnimateDiff.

1 INTRODUCTION

Text-to-image (T2I) diffusion models (Nichol et al., 2021; Ramesh et al., 2022; Saharia et al., 2022;
Rombach et al., 2022) have greatly empowered artists and amateurs to create visual content using
text prompts. To further stimulate the creativity of existing T2I models, lightweight personalization
methods, such as DreamBooth (Ruiz et al., 2023) and LoRA (Hu et al., 2021) have been proposed.
These methods enable customized fine-tuning on small datasets using consumer-grade hardware
such as a laptop with an RTX3080, thereby allowing users to adapt a base T2I model to new do-
mains and improve visual quality at a relatively low cost. Consequently, a large community of
AI artists and amateurs has contributed numerous personalized models on model-sharing platforms
such as Civitai (2022) and Hugging Face (2022). While these personalized T2I models can generate
remarkable visual quality, their outputs are limited to static images. On the other hand, the ability
to generate animations is more desirable in real-world production, such as in the movie and cartoon
industries. In this work, we aim to directly transform existing high-quality personalized T2I models
into animation generators without requiring model-specific fine-tuning, which is often impractical
in terms of computation and data collection costs for amateur users.

We present AnimateDiff, an effective pipeline for addressing the problem of animating personalized
T2Is while preserving their visual quality and domain knowledge. The core of AnimateDiff is an
approach for training a plug-and-play motion module that learns reasonable motion priors from
video datasets, such as WebVid-10M (Bain et al., 2021). At inference time, the trained motion
module can be directly integrated into personalized T2Is and produce smooth and visually appealing
animations without requiring specific tuning. The training of the motion module in AnimateDiff
consists of three stages. Firstly, we fine-tune a domain adapter on the base T2I to align with the
visual distribution of the target video dataset. This preliminary step guarantees the motion module
concentrates on learning the motion priors rather than pixel-level details from the training videos.
Secondly, we inflate the base T2I together with the domain adapter and introduce a newly initialized
motion module for motion modeling. We then optimize this module on videos while keeping the
domain adapter and base T2I weights fixed. By doing so, the motion module learns generalized
motion priors and can, via module insertion, enable other personalized T2Is to generate smooth and
appealing animations aligned with their personalized domains. The third stage of AnimateDiff, also
dubbed as MotionLoRA, aims to adapt the pre-trained motion module to specific motion patterns
with a small number of reference videos and training iterations. We achieve this by fine-tuning
the motion module with the aid of Low-Rank Adaptation (LoRA) (Hu et al., 2021). Remarkably,
adapting to a new motion pattern can be achieved with as few as 50 reference videos. Moreover, a
MotionLoRA model requires only approximately 30M of additional storage space, further enhancing
the efficiency of model sharing. This efficiency is particularly valuable for users who are unable to
bear the expensive costs of pre-training but desire to fine-tune the motion module for specific effects.

We evaluate the performance of AnimateDiff and MotionLoRA on a diverse set of personalized T2I
models collected from model-sharing platforms (Civitai, 2022; Hugging Face, 2022). These models
encompass a wide spectrum of domains, ranging from 2D cartoons to realistic photographs, thereby
forming a comprehensive benchmark for our evaluation. The results of our experiments demon-
strate promising outcomes. In practice, we also found that a Transformer (Vaswani et al., 2017)
architecture along the temporal axis is adequate for capturing appropriate motion priors. We also
demonstrate that our motion module can be seamlessly integrated with existing content-controlling
approaches (Zhang et al., 2023; Mou et al., 2023) such as ControlNet without requiring additional
training, enabling AnimateDiff for controllable animation generation.
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In summary, (1) we present AnimateDiff, a practical pipeline that enables the animation generation
ability of any personalized T2Is without specific fine-tuning; (2) we verify that a Transformer archi-
tecture is adequate for modeling motion priors, which provides valuable insights for video genera-
tion; (3) we propose MotionLoRA, a lightweight fine-tuning technique to adapt pre-trained motion
modules to new motion patterns; (4) we comprehensively evaluate our approach with representative
community models and compare it with both academic baselines and commercial tools such as Gen-
2 (2023) and Pika Labs (2023). Furthermore, we showcase its compatibility with existing works for
controllable generation.

2 RELATED WORK

Text-to-image diffusion models. Diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021;
Song et al., 2020) for text-to-image (T2I) generation (Gu et al., 2022; Mokady et al., 2023; Podell
et al., 2023; Ding et al., 2021; Zhou et al., 2022b; Ramesh et al., 2021; Li et al., 2022) have gained
significant attention in both academic and non-academic communities recently. GLIDE (Nichol
et al., 2021) introduced text conditions and demonstrated that incorporating classifier guidance leads
to more pleasing results. DALL-E2 (Ramesh et al., 2022) improves text-image alignment by lever-
aging the CLIP (Radford et al., 2021) joint feature space. Imagen (Saharia et al., 2022) incorporates
a large language model (Raffel et al., 2020) and a cascade architecture to achieve photorealistic re-
sults. Latent Diffusion Model (Rombach et al., 2022), also known as Stable Diffusion, moves the
diffusion process to the latent space of an auto-encoder to enhance efficiency. eDiff-I (Balaji et al.,
2022) employs an ensemble of diffusion models specialized for different generation stages.

Personalizing T2I models. To facilitate the creation with pre-trained T2Is, many works focus on
efficient model personalization (Shi et al., 2023; Lu et al., 2023; Dong et al., 2022; Kumari et al.,
2023), i.e., introducing concepts or styles to the base T2I using reference images. The most straight-
forward approach to achieve this is complete fine-tuning of the model. Despite its potential to
significantly enhance overall quality, this practice can lead to catastrophic forgetting (Kirkpatrick
et al., 2017; French, 1999) when the reference image set is small. Instead, DreamBooth (Ruiz et al.,
2023) fine-tunes the entire network with preservation loss and uses only a few images. Textual In-
version (Gal et al., 2022) optimize a token embedding for each new concept. Low-Rank Adaptation
(LoRA) (Hu et al., 2021) facilitates the above fine-tuning process by introducing additional LoRA
layers to the base T2I and optimizing only the weight residuals. There are also encoder-based ap-
proaches that address the personalization problem (Gal et al., 2023; Jia et al., 2023). In our work,
we focus on tuning-based methods, including overall fine-tuning, DreamBooth (Ruiz et al., 2023),
and LoRA (Hu et al., 2021), as they preserve the original feature space of the base T2I.

Animating personalized T2Is. There are not many existing works regarding animating personal-
ized T2Is. Text2Cinemagraph (Mahapatra et al., 2023) proposed to generate cinematography via
flow prediction. In the field of video generation, it is common to extend a pre-trained T2I with
temporal structures. Existing works (Esser et al., 2023; Zhou et al., 2022a; Singer et al., 2022; Ho
et al., 2022b,a; Ruan et al., 2023; Luo et al., 2023; Yin et al., 2023b,a; Wang et al., 2023b; Hong
et al., 2022; Luo et al., 2023) mostly update all parameters and modify the feature space of the
original T2I and is not compatible with personalized ones. Align-Your-Latents (Blattmann et al.,
2023) shows that the frozen image layers in a general video generator can be personalized. Re-
cently, some video generation approaches have shown promising results in animating a personalized
T2I model. Tune-a-Video (Wu et al., 2023) fine-tune a small number of parameters on a single
video. Text2Video-Zero (Khachatryan et al., 2023) introduces a training-free method to animate a
pre-trained T2I via latent wrapping based on a pre-defined affine matrix.

3 PRELIMINARY

We introduce the preliminary of Stable Diffusion (Rombach et al., 2022), the base T2I model used in
our work, and Low-Rank Adaptation (LoRA) (Hu et al., 2021), which helps understand the domain
adapter (Sec. 4.1) and MotionLoRA (Sec. 4.3) in AnimateDiff.

Stable Diffusion. We chose Stable Diffusion (SD) as the base T2I model in this paper since it is
open-sourced and has a well-developed community with many high-quality personalized T2I models
for evaluation. SD performs the diffusion process within the latent space of a pre-trained autoen-
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coder E(·) and D(·). In training, an encoded image z0 = E(x0) is perturbed to zt by the forword
diffusion:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I ), (1)

for t = 1, . . . , T , where pre-defined ᾱt determines the noise strength at step t. The denoising
network ϵθ(·) learns to reverse this process by predicting the added noise, encouraged by an MSE
loss:

L = EE(x0),y,ϵ∼N (0,I ),t

[
∥ϵ− ϵθ(zt, t, τθ(y))∥22

]
, (2)

where y is the text prompt corresponding to x0; τθ(·) is a text encoder mapping the prompt to a
vector sequence. In SD, ϵθ(·) is implemented as a UNet (Ronneberger et al., 2015) consisting of
pairs of down/up sample blocks at four resolution levels, as well as a middle block. Each network
block consists of ResNet (He et al., 2016), spatial self-attention layers, and cross-attention layers
that introduce text conditions.

Low-rank adaptation (LoRA). LoRA (Hu et al., 2021) is an approach that accelerates the fine-
tuning of large models and is first proposed for language model adaptation. Instead of retraining
all model parameters, LoRA adds pairs of rank-decomposition matrices and optimizes only these
newly introduced weights. By limiting the trainable parameters and keeping the original weights
frozen, LoRA is less likely to cause catastrophic forgetting (Kirkpatrick et al., 2017). Concretely,
the rank-decomposition matrices serve as the residual of the pre-trained model weights W ∈ Rm×n.
The new model weight with LoRA is

W ′ = W +∆W = W +ABT , (3)

where A ∈ Rm×r, B ∈ Rn×r are a pair of rank-decomposition matrices, r is a hyper-parameter,
which is referred to as the rank of LoRA layers. In practice, LoRA is only applied to attention layers,
further reducing the cost and storage for model fine-tuning.
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Figure 2: Inference pipeline.

The core of our method is learning transferable mo-
tion priors from video data, which can be applied to
personalized T2Is without specific tuning. As shown
in Fig. 2, at inference time, our motion module (blue)
and the optional MotionLoRA (green) can be directly
inserted into a personalized T2I to constitute the an-
imation generator, which subsequently generates ani-
mations via an iterative denoising process.

We achieve this by training three components of Ani-
mateDiff, namely domain adapter, motion module, and
MotionLoRA. The domain adapter in Sec. 4.1 is only
used in the training to alleviate the negative effects
caused by the visual distribution gap between the base
T2I pre-training data and our video training data; the
motion module in Sec. 4.2 is for learning the motion
priors; and the MotionLoRA in Sec. 4.3, which is optional in the case of general animation, is for
adapting pre-trained motion modules to new motion patterns. Sec.4.4 elaborates on the training
(Fig. 3) and inference of AnimateDiff.

4.1 ALLEVIATE NEGATIVE EFFECTS FROM TRAINING DATA WITH DOMAIN ADAPTER

Due to the difficulty in collection, the visual quality of publicly available video training datasets
is much lower than their image counterparts. For example, the contents of the video dataset We-
bVid (Bain et al., 2021) are mostly real-world recordings, whereas the image dataset LAION-
Aesthetic (Schuhmann et al., 2022) contains higher-quality contents, including artistic paintings
and professional photography. Moreover, when treated individually as images, each video frame
can contain motion blur, compression artifacts, and watermarks. Therefore, there is a non-negligible
quality domain gap between the high-quality image dataset used to train the base T2I and the target
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Figure 3: Training pipeline of AnimateDiff. AnimateDiff consists of three training stages for the
corresponding component modules. Firstly, a domain adapter (Sec. 4.1) is trained to alleviate the
negative effects caused by training videos. Secondly, a motion module (Sec. 4.2) is inserted and
trained on videos to learn general motion priors. Lastly, MotionLoRA (Sec. 4.3) is trained on a few
reference videos to adapt the pre-trained motion module to new motion patterns.

video dataset we use for learning the motion priors. We argue that such a gap can limit the quality
of the animation generation pipeline when trained directly on the raw video data.

To avoid learning this quality discrepancy as part of our motion module and preserve the knowledge
of the base T2I, we propose to fit the domain information to a separate network, dubbed as
domain adapter. We drop the domain adapter at inference time and show that this practice helps
reduce the negative effects caused by the domain gap mentioned above. We implement the domain
adapter layers with LoRA (Hu et al., 2021) and insert them into the self-/cross-attention layers in
the base T2I, as shown in Fig. 3. Take query (Q) projection as an example. The internal feature z
after projection becomes

Q = WQz + AdapterLayer(z) = WQz + α ·ABT z, (4)

where α = 1 is a scalar and can be adjusted to other values at inference time (set to 0 to remove the
effects of domain adapter totally). We then optimize only the parameters of the domain adapter on
static frames randomly sampled from video datasets with the same objective in Eq. (2).

4.2 LEARN MOTION PRIORS WITH MOTION MODULE

To model motion dynamics along the temporal dimension on top of a pre-trained T2I, we must 1)
inflate the 2-dimensional diffusion model to deal with 3-dimensional video data and 2) design a
sub-module to enable efficient information exchange along the temporal axis.

Network Inflation. The pre-trained image layers in the base T2I model capture high-quality con-
tent priors. To utilize the knowledge, a preferable way for network inflation is to let these image
layers independently deal with video frames. To achieve this, we adopt a practice similar to recent
works (Ho et al., 2022b; Wu et al., 2023; Blattmann et al., 2023), and modify the model so that it
takes 5D video tensors x ∈ Rb×c×f×h×w as input, where b and f represent batch axis and frame-
time axis respectively. When the internal feature maps go through image layers, the temporal axis
f is ignored by being reshaped into the b axis, allowing the network to process each frame inde-
pendently. We then reshape the feature map to the 5D tensor after the image layer. On the other
hand, our newly inserted motion module ignores the spatial axis by reshaping h,w into b and then
reshaping back after the module.

Module Design. Recent works on video generation have explored many designs for temporal mod-
eling. In AnimateDiff, we adopt the Transformer (Vaswani et al., 2017) architecture as our motion
module design, and make minor modifications to adapt it to operate along the temporal axis, which
we refer to as “temporal Transformer” in the following sections. We experimentally found this
design is adequate for modeling motion priors. As illustrated in Fig. 3, the temporal Transformer
consists of several self-attention blocks along the temporal axis, with sinusoidal position encoding
to encode the location of each frame in the animation. As mentioned above, the input of the motion
module is the reshaped feature map whose spatial dimensions are merged into the batch axis. When
we divide the reshaped feature map along the temporal axis, it can be regarded as vector sequences
with length of f , i.e., {z1, ..., zf ; zi ∈ R(b×h×w)×c}. The vectors will then be projected and go
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through several self-attention blocks, i.e.

zout = Attention(Q,K, V ) = Softmax(QKT /
√
c) · V, (5)

where Q = WQz, K = WKz, and V = WV z are three separated projections. The attention mech-
anism enables the generation of the current frame to incorporate information from other frames.
As a result, instead of generating each frame individually, the T2I model inflated with our motion
module learns to capture the changes of visual content over time, which constitute the motion dy-
namics in an animation clip. Note that sinusoidal position encoding added before the self-attention
is essential; otherwise, the module is not aware of the frame order in the animation. To avoid any
harmful effects that the additional module might introduce, we zero initialize (Zhang et al., 2023)
the output projection layers of the temporal Transformer and add a residual connection so that the
motion module is an identity mapping at the beginning of training.

4.3 ADAPT TO NEW MOTION PATTERNS WITH MOTIONLORA

While the pre-trained motion module captures general motion priors, a question arises when we
need to effectively adapt it to new motion patterns such as camera zooming, panning and rolling,
etc., with a small number of reference videos and training iterations. Such efficiency is essential for
users who cannot afford expensive pre-training costs but would like to fine-tune the motion module
for specific effects. Here comes the last stage of AnimateDiff, also dubbed as MotionLoRA (Fig. 3),
an efficient fine-tuning approach for motion personalization. Considering the architecture of the
motion module and the limited number of reference videos, we add LoRA layers to the self-attention
layers of the motion module in the inflated model described in Sec. 4.2, then train these LoRA layers
on the reference videos of new motion patterns.

We experiment with several shot types and get the reference videos via rule-based data augmenta-
tion. For instance, to get videos with zooming effects, we augment the videos by gradually reducing
(zoom-in) or enlarging (zoom-out) the cropping area of video frames along the temporal axis. We
demonstrate that our MotionLoRA can achieve promising results even with as few as 20 ∼ 50 ref-
erence videos, 2,000 training iterations (around 1 ∼ 2 hours) as well as about 30M storage space,
enabling efficient model tuning and sharing among users. Benefited by the low-rank property, Mo-
tionLoRA also has the composition capability. Namely, individually trained MotionLoRA models
can be combined to achieve composed motion effects at inference time.

4.4 ANIMATEDIFF IN PRACTICE

Training. As illustrated in Fig. 3, AnimateDiff consists of three trainable component modules to
learn transferable motion priors. Their training objectives are slightly different. The domain adapter
is trained with the original objective as in Eq. (2). The motion module and MotionLoRA, as part
of an animation generator, use a similar objective with minor modifications to accommodate higher
dimension video data. Concretely, a video data batch x1:f

0 ∈ Rb×c×f×h×w is first encoded into
the latent codes z1:f0 frame-wisely via the pre-trained auto-encoder of SD. The latent codes are then
noised using the defined forward diffusion schedule as in Eq. (1)

z1:ft =
√
ᾱtz

1:f
0 +

√
1− ᾱtϵ

1:f . (6)
The inflated model inputs the noised latent codes and corresponding text prompts and predicts the
added noises. The final training objective of our motion modeling module is:

L = EE(x1:f
0 ),y,ϵ1:f∼N (0,I ),t

[
∥ϵ− ϵθ(z

1:f
t , t, τθ(y))∥22

]
. (7)

It’s worth noting that when training the domain adapter, the motion module, and the MotionLoRA,
parameters outside the trainable part remain frozen.

Inference. At inference time (Fig. 2), the personalized T2I model will first be inflated in the same
way discussed in Section 4.2, then injected with the motion module for general animation genera-
tion, and the optional MotionLoRA for generating animation with personalized motion. As for the
domain adapter, instead of simply dropping it during the inference time, in practice, we can also in-
ject it into the personalized T2I model and adjust its contribution by changing the scaler α in Eq. (4).
An ablation study on the value of α is conducted in experiments. Finally, the animation frames can
be obtained by performing the reverse diffusion process and decoding the latent codes.
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Figure 4: Qualitative Result. Each sample corresponds to a distinct personalized T2I. Best viewed
with Acrobat Reader. Click the images to play the animation clips.

5 EXPERIMENTS

We implement AnimateDiff upon Stable Diffusion V1.5 and train motion module using the WebVid-
10M (Bain et al., 2021) dataset. Detailed configurations can be found in supplementary materials.
5.1 QUALITATIVE RESULTS

Evaluate on community models. We evaluated the AnimateDiff with a diverse set of representative
personalized T2Is collected from Civitai (2022). These personalized T2Is encompass a wide range
of domains, thus serving as a comprehensive benchmark. Since personalized domains in these T2Is
only respond to certain “trigger words”, we abstain from using common text prompts but refer to the
model homepage to construct the evaluation prompts. In Fig. 4, we show eight qualitative results of
AnimateDiff. Each sample corresponds to a distinct personalized T2I. In the second row of Figure
1, we present the outcomes obtained by integrating AnimateDiff with MotionLoRA to achieve shot
type controls. The last two samples exhibit the composition capability of MotionLoRA, achieved
by linearly combining the individually trained weights.

Compare with baselines. In the absence of existing methods specifically designed for animating
personalized T2Is, we compare our method with two recent works in video generation that can be
adapted for this task: 1) Text2Video-Zero (Khachatryan et al., 2023) and 2) Tune-a-Video (Wu
et al., 2023). We also compare AnimateDiff with two commercial tools: 3) Gen-2 (2023) for text-
to-video generation, and 4) Pika Labs (2023) for image animation. The results are shown in Fig. 5.

5.2 QUANTITATIVE COMPARISON

We conduct the quantitative comparison through user study and CLIP metrics. The comparison
focuses on three key aspects: text alignment, domain similarity, and motion smoothness. The results
are shown in Table 1. Detailed implementations can be found in supplementary materials.

User study. In the user study, we generate animations using all three methods based on the same
personalized T2I models. Participants are then asked to individually rank the results based on the
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Tune-A-Video AnimateDiff T2V-Zero AnimateDiff

a raccoon is playing guitar, soft lighting, . . . a horse galloping on the street, best quality, . . .

Figure 5: Qualitative Comparison. Best viewed with Acrobat Reader. Click the images to play the
animation clips.

Table 1: Quantitative comparison. A higher score indicates superior performance.

Method User Study (↑) CLIP Metric (↑)
Text. Domain. Smooth. Text. Domain. Smooth.

Text2Video-Zero 1.620 2.620 1.560 32.04 84.84 96.57
Tune-a-Video 2.180 1.100 1.615 35.98 80.68 97.42
Ours 2.210 2.280 2.825 31.39 87.29 98.00

above three aspects. We use the Average User Ranking (AUR) as a preference metric where a higher
score indicates superior performance. Note that the corresponding prompts and images are provided
for reference for text alignment and domain similarity evaluation.

CLIP metric. We also employed the CLIP (Radford et al., 2021) metric, following the approach
taken by previous studies (Wu et al., 2023; Khachatryan et al., 2023). When evaluating domain
similarity, it is important to note that the CLIP score was computed between the animation frames
and the reference images generated using the personalized T2Is.

5.3 ABLATIVE STUDY

Domain adapter. To investigate the impact of the domain adapter in AnimateDiff, we conducted
a study by adjusting the scaler in the adapter layers during inference, ranging from 1 (full impact)
to 0 (complete removal). As illustrated in Figure 6, as the scaler of the adapter decreases, there is
an improvement in overall visual quality, accompanied by a reduction in the visual content distri-
bution learned from the video dataset (the watermark in the case of WebVid (Bain et al., 2021)).
These results indicate the successful role of the domain adapter in enhancing the visual quality of
AnimateDiff by alleviating the motion module from learning the visual distribution gap.

Motion module design. We compare our motion module design of the temporal Transformer with
its full convolution counterpart, which is motivated by the fact that both designs are widely em-
ployed in recent works on video generation. We replace the temporal attention with 1D temporal
convolution and ensured that the two model parameters were closely aligned. As depicted in sup-
plementary materials, the convolutional motion module aligns all frames to be identical but does not
incorporate any motion compared to the Transformer architecture.

Efficiency of MotionLoRA. The efficiency of MotionLoRA in AnimateDiff was examined in terms
of parameter efficiency and data efficiency. Parameter efficiency is crucial for efficient model train-
ing and sharing among users, while data efficiency is essential for real-world applications where
collecting an adequate number of reference videos for specific motion patterns may be challenging.

To investigate these aspects, we trained multiple MotionLoRA models with varying parameter scales
and reference video quantities. In Fig. 7, the first two samples demonstrate that MotionLoRA is ca-
pable of learning new camera motions (e.g., zoom-in) with a small parameter scale while maintain-
ing comparable motion quality. Furthermore, even with a modest number of reference videos (e.g.,
N = 50), the model successfully learns the desired motion patterns. However, when the number of
reference videos is excessively limited (e.g., N = 5), significant degradation in quality is observed,
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4.4.3 hyper-parameters

alpha = 1.0 alpha = 0.0

alpha = 1.0 alpha = 0.0scaler = 1.0

4.4.3 hyper-parameters

alpha = 1.0 alpha = 0.0

alpha = 1.0 alpha = 0.0

scaler = 0.0

Figure 6: Ablation on domain adapter. We adjust the scaler of the adapter from 1 to 0 to gradually
remove its effects. In this figure, we show the first frame of the generated animation.

rank=2 (∼1M) rank=128 (∼36M) N=5 N=50 N=1000

Figure 7: Ablation on MotionLoRA’s efficiency. Two samples on the left: with different network
rank; Three samples on the right: with different numbers of reference videos. Best viewed with
Acrobat Reader. Click the images to play the animation clips.

suggesting that MotionLoRA encounters difficulties in learning shared motion patterns and instead
relies on capturing texture information from the reference videos.

5.4 CONTROLLABLE GENERATION.

city street, neon, fog, closeup portrait photo of young
woman in dark clothes, . . .

Figure 8: Controllable generation. Best viewed
with Acrobat Reader. Click the images to play the
animation clips.

The separated learning of visual content and
motion priors in AnimateDiff enables the di-
rect application of existing content control
approaches for controllable generation. To
demonstrate this capability, we combined An-
imateDiff with ControlNet (Zhang et al., 2023)
to control the generation with extracted depth
map sequence. In contrast to recent video edit-
ing techniques (Ceylan et al., 2023; Wang et al.,
2023a) that employ DDIM (Song et al., 2020)
inversion to obtain smoothed latent sequences,
we generate animations from randomly sam-
pled noise. As illustrated in Figure 8, our re-
sults exhibit meticulous motion details (such as hair and facial expressions) and high visual quality.

6 CONCLUSION

In this paper, we present AnimateDiff, a practical pipeline directly turning personalized text-to-
image (T2I) models for animation generation once and for all, without compromising quality or
losing pre-learned domain knowledge. To accomplish this, we design three component modules in
AnimateDiff to learn meaningful motion priors while alleviating visual quality degradation and en-
abling motion personalization with a lightweight fine-tuning technique named MotionLoRA. Once
trained, our motion module can be integrated into other personalized T2Is to generate animated
images with natural and coherent motions while remaining faithful to the personalized domain. Ex-
tensive evaluation with various personalized T2I models also validates the effectiveness and gener-
alizability of our AnimateDiff and MotionLoRA. Furthermore, we demonstrate the compatibility of
our method with existing content-controlling approaches, enabling controllable generation without
incurring additional training costs. Overall, AnimateDiff provides an effective baseline for person-
alized animation and holds significant potential for a wide range of applications.

9
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7 ETHICS STATEMENT

We strongly condemn the misuse of generative AI to create content that harms individuals or spreads
misinformation. However, we acknowledge the potential for our method to be misused since it
primarily focuses on animation and can generate human-related content. It is also important to
highlight that our method incorporates personalized text-to-image models developed by other artists.
These models may contain inappropriate content and can be used with our method.

To address these concerns, we uphold the highest ethical standards in our research, including ad-
hering to legal frameworks, respecting privacy rights, and encouraging the generation of positive
content. Furthermore, we believe that introducing an additional content safety checker, similar to
that in Stable Diffusion (Rombach et al., 2022), could potentially resolve this issue.

8 REPRODUCIBILITY STATEMENT

We provide comprehensive implementation details for the training and inference of our method in
supplementary materials, aiming to enhance the reproducibility of our approach. We also make both
the code and pre-trained weights open-sourced to facilitate further investigation and exploration.
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APPENDIX

A IMPLEMENTATION DETAILS

Training. We utilize the WebVid-10M dataset (Bain et al., 2021), a large-scale video dataset con-
sisting of approximately 10.7 million text-video data pairs to train the motion module. This dataset
offers diverse motion categories, which significantly facilitates the learning process of the motion
module. We adopt a training resolution of 256 × 256 to balance training efficiency and motion
quality. To train the domain adapter, we randomly sample static frames and resize them to the target
resolution. For the motion module and MotionLoRA, we uniformly sample the videos at a stride of
4 to get video clips at a length of 16. We use a learning rate of 1×10−4 and train the motion module
with 16 NVIDIA A100s for 5 epochs.

Inference. As described in the main paper, at inference, we first inflate a personalized text-to-image
model and insert the pre-trained motion module to constitute the corresponding animation generator.
In our experiment setup, we generate animations at a resolution of 512× 512 using a DDIM (Song
et al., 2020) sampler with classifier-free guidance. We referred to the model’s official web page to
determine the denoising hyperparameters (guidance scale, LoRA scaler, etc.) and generally adopted
the same settings.

Table 2: Community models for evaluation.
Model Name Domain Type

ToonYou1 2D Cartoon T2I Base Model
MeinaMix2 2D Anime T2I Base Model
Lyriel3 Stylistic T2I Base Model
RCNZ Cartoon 3d4 3D Cartoon T2I Base Model
epiC Realism5 Realistic T2I Base Model
Realistic Vision6 Realistic T2I Base Model
Oil painting7 Stylistic LoRA
MoXin8 Stylistic LoRA
TUSUN9 Concept LoRA

Models for evaluation. To ensure a comprehensive benchmark, we selected nine representative
personalized T2I models from Civitai (2022), a model-sharing platform that enables artists to upload
their creations. As illustrated in Table 2, these models encompass diverse domains such as 2D anime,
stylistic painting, and realistic photographic images. They also cover a wide range of subjects,
including portraits, animals, landscapes, etc.. This selection ensures a comprehensive evaluation of
our approach across various domains and subjects.

Baselines adaptation. To adapt the two academic baselines for personalized animation genera-
tion, we followed the recommended best practices in the respective papers and performed parameter
tuning on a case-by-case basis. For Tune-A-Video (Wu et al., 2023), we use a reference video on
the project’s webpage and fine-tune the network after replacing the T2I backbone with a person-
alized one, as suggested in the paper. Regarding Text2Video-Zero (Khachatryan et al., 2023), we
directly generate video clips upon the personalized T2Is without any modifications. In addition,
we conducted qualitative comparisons with two commercial tools for video generation and image
animation, namely Gen-2 (2023) and Pika Labs (2023). For Gen2, we employed personalized T2I
images as image prompts to generate the corresponding videos. As for Pika Labs, we utilized it to
animate still images generated by the personalized T2Is.

1https://civitai.com/models/30240/toonyou
2https://civitai.com/models/7240?modelVersionId=119057
3https://civitai.com/models/22922/lyriel
4https://civitai.com/models/66347?modelVersionId=82547
5https://civitai.com/models/25694?modelVersionId=143906
6https://civitai.com/models/4201?modelVersionId=130072
7https://civitai.com/models/84542/oil-paintingoil-brush-stroke
8https://civitai.com/models/12597/moxin
9https://civitai.com/models/33194/leosams-pallass-catmanul-lora
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(SD1.5) Close up of
grapes on table.

(SD1.5) Sunset
time-lapse at the beach.

(SD1.5) An astronaut
flying in space.

(SD1.5) A bigfoot
walking.

Figure 9: Results on base T2I backbone. Best viewed with Acrobat Reader. Click the images to
play the animation clips.

User study. To ensure a fair comparison between our method and the baselines, we generated 20
animations for each method without cherry-picking, resulting in 20 sets of triple pairs. Subsequently,
we conducted a user study involving ten participants. Each participant is presented with the three
samples generated by different methods at one time and asked to rank them based on three specific
aspects: text alignment, domain similarity, and motion smoothness. To evaluate text alignment, we
provide the corresponding text prompt to the users and request them to rank the samples accordingly.
To assess domain similarity, we initially generate reference images using the same personalized
T2I. These reference images are then presented to the users, who are asked to rate the animations
based on their perceived similarity to the reference images. Regarding motion smoothness, users are
instructed to rank the animations based on the consistency of the motion.

CLIP metric. Using the generated animations, we first extract the CLIP image embeddings of each
frame and then compute the cosine similarity under different settings. To assess text alignment, we
computed the average similarity between the prompt embedding and the embeddings of individual
frames. For evaluating domain similarity, we computed the CLIP score between the reference im-
ages and the frames of the animations. To measure motion smoothness, we calculated the similarity
between all pairs of video frames and reported the average number.

B ADDITIONAL DISCUSSIONS

B.1 VISUAL QUALITIES ON BASE T2I.

By integrating the motion module with the base T2I that the motion module is pre-trained upon, i.e.,
Stable Diffusion V1.5, AnimateDiff demonstrates capabilities in general T2V generation. We show-
case such ability by generating videos with commonly used textual prompts in previous works (Zhou
et al., 2022a; Blattmann et al., 2023). As illustrated in Fig. 9, without the enhancement from per-
sonalized T2I models, the domain of the synthetic videos corresponds closely with the pre-training
dataset WebVid-10M Bain et al. (2021).

B.2 DOMAIN ADAPTER VISUALIZATION

To further validate the effectiveness of the domain adapter, we conduct an additional ablative study
where the motion module is trained with the domain adapter entirely removed from the pipeline.
We qualitatively compare the personalized T2I animation results upon three baselines: (1) training
without adapter; (2) full pipeline with scaler α set to 1; (3) full pipeline with scaler α set to 0.

As shown in Fig. 10, when the domain adapter is completely removed from the training pipeline,
visual attributes inherent to the training dataset, specifically watermarks, emerge in the synthetic
animations (1st row). This arises due to the intertwining of visual appearance and motion learning
during the motion module’s training phase, resulting in the watermark pattern being learned by
the motion module and subsequently transferred to other personalized T2I backbones. Similarly,
watermarks appear when the adapter exerts its full impact (2nd row). In contrast, by fitting the
visual distribution to a separate domain adapter and eliminating it during inference, our full pipeline
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train w/o adapter full pipeline, α = 1 full pipeline, α = 0

Figure 10: Abaltions on domain adapter. Best viewed with Acrobat Reader. Click the images to
play the animation clips.

w/o scale-up training w/ scale-up training w/o scale-up training w/ scale-up training

Figure 11: Ablations on scale-up training. Best viewed with Acrobat Reader. Click the images to
play the animation clips.

(3rd row) achieves superior quality devoid of watermarks. This implies that the visual distribution
within the training dataset can be effectively eliminated by merely dropping the adapter.

B.3 BENEFITS FROM SCALE-UP TRAINING

In practice, we find that the overall quality of the generated animations benefits from scale-up train-
ing. This involves training with larger batch sizes, video resolution, and the number of total optimiz-
ing iterations. In Fig. 11, we present two pairs of qualitative comparisons between motion modules
trained with standard and scale-up training. Under the scale-up training setting, we train the mo-
tion module on the resolutions of 320 × 512, with 8× larger batch size compared to the standard
setting. The result indicates that considerable enhancement in motion amplitude and diversity can
be achieved through an increase in the training scale. For instance, the camera involves view angle
changes (2nd row) in contrast to mere zooming (1st row). The character’s head displays turning
movements (4th row) rather than solely facing forward (3rd row).

C LIMITATIONS

C.1 MOTION PRIORS IN ANIMATEDIFF

The transferable motion priors in AnimateDiff are learned from a large-scale video dataset WebVid-
10M (Bain et al., 2021) that encompasses mainly real-world footage. Supported by the richness and
diversity of the dataset, the motion module can learn real-world motions (Ding et al., 2022) like sea
waves, vehicular movement, and human actions, which are modeled by the temporal self-attention
mechanism. Therefore, the motion priors largely depend on the dataset coverage and accuracy,
which introduces potential limitations discussed as follows.

Motion diversity and complexity. In practice, we find that the motion module pre-trained on
WebVid-10M performs well on non-violent motions such as fluid (e.g., ocean waves, fog, etc.),
rigid objects (e.g., cars, boats), and simple human movements (e.g., walking, facial expressions).
This aligns with our observation that the training dataset predominantly encompasses these motions.
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Stable Diffusion V1.5 Stable Diffusion XL

Figure 12: Improvements on the more powerful backbone. Best viewed with Acrobat Reader.
Click the images to play the animation clips.

However, the module struggles with complex motions that are infrequent in the training dataset and
challenging to represent via short video clips during training, e.g., dance movements and drastic
scene changes. These instructions often result in static synthetic outcomes or unnatural deforma-
tions. Potential solutions could involve enriching the training set’s motion diversity or training with
larger resolution and extended clip length, which will help to better model motion patterns.

Text-motion alignment. In the pre-training dataset, WebVid-10M, most text labels primarily de-
scribe visual content while overlooking detailed motion descriptions. Consequently, this leads to the
animations generated by AnimateDiff exhibiting little response to the motion descriptions. Notwith-
standing, this phenomenon does not imply that the motion module does not acquire corresponding
motion priors. For instance, zoom-in/out effects frequently appear in the pre-training videos. How-
ever, their text labels typically contain only broad “zooming” tags, making it difficult for the motion
module to distinguish the difference between zoom-in and zoom-out accurately. As a result, utilizing
a “zoom in” prefix alongside the common text prompt generates both zoom-in and zoom-out effects,
indicating the need for a video dataset with more accurately labeled motion tags. This also suggests
that MotionLoRA does not learn new motion patterns entirely from scratch but refines and enhances
the pre-existing motion priors (regardless of whether they can be triggered by text) obtained during
pre-training, enabling the motion module to express such priors as desired during inference.

C.2 DEPENDENCY ON IMAGE BACKBONE

Under the decoupled training strategy, the motion and visual content in the generated animations
originate from the pre-trained motion module and the underlying image backbone, respectively.
Consequently, the performance of the entire pipeline of AnimateDiff is heavily reliant on the un-
derlying T2I models. If the base model struggles to respond appropriately to the text prompt and
fails to generate accurate content, the additional motion module is unlikely to compensate for this
weakness. Conversely, superior image backbones can enhance the synthetic results. To demonstrate
this, we implement AnimateDiff on Stable Diffusion XL (Podell et al., 2023) and compare general
T2V results on rare semantic compositions against the Stable Diffusion V1.5 version, as depicted
in Fig. 12. The figure illustrates that the synthetic video based on SDXL achieves better visual
composition and semantic alignment.

Practically, to mitigate potential limitations introduced by the foundational T2I models, employing
off-the-shelf modules such as IP-adapter (Ye et al., 2023) for additional style/content reference,
ControlNet (Zhang et al., 2023) for spatial composition corrections, could be beneficial.

D MORE VISUAL RESULTS

In Fig. 13, we show more visual results of AnimateDiff and the results of further combing Animate-
Diff with MotionLoRA to achieve shot type control. In Fig. 14, we show more qualitative compar-
isons between AnimateDiff and four academic and commercial baselines. In Fig. 15, we compare
two motion module architectures, i.e., the full convolution one and its Transformer counterpart.
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Oil painting Realistic Vision Realistic Vision Realistic Vision

city, rainy day, wet, car,
a bustling street, oil
painting, . . .

photo of 18 y.o woman
in dress, night city
street, motion blur, . . .

photo of a cyberpunk
city street, night time,
dark atmosphere, . . .

b&w photo of 42 y.o
man in black clothes,
bald, face, half body, . . .

Oil painting Lyriel Oil painting epiC Realism

oil painting, black
pearl pirate ship, wind,
waves, night time, . . .

portrait of halo, sun-
glasses, blue eyes, tar-
tan scarf, . . .

oil painting, mountain,
lake water, boat, forest,
masterpiece, . . .

landscape, a rocky
mountain with milky
way, nighttime, . . .

epiC Realism epiC Realism ToonYou Realistic Vision

(zoom-in) A nebula
in universe, highly
detailed, colorful, . . .

(rolling) landscape of
a aesthetically Belgium
and wildflower, . . .

(rolling) 1boy, dark
skin, playing guitar,
concert, stage lights, . . .

(zoom-in) cabins in the
forest, water, aurora in
the sky, fog, . . .

Oil Painting MoXin RCNZ Cartoon 3d Lyriel

(panning) oil painting,
house, grass, wheat field
laboring crowd, . . .

(panning) fantas-
tic composition, old
Chinese town, . . .

(panning) a golden
labrador, warm vibrant
colours, . . .

(tilting) waters, canyon,
sunlight, traveler, high
quality, . . .

Figure 13: Additional qualitative results. Best viewed with Acrobat Reader. Click the images to
play the animation clips.
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Tune-A-Video AnimateDiff T2V-Zero AnimateDiff

a man is playing guitar, dramatic lighting, . . . a girl is playing guitar, wavy hair, upper body, . . .

Pika Labs (2023) AnimateDiff Gen-2 (2023) AnimateDiff

cabins in the forest, water, aurora in the sky, fog, . . . taxi, rear view, New York city at night, . . .

Pika Labs (2023) AnimateDiff Gen-2 (2023) AnimateDiff

sunset, orange sky, fishing boats, ocean waves, . . . a woman standing on the road at night, . . .

Figure 14: Qualitative comparison. Best viewed with Acrobat Reader. Click the images to play
the animation clips.

Convolution Transformer Convolution Transformer

Figure 15: Module design comparison.
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