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ABSTRACT

Scaling laws describe the relationship between the size of language models and
their capabilities. Unlike prior studies that evaluate a model’s capability via loss
or benchmarks, we estimate information-theoretically the number of knowledge
bits a model stores. We focus on factual knowledge represented as tuples, such
as (USA, capital, Washington D.C.) from a Wikipedia page. Through multiple
controlled datasets, we establish that language models can and only can store 2
bits of knowledge per parameter, even when quantized to int8, and such knowledge
can be flexibly extracted for downstream applications. More broadly, we present
12 results on how (1) training duration, (2) model architecture, (3) quantization,
(4) sparsity constraints such as MoE, and (5) data signal-to-noise ratio affect a
model’s knowledge storage capacity.

1 INTRODUCTION

The scaling laws of large language models remain a pivotal area of research, enabling predictions
about the performance of extremely large models through experiments with smaller ones. On the
training time aspect, established scaling laws (Hoffmann et al., 2022; Kaplan et al., 2020; Hernandez
et al., 2021; Alabdulmohsin et al., 2022; Henighan et al., 2020) discuss the optimal training flops
versus model size. However, recent studies (Muennighoff et al., 2023; Gunasekar et al., 2023; Li
et al., 2023) challenge these laws, demonstrating that training smaller models with significantly
more flops can yield superior results. While these laws talk about how much time/data is needed to
train a model of a certain size, another fundamental question is: what is the ultimate performance
a model can achieve, assuming sufficient training? Despite the known emergent behaviors in large
models (Bubeck et al., 2023; Yu et al., 2023), or even qualitative arguments that modern large models
have reached L2 or L3-level intelligence (Allen-Zhu & Xu, 2025), there is a lack of a principled,
quantitative analysis on how model size impacts its capacity when adequately trained.1

Traditional theory on overparameterization suggests that scaling up model size in sufficiently trained
models can enhance memorization of training data (Allen-Zhu et al., 2019b), improve generalization

∗This paper is part of the Physics of Language Models series, one of the first six papers presented as a
two-hour tutorial at ICML 2024 in Austria (youtu.be/yBL7J0kgldU). Full and future editions of Part 3.3,
including additional experiments and potential code releases, are available at physics.allen-zhu.com
and ssrn.com/abstract=5250617.

1There is a rich literature comparing how pretrained models perform on benchmark tasks. Most comparisons
are for different model families trained over different data: if LLaMA-70B is better than Mistral-7B, does the
gain come from its choice of pretrain data, or the architecture difference, or really the size of the model? Some
comparisons are among the same architecture, such as LLaMA-70B scores 63.6% on the world knowledge
benchmark while LLaMA-7B scores only 48.9% (Touvron et al., 2023b); does this mean increasing model size
by 10x increases its capacity only to 130% = 63.6/48.9? Thus, it is highly important to use a more principled
framework to study scaling laws in a controlled setting.
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error (Hestness et al., 2017; Rosenfeld, 2021; Rosenfeld et al., 2019), and better fit complex target
functions (Li & Liang, 2018; Allen-Zhu et al., 2019a). However, these results often overlook large
constant or polynomial factors, leading to a significant discrepancy from practical outcomes.

In this paper, we introduce a principled framework to examine highly accurate scaling laws concern-
ing model size versus its knowledge storage capacity. It is intuitive that larger language models can
store more knowledge, but does the total knowledge scale linearly with the model’s size? What is the
exact constant of this scaling? Understanding this constant is crucial for assessing the efficiency of
transformer models in knowledge storage and how various factors (e.g., architecture, quantization,
training duration, etc.) influence this capacity.

Knowledge is a, if not the, pivotal component of human intelligence, accumulated over our extensive
history. Large language models like GPT-4 are celebrated not just for their sophisticated logic but
also for their superior knowledge base. Despite rumors of GPT-4 having over 1T parameters, is
it necessary to store all human knowledge? Could a 10B model, if trained sufficiently with high-
quality data, match GPT-4’s knowledge capacity? Our paper seeks to address these questions.

Knowledge Pieces. Defining “one piece of human knowledge” precisely is challenging. This paper
aims to make progress by focusing on a restricted, yet sufficiently interesting domain. We define a
piece of knowledge as a (name, attribute, value) tuple, e.g., (Anya Forger, birthday, 10/2/1996); and
many data in world knowledge benchmarks can be broken down into pieces like this.2

We generate synthetic knowledge-only datasets by uniformly at random generating (name, attribute,
value) tuples from a knowledge base and converting them into English descriptions. We pretrain
language models (e.g., GPT-2, LLaMA, Mistral) on these texts using a standard auto-regressive
objective from random initialization, and “estimate” the learned knowledge. By varying the number
of knowledge pieces and model sizes, we outline a knowledge capacity scaling law.

Our idealized setting, free from irrelevant data, allows for more accurate scaling law computations
— we also discuss how “junk” data affects capacity. In contrast, it is difficult to quantify real-
life knowledge; for instance, if LLaMA-70B outperforms LLaMA-7B by 30% on a benchmark, it
doesn’t necessarily mean a tenfold model scaling only boosts capacity by 30% (see Footnote 1). The
synthetic setting also lets us adjust various hyperparameters, like name/value lengths and vocabulary
size, to study their effects on knowledge capacity scaling laws.

Most of the paper shall focus on a setting with synthetically-generated human biographies as data,
either using predefined sentence templates or LLaMA2-generated biographies for realism.

Bit Complexity and Capacity Ratio. For N knowledge pieces (i.e., N tuples), we define the bit
complexity as the minimum bits required to encode these tuples. For any language model trained on
this data, we calculate its “bit complexity lower bound” (see Theorem 3.1), describing the minimum
number of bits needed for the model to store the knowledge at its given accuracy. This formula is
nearly as precise as the upper bound, within a 1− o(1) factor.

We train language models of varying sizes on knowledge data with different N values. By compar-
ing the models’ trainable parameters to the bit complexity lower bounds, we evaluate their knowl-
edge storage efficiency. A model with 100M parameters storing 220M bits of knowledge has a
capacity ratio of 2.2 bits per parameter.

Our results. Our findings are summarized as follows:

• RESULTS 1-3: BASE SCALING LAW FOR GPT2. 3

– RESULT 1+2+3: GPT2, trained with standard AdamW, consistently achieves a 2bit/param
capacity ratio across all data settings after sufficient training. This includes various model
sizes, depths, widths, data sizes, types (synthetic/semi-synthetic), and hyperparameters (e.g.,
name/value length, attribute number, value diversity).

2Examples include (Africa, largest country, Sudan) and (It Happened One Night, director, Frank Capra) in
TriviaQA (Joshi et al., 2017), or (Teton Dam, collapse date, 06/05/1976) and (USA, Capital, Washington D.C.)
in NaturalQuestions (Kwiatkowski et al., 2019).

3In this paper, GPT2 refers to that the GPT2 model with rotary embedding instead of positional embedding
and without dropout.

2



Published as a conference paper at ICLR 2025

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d 

kn
ow

le
dg

e 
(b

it
s)

8-2 2-4 5-33-44-37-26-25-24-2 2-32-2 3-2 4-46-3

3-22-2
6-22-3 7-25-2 8-2 2-44-3 6-3 6-45-44-4 2-63-45-34-2 8-42-83-6

5-32-48-2 4-37-26-25-2
2-34-23-2

2-2

12-4 6-65-68-4 4-6
10-42-83-4 4-46-3 9-68-6

10-6
16-46-42-65-4 3-6

6-45-42-64-46-33-45-3

6-2
7-2

4-32-48-2
5-2

2-34-2

8-87-86-6
12-44-6

16-4 8-6
10-69-65-6

10-4
4-12

10-83-6 2-88-4
12-66-8

2-86-4
8-4

10-42-65-4
3-6 4-6 5-6

12-4
4-46-35-3

3-4
2-44-3

6-6
10-8

4-128-87-8
16-4 8-6

2-20
12-89-6

10-6
12-66-8

6-12
3-20

16-8
8-12

3-6
8-4

4-6

12-88-8
2-20

12-12
8-16

6-20
3-20

4-12
12-16

6-24
12-410-4

16-8
8-126-6

7-8
5-62-8

4-20
20-12

10-68-69-6
6-1616-4 6-8

6-12
16-12

10-8
12-6

8-20

6-4

16-2012-6
10-8

20-16
24-16

8-16
16-16

20-12
8-24
12-20

28-16
6-24

8-20

8-6

7-8
4-20

6-12
12-24

8-12
4-12

6-208-8
6-16

16-12
16-8

3-20
9-6

6-6

12-86-8

2-20
12-16

12-12

16-4

14-20
10-6

16-8

6-20

20-16
2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000
N=20000
N=10000

(a) bioS(N) data (1000 exposures), peak R(F ) ≥ 2
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Figure 1: Scaling laws for GPT2 pretrained on bioS(N) data using fp16 (mixed-precision) for 1000/100
exposures.

Conclusion. The peak capacity ratios consistently exceed R(F ) ≥ 2 (resp. ≥ 1) for 1000 exposures
(resp. 100 exposures) of pretraining on each knowledge piece, regardless of model depth/size.

Remarks. Each dot ℓ-h represents GPT2 with ℓ layers, h heads, and 64d dimensions. The learned
knowledge is calculated by the bit-complexity lower bound Theorem 3.1. The full paper also
includes: similar results for bioSsimple(N) and bioR(N) data, the same holds for quantization using
int8, and confirming full extractability of all learned knowledge.5

Larger models? Training GPT2-20-16 on bioS(10M) for 1000 exposures costs 8.5 days with 64
A100s, while GPT2-12-32 on bioS(20M) for 100 exposures took 2.4 days. In our synthetic setting,
we see no need to scale up further. Instead, we prefer to allocate GPUs to explore other aspects
covered in this paper.

Remark 1.1. This predicts a sufficiently trained 7B language model can store 14B bits of
knowledge, surpassing the knowledge of English Wikipedia and textbooks by our estimation.4

Remark 1.2. When we say the model stores knowledge, it isn’t word-by-word memorization.
Instead, the knowledge is flexibly extractable (e.g., via QAs like “What is Anya Forger’s birth-
day”) (Allen-Zhu & Li, 2024) and applicable in downstream tasks (e.g., comparing birthdays)
via fine-tune (Allen-Zhu & Li, 2025).

• RESULT 4: HOW TRAINING TIME AFFECTS MODEL CAPACITY.
Achieving a 2bit/param capacity requires each knowledge piece to be visited 1000 times during
training, termed 1000-exposure to differentiate from traditional “1000-pass” terminology, as a
single data pass can expose a knowledge piece 1000 times.6

– RESULT 4: With 100 exposures, an undertrained GPT2’s capacity ratio falls to 1bit/param.
(See Figure 1.)

Remark 1.3. Another perspective on Result 4 is that rare knowledge, encountered only 100 times
during training, is stored at a 1bit/param ratio.

• RESULTS 5-7: HOW MODEL ARCHITECTURE AFFECTS MODEL CAPACITY.
We tested LLaMA, Mistral, and GPT2 architectures with reduced or even no MLP layers.

4As of February 1, 2024, English Wikipedia contains a total of 4.5 billion words, see https:
//en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia#Size_of_the_English_
Wikipedia_database, accessed March 2024. We estimate that the non-overlapping contents of English
textbooks have fewer than 16 billion words in total, see Remark P.1. This amounts to 20.5 billion words, and
we believe they contain fewer than 14 billion bits of knowledge.

5A distinction exists between memorizable knowledge (e.g., text memorized during pretraining) and knowl-
edge flexibly extractable via instruction fine-tuning (Allen-Zhu & Li, 2024); our results in this paper apply to
both.

6For example, it is plausible that one pass through Wiki data might present the knowledge piece (US, capital,
Washington D.C.) 1000 times, and one pass through the Common Crawl might present it a million times.
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– RESULT 5: In the 1000-exposure setting, a 2bit/param capacity ratio appears to be a univer-
sal rule: all models, even without MLP layers, closely achieve this ratio.

– RESULT 6: With 100 exposures, some archs show limitations; notably, LLaMA/Mistral’s
capacity ratio is 1.3x lower than GPT2’s, even after best-tuned learning rates.

– RESULT 7: Further controlled experiments indicate that “gated MLP” usage leads to
LLaMA/Mistral architecture’s underperformance in knowledge storage.

Remark 1.4. Our framework offers a principled playground to compare models. This con-
trasts with traditional comparisons based on loss/perplexity, which can produce debatable con-
clusions.7 Controlled data also reveal more significant differences between models.8

• RESULT 8: HOW QUANTIZATION AFFECTS MODEL CAPACITY.
We applied GPTQ (Frantar et al., 2022) to quantize models from the base scaling laws to int8 or
int4. Surprisingly,

– RESULT 8: Quantizing to int8 does not compromise model capacity (even for models on the
boundary of 2bit/param); however, quantizing to int4 reduces capacity to 0.7bit/param.

Remark 1.5. Since int8 is 8bit, LLMs can exceed 1/4 of the theoretical limit for storing knowl-
edge; thus knowledge must be very compactly stored inside the model across all layers.
Remark 1.6. Since 2bit/param is obtained after sufficient training, training longer may not further
improve model capacity, but quantization can. While not covered in this paper, our framework
also provides a principled playground to compare different quantization methods.

• RESULT 9: HOW SPARSITY (MOE) AFFECTS MODEL CAPACITY.
Mixture-of-experts (MoE) models offer faster inference than dense models but often underper-
form dense models with the same total parameter count (not effective parameters). We show that
this performance drop is likely not due to a lack of knowledge storage capability.

– RESULT 9: MoE models, even with 32 experts, only reduce 1.3x in capacity compared to
the base scaling laws, despite using just 8.8% of the total parameters during inference.

• RESULTS 10-12: HOW JUNK KNOWLEDGE AFFECTS MODEL CAPACITY.
Not all pretrain data are equally useful. Much of the internet data lacks valuable knowledge
for training language models (Li et al., 2023), while knowledge-rich sources like Wikipedia
represent only a small fraction of the training tokens. We explore the impact on model capacity
by conducting a controlled experiment with both useful and “junk” data.

– RESULT 10+11: Junk data significantly reduces model capacity. As an example, with a 1:7
ratio of “useful to junk” training tokens, capacity for useful knowledge loses by a factor of
20x, even when useful knowledge is exposed 100 times.9

– RESULT 12: An effective mitigation is to prepend a special token to all useful knowledge.
This is akin to adding a domain name like wikipedia.org at the start of every Wikipedia
paragraph; the model autonomously identifies high-quality data without prior knowledge of
valuable domains. In the example above, the loss factor improves from 20x to 2x.

Conclusion. Overall, our approach to studying knowledge capacity scaling laws offers a flexible
and more accurate playground compared to traditional methods that evaluate language models
trained on internet data against real-world benchmarks. This accuracy is partly due to the synthetic
nature of our dataset, which eliminates concerns such as data contamination that could compromise
the validity of real-world benchmark results. In this paper, we’ve conducted a thorough comparison
across different model architectures and types of knowledge. While we haven’t explored various
quantization methods, this represents a promising direction for future research. We’ve also inves-
tigated the impact of junk data and proposed mitigation strategies. We believe the insights gained
from this principled exploration can assist practitioners in making informed decisions about model
selection, training data preparation, and further theoretical research into LLMs.

7A model might achieve better perplexity by performing much better on simpler data but poorer on complex
data, or by excelling in reasoning but not in knowledge. Our results offer a more nuanced view: GatedMLP
doesn’t affect frequent knowledge but does impact moderately rare knowledge (e.g., with 100 exposures).

8For example, Shazeer (2020) found GatedMLP offers a ∼ 1% accuracy boost on benchmark tasks; our
findings of a 1.3x difference translates for instance to accuracies 90% vs. 70%.

9The loss factor improves to 3x/1.5x/1.3x with 300/600/1000 exposures of useful knowledge, compared to
Result 4 which involves training without junk for only 100 exposures.

4



Published as a conference paper at ICLR 2025

2 PRELIMINARIES

In this paper, a piece of knowledge is a tuple of three strings: (name, attribute, value) = (n, a, v).
For instance, n = “Anya”, a = “birthday”, v = “Oct 2, 1996”.

2.1 KNOWLEDGE (THEORETICAL SETTING)

The complexity of a knowledge set is determined not only by the number of knowledge pieces
but also by the length of the value string v, the diversity of the vocabulary, and other factors. For
instance, if the attribute a =“passport number,” then the value v contains more bits of knowledge
compared with a =“gender,” because the former has significantly higher diversity. If the attribute
a =“birth date,” then the value v could consist of 3 chunks: (10, 2, 1996).

Considering these examples, we propose a set of hyperparameters that may influence the complexity
of knowledge:

1. N — the number of (distinct) names n, denoted by N .

2. K — the number of attributes a, with A representing the set of attributes. For simplicity,
we assume |A| = K is fixed.

3. T — the number of tokens T , where every character in v belongs to T for some |T | = T .
For example, we can think of T as “vocab size” in a tokenizer.

4. C and L — the number of chunks and the length of each chunk for the value: each value
v ∈ (T L)C can be expressed as v = (v1, v2, · · · , vC), where vi ∈ T L.

5. D — the diversity of chunks: for each piece of knowledge (n, a, v) and i ∈ [C], the chunk
vi belongs to Da ⊂ T L, for some set with cardinality D

def
= |Da| ≪ TL.

Remark 2.1. For notation simplicity, we have assumed that all chunks within an attribute a ∈ A
share the same diversity set Da, and all chunks are of equal length, etc. This enables us to more
easily demonstrate the influence of each hyperparameter on a model’s capacity. In practice, different
attributes may have different diversity sets or value lengths — e.g., Dpassport could be much larger
than Dgender. Our theoretical results do apply to these settings, albeit with more complex notation.

In our theoretical result, we introduce a dataset bioD(N,K,C,D,L, T ) defined as follows:

Definition 2.2 (bioD data generation). Consider a fixed set of K attributes, such as a set A ={
“ID 1” . . . “ID K”}, and a fixed set N0 of candidate names (with N0

def
= |N0| ≫ N ).

1. Generate N names uniformly at random (without replacement) from N0 to form N .
2. For each attribute a ∈ A, generate D distinct strings w1,a, · · · , wD,a ∈ T L uniformly at

random (without replacement) to form the diversity set Da.
3. For each name n ∈ N and attribute a ∈ A, generate value v⋆(n, a) = (v1, v2, · · · , vC) by

sampling each vi ∈ Da uniformly at random.

Let Z def
=

{
(n, a, v⋆(n, a)

}
n∈N ,a∈A be the knowledge set.

Proposition 2.3 (trivial, bit complexity upper bound). Given N0 and A and T , to describe a knowl-
edge set generated in Definition 2.2, one needs at most the following number of bits:

log2
(|N0|

N

)
+NKC log2 D +K log2

(
TL

D

)
≈ N log2

|N0|
N +NKC log2 D +KD log2

TL

D .

(The approximation is valid when |N0| ≫ N and TL ≫ D.) We will present a bit complexity lower
bound in Section 3.

2.2 KNOWLEDGE (EMPIRICAL SETTING)

We utilize both the synthetic bioD dataset, generated as per Definition 2.2, and several human biog-
raphy datasets to evaluate language model scaling laws.

Allen-Zhu & Li (2024) introduced a synthetic biography dataset comprising N randomly-generated
(fake) individuals, each characterized by six attributes: birth date, birth city, university, major, em-
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ployer, and working city.10 To translate these tuples into natural language, in their bioS dataset,
each individual is described by six randomly selected English sentence templates corresponding to
their attributes. We direct readers to their paper for more details but provide an illustration below:

Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received mentorship and guidance from faculty
members at Massachusetts Institute of Technology. She completed her education with a focus on Communications. She had a professional
role at Meta Platforms. She was employed in Menlo Park, CA.

(2.1)In this paper, we explore three variations of such datasets:

• bioS(N) represents an online dataset for N individuals, where each biography is generated
with new randomness for the selection and ordering of six sentence templates on-the-fly.

• bioSsimple(N) denotes a similar dataset, but here, each biography is generated once with a
fixed random selection and ordering of the sentence templates.

• bioR(N) refers to the same dataset, but with each biography written 40 times by
LLaMA2 (Touvron et al., 2023b) to increase realism and diversity.

These datasets correspond to the bioS multi+permute, bioS single+permute, and bioR multi data
types discussed in (Allen-Zhu & Li, 2024), albeit with minor differences. While their study focused
on N = 100K, we expand our scope for bioS to consider N up to 20M ; for bioR, we limit N to
1M , which already yields a dataset size of 22GB.

As introduced in Section 1, if each knowledge piece is seen 1000 times during training, we call
this 1000 exposures. For bioS(N), 1000 exposures will unlikely include identical biography data
because there are 50 sentence templates for each attribute and a total of 506 × 6! possible biogra-
phies per person. For bioSsimple(N), 1000 exposures mean 1000 passes of the data. For bioR(N),
1000/100 exposures mean only 25/2.5 passes of the training data.

For the bioD dataset, we define N0 to be identical to bioS, with |N0| = 400 × 400 × 1000. We
encapsulate a person’s attributes within a single paragraph, employing random sentence orderings
and a consistent sentence template. For example:

Anya Briar Forger’s ID 7 is v7,1, . . . , v7,C . Her ID 2 is v2,1, . . . , v2,C . [...] Her ID 5 is v5,1, . . . , v5,C .

In this paper, we primarily utilize bioS. To illustrate broader applicability and to better connect to
theoretical bounds, we also present results for bioSsimple, bioR, and bioD.

2.3 MODELS AND TRAINING

GPT2 was introduced in (Radford et al., 2019). Due to its limitations from the absolute positional
embedding (Allen-Zhu & Li, 2023), we adopt its rotary positional embedding variant (Su et al.,
2021; Black et al., 2022), which we still refer to as GPT2 for convenience. Additionally, we disable
dropout, which has been shown to improve performance in language models (Touvron et al., 2023b).
We explore a wide range of model sizes while using a fixed dimension-per-head of 64. The notation
GPT2-ℓ-h represents ℓ layers, h heads, and 64h dimensions; for example, GPT2-small corresponds
to GPT2-12-12. The default GPT2Tokenizer is used, converting people’s names and most attributes
into tokens of variable lengths. In examining the impact of model architectures on scaling laws, we
will also use LLaMA/Mistral architectures (Touvron et al., 2023a; Jiang et al., 2023).

Training. We train language models from scratch (i.e., random initialization) using the specified
datasets. Knowledge paragraphs about individuals are randomly concatenated, separated by <EOS>
tokens, and then randomly segmented into 512-token windows. The standard autoregressive loss is
employed for training. Unless specified otherwise, training utilizes the default AdamW optimizer
and mixed-precision fp16. Learning rates and weight decays are moderately tuned (see full paper).

10All attributes, except for the working city (determined by the employer’s headquarters), are chosen uni-
formly and independently at random. There are N0 = 400×400×1000 possible person names, 12×28×200
birth dates, 200 birth cities, 300 universities, 100 majors, and 263 employers. Additionally, a random pronoun
with 2 possibilities is chosen for each person.
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3 BIT COMPLEXITY LOWER BOUND

When assessing the knowledge stored in a model, we cannot simply rely on the average, word-by-
word cross-entropy loss. For example, the phrase “received mentorship and guidance from faculty
members” in (2.1) does not constitute useful knowledge. We should instead focus on the sum of the
loss for exactly the knowledge tokens.

Consider a model F with weight parameters W ∈ W . Assume F is trained on a
bioD(N,K,C,D,L, T ) dataset Z as defined in Definition 2.2 using any optimizer; this process
is represented as W = W (Z) (the model’s weight is trained as a function of the training dataset
Z). During the evaluation phase, we express F through two functions: F⊤(W,R), which generates
names, and F⊥(W,n, a,R), which generates values given (n, a), where R denotes the randomness
used in generation. Let F⊥

1 (W (Z), n, a,R) represent the first chunk of F⊥(W (Z), n, a,R). We
evaluate F by calculating the following three cross-entropy losses:11

lossname(Z)
def
= E

n∈N
− logPr

R

[
F⊤(W (Z), R) = n

]
lossvalue1(Z)

def
= E

n∈N ,a∈A
− logPr

R

[
F⊤
1 (W (Z), n, a,R) = v⋆1(n, a)

]
lossvalue(Z)

def
= E

n∈N ,a∈A
− logPr

R

[
F⊥(W (Z), n, a,R) = v⋆(n, a)

]
We shall explain in the full paper that these quantities are easy to be derived from the auto-regressive
entropy-loss using examples, and below we quickly state our bit-complexity lower bound theorem:

Theorem 3.1 (bit complexity lower bound). Suppose N ≥ Ω(D logN). We have

log2 |W| ≥ E
Z

[
N log2

N0 −N

elossname(Z)
+NK log2

DC

elossvalue(Z)

+KD log2
TL −D

De(1+o(1))lossvalue1(Z)
− o(KD)

]
= N log2

N0 −N

eEZ lossname(Z)
+NK log2

DC

eEZ lossvalue(Z)

+KD log2
TL −D

De(1+o(1))EZ lossvalue1(Z)
− o(KD)

The goal of the paper is to study how the number of model parameters competes with this bound.
We defer the proof to the full paper, and shall explain over there why proving such bound is non-
trivial.

4 CAPACITY RATIO

Motivated by Theorem 3.1, ignoring lower order terms, we define the empirical capacity ratio as

Definition 4.1. Given a model F with P parameters trained over a bioD(N,K,C,D,L, T ) dataset
Z , suppose it gives p1 = lossname(Z), p2 = lossvalue(Z), p3 = lossvalue1(Z), we define its
capacity ratio and max capacity ratio

R(F )
def
=

N log2
N0

ep1 +NK log2
DC

ep2 +KD log2
TL

Dep3

P
.

Rmax(F )
def
=

N log2
N0

N +NKC log2 D +KD log2
TL

D

P
.

Remark 4.2. One must have R(F ) ≤ Rmax(F ), and equality is obtained if the model is perfect.
For a fixed dataset, further increases in model size do not yield additional knowledge, thus Rmax(F )
approaches zero as the model size P increases. On the other hand, Theorem 3.1 implies, ignoring
lower-order terms, that if the model parameters are 8-bit (such as int8), then R(F ) ≤ 8.

11We use En or En,a to denote uniform random selection of n ∈ N , a ∈ A.
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For our bioS(N) data, we define a slightly reduced capacity ratio by omitting the diversity term.12

Definition 4.3. Given a model F with P parameters trained over the bioS(N) dataset Z , suppose
it gives p1 = lossname(Z) and p2 = lossvalue(Z), its capacity ratio13

R(F )
def
=

N log2
N0
ep1

+N log2
S0
ep2

P and Rmax(F )
def
=

N log2
N0
N +N log2 S0

P

for N0 = 400×400×1000 and S0 = 2× (12 ·28 ·200)×200×300×100×263 (c.f. Footnote 10).

Remark 4.4. Ignoring names, each person contains log2(S0) ≈ 47.6 bits of knowledge.

5 MAIN BODY OF THIS PAPER

This paper contains too many technical results (12 in total), so many that it was initially rejected
by NeurIPS 2024 since the paper “is very valuable to the developers and researchers of GPT-like
LLMs” but “deserves a full hour to present than a focused conference paper (which only has a few
minutes to present)”, quoting the original words from the NeurIPS area chair (AC).

For this reason, we omit all technical details in this ICLR 2025 camera-ready version and encourage
readers to refer to our full paper at ssrn.com/abstract=5250617, or to our ICML 2024
tutorial at youtu.be/yBL7J0kgldU. We remark that the full paper underwent the ICLR 2025
review process, but we elected to present this camera-ready version as an extended abstract, aligning
with the tradition in the theory community.

6 CONCLUSION

We investigated the scaling laws of language models, specifically the relationship between model
size and the total bits of knowledge stored. Our findings reveal a precise, universal scaling law:
a sufficiently-trained transformer (i.e., one whose training loss has plateau-ed) can store 2 bits
of knowledge per parameter, even when quantized to int8, which is only 1/4 away from the
information-theoretical maximum. We also examined how these scaling laws are influenced by
various hyperparameters, including training duration, model architectures, floating-point precision,
sparsity constraints like MoE, and data signal-noise ratios.

In terms of knowledge capacity, our methodology provides a more accurate and principled play-
ground for comparing model architectures, training techniques, and data quality. We believe this
playground can assist practitioners in making informed decisions about model selection, training
data preparation, and further theoretical research into LLMs. Finally, our research represents an
initial step towards addressing a fundamental question: how large does a language model need to
be? We hope our findings will inspire further research in this area. Ultimately, we aim to provide
a principled answer to the question, “Are language models with 1T parameters sufficient to achieve
AGI?” in the future.

Finally, Part 3 of this work series focuses on how language models store, extract and manipulate
knowledge (including Part 3.1 and 3.2 (Allen-Zhu & Li, 2024; 2025)). We also cover grade-school
math and reasoning in Part 2 (Ye et al., 2025a;b), hierarchial language structure learning in Part
1 (Allen-Zhu & Li, 2023), and architecture design in Part 4 (Allen-Zhu, 2025).
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