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Foreground Harmonization and Shadow Generation for
Composite Image

Anonymous Author(s)

(a) Composite image (b) DIH-GAN (c) SGDiffusion (d) Ours (e) Ground Truth

Figure 1: Illumination editing effects. A composite image as input, it is possible to generate a harmonious foreground image
as well as realistic cast shadows. From left to right are composite image, results of DIH-GAN, SGDiffusion and our method,
Ground Truth, respectively.

ABSTRACT
Wepropose amethod for light and shadow editing of outdoor dishar-
monious composite images, including foreground harmonization
and cast shadow generation. Most existing work can only perform
foreground appearance editing tasks or only focus on shadow gen-
eration. In fact, lighting not only affects the brightness and color of
objects, but also produces corresponding cast shadows. In recent
years, diffusion models have demonstrated their strong generative
capabilities, and due to their iterative denoising properties, they
have a significant advantage in image restoration tasks. But it fails
to preserve content structure of image. In this purpose, we propose
an effective model to tackle the problem of foreground light-shadow
editing. Specifically, we use a coarse shadow prediction module (SP)
to generate coarse shadows for foreground objects. Then, we use
the predicted results as prior knowledge to guide the generation
of harmony diffusion model. In this process, the primary task is
to learn lighting variation to harmonize foreground regions. The
secondary task is to generate high-quality cast shadow containing
more details. Considering that existing datasets do not support
the dual tasks of image harmonization and shadow generation, we
construct a real outdoor dataset, IH-SG, covering various lighting
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conditions. Extensive experiments conducted on existing bench-
mark datasets and the IH-SG dataset demonstrate the superiority
of our method.

KEYWORDS
Image harmonization, shadow generation, diffusion model

1 INTRODUCTION
Image coposite refers to the process of combining images from
different sources to create new images, which has a variety of appli-
cations like advertisement propaganda and digital entertainment.
However, due to variations in lighting conditions, camera parame-
ters, and other factors, composite images often have inconsistent
lighting statistics compared to real images. This necessitates im-
age harmonization to adjust the appearance of the foreground for
visual consistency. Additionally, most existing image harmoniza-
tion methods focus solely on the lighting effects of foreground
regions. However, lighting also produces corresponding shadow
effects. These shadows provide important clues about object shape,
position, and relative depth, conveying information about volume
and depth to observers. Therefore, shadow generation is equally
essential for achieving lighting-shadow consistency.

For image harmonization, most traditional methods focus on
better matching low-level appearance statistics. They mainly focus
on color correction and lighting compensation [3, 31, 33, 49] for
the foreground area, or adjustments based on gradient information
[18, 30, 45] and multiscale statistics [43] of foreground and back-
ground regions. They fail to solve the significant appearance differ-
ences between foreground and background images. Deep learning
based methods provide powerful capabilities for modeling regional
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appearances to facilitate harmonization. Some methods [7, 47] ex-
plore the semantic information of synthesized images to reconstruct
coordinated images. Several methods [4, 6, 14, 23] have been pro-
posed to explore domain adaptation, aiming to bring the predicted
foreground closer to the original background domain. Guo et al.
[13] introduced the Retinex theory into the image harmonization
task. These methods [11, 12] explored Transformer-based image
harmonization. Considering the limitations of existing datasets, self-
supervised or semi-supervised methods proposed [19, 27, 29, 48].
CDTNet [5] and PCT-Net [9] adjust the image through color trans-
formation, but ignore lighting effects. Tan et al. [44] used unrelated
L, a, b features to guide image reconstruction.

For shadow generation, render-based methods [39–41] require
explicit knowledge of lighting, reflectance, material properties, and
scene geometry to generate shadows for inserted virtual objects
using rendering techniques. However, obtaining such knowledge is
often impractical in real-world scenarios. The estimated results are
influenced by the accuracy of the input information [8, 17]. Deep
learing-based methods [16, 25], on the other hand, directly learn the
mapping from input images without foreground shadows to output
images with foreground shadows, without the need for explicit
knowledge of lighting, reflectance, etc. Bao et al. [1] consider the
harmonized appearance and illumination of the foreground objects
while generating reasonable shadows for the foreground objects.
But this method only studied indoor images.

To address these issues, we propose a novel method for both
image harmonization and shadow generation in this paper. Con-
sidering the powerful generation capability of diffusion models,
inspired by [10], we use a condition diffusion model as the back-
bone network. Recognizing that images provide rich structural and
semantic features to assist image reconstruction compared to tex-
tual information. We use composite image with coarse shadows
as condition to guide the diffusion model. Since our task also re-
quires generating plausible cast shadows for the foreground objects,
we introduce a feature extraction module, a channel-spatial cross
attention and a shadow generation model to generate coarse shad-
ows. The main task of the harmony diffusion model is to learn the
lighting changes in the background to handle the foreground area
harmoniously, and refine the shadow area to generate high-quality
shadows.

The existing dataset are not well-suited for our task. IHarmony4
[6] provides different color conversions but lacks attention to light-
ing. RealHM [19] and RdHarmony [2] require a significant amount
of manpower and technical resources. CcHarmony [29] focuses
on realistic lighting changes, but it requires high requirements for
the shooting process. ShadowAR [25] dataset is collected through
rendering models. However, the attributes of shadows may also
not match those of real images. DESOBA and DESOBAv2 [16, 26]
use real images as target images to remove shadows from the fore-
ground to generate composite images. Bao et al. [1] proposed an
indoor dataset for foreground harmonization and shadow gener-
ation, but only focusing on indoor scenes. So we construct a new
outdoor real-world dataset (IH-SG) for image harmonization and
shadow generation task. We obtain composite images through re-
lighting foreground objects.

Our contributions can be summarized as follows:

• We constructe a new outdoor real-world dataset (IH-SG)
for image harmonization and shadow generation task.

• We propose a new image light-shadow editing method
based on condition diffusion model, which can achieve
controllable harmonization of foreground regions and rea-
sonable generation of cast shadows.

Extensive experiments conducted on both public datasets and
our IH-SG dataset demonstrate the effectiveness of our method.

2 RELATEDWORK
Our task aims to handle the illumination of the foreground regions
and generate reasonable cast shadows for foreground objects, while
image harmonization or shadow generation tasks can only solve
one of them.

2.1 Image Harmonization
Traditional image harmonization methods primarily focus on ad-
justing the low-level appearance statistics between foreground ob-
jects and the background, such as color statistics [3, 31, 33, 49], and
gradient information [18, 30, 45]. The limited representation capa-
bility of low-level features can negatively impact their performance.
Especially when there are significant differences between the fore-
ground and background regions, these methods often struggle to
produce satisfactory results.

Recent research has built reasonably sized datasets [6, 19, 29], to
advance learning-based approaches. CNN-based methods analyze
semantic information [7, 47]. Since image harmonization adjusts
the foreground lighting or style to match the background, domain
adaptation methods [4, 6, 23] have also been proposed to explore
the idea of domain harmonization. Guo et al. [13] introduced the
Retinex theory into the image harmonization task and proposed
decomposing the synthetic image into reflectance and illumina-
tion. With the rise of Transformers, Guo et al. [11, 12] applied the
Transformer framework to image harmonization tasks. But intrinsic
decomposition is a difficult problem. Some methods treat image
harmonization as a style transfer problem. These methods have
achieved advanced research results through contrastive learning
[14], high resolution [20] or color space adjustment [5, 9, 44]. Shen
et al. [38] trained Global Perception Adaptive Coordination Kernel.
Bao et al. [1] utilized a multi-scale attention mechanism and illumi-
nation exchange strategy to harmonize objects and generate cast
shadow. However, these methods for indoor scenes are difficult to
generalize to outdoor scenes. Unlike existing methods, we learn
the illumination of images through diffusion model to generate
the consistent illumination of the foreground object itself with the
background, as well as corresponding cast shadow.

2.2 Shadow Generation
The existing work on shadow generation can be divided into two
categories: rendering-based methods and image-to-image transla-
tion methods. Rendering-based methods require explicit knowledge
of lighting, reflectance, and scene geometry to generate shadows
for inserted virtual objects using rendering techniques. However,
such detailed knowledge relies on user input [21, 24] or model
prediction [8, 22]. Sheng et al. [40] explored the generation of con-
trollable soft shadows. And then, they introduced the concept of

2
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Figure 2: IH-SG dataset. From left to right, there are composite images, real images, foreground object masks, foreground
shadow masks, background object masks and background shadow masks, respectively.

pixel height [39, 41] and explored the correlation between objects,
ground, and camera poses. In the absence of user interaction, Gard-
ner [8] attempted to recover explicit lighting conditions and scene
geometry based on a single image, but inaccurate estimates may
lead to unsatisfactory results.

Image-to-image translation methods learn the mapping from
input images without foreground shadows to output images with
foreground shadows, without requiring explicit knowledge of light-
ing, reflectance, etc. Hu et al. [17] proposed a method that can adapt
to different scenarios, but failed to generate shadows in complex
scenes. For instance, ShadowGAN [52] utilized both global and
local conditional discriminator to enhance the realism of generated
shadows. Liu et al. [25] released the ShadowAR dataset and pro-
posed an attention-guided network for shadow generation. Yan et al.
[16] addressed real-world scenes and generated plausible shadows.
SGDiffusion [26] focused on the shadow generation problem based
on a diffusion model. DMASNet [46] decomposed shadow mask
prediction into box prediction and shape prediction. However, the
shadows generated by these methods are still not accurate enough.

Figure 3: The pipeline of dataset construction. Take back-
ground images and real images under natural sunlight. Block
and relight the foreground object. Finally, obtain the com-
posite image.

.

2.3 Diffusion Model
Diffusion-based generative models recently produced amazing re-
sults with improvements adopted in denoising diffusion probabilis-
tic models [15], which becomes increasingly influential in the field
of low-level vision tasks, such as superresolution [37], inpainting
[28], and colorization [36]. The methods [32, 34, 35] explored differ-
ent modal conditions into the diffusion process, achieving controlla-
bility of the generated content of the generative model. Pallette [36]
was proposed as a general image-to-image framework to solve the
image restoration with conditional denoising diffusion probability
models. The methods [50, 51] were proposed to generate results
towards expectations. However, most of these methods focus on
synthetic degradation, such as image coloring, image restoration,
and super-resolution. In this article, we explore the problem of
foreground harmony and shadow generation in the real world with
limited training pairs. We build our model upon shadowdiffusion
[10] to address the above issues.

3 IH-SG DATASET
Lighting not only results in different color brightnesses of fore-
ground objects but also leads to the generation of corresponding
cast shadows. In this article, we simultaneously focus on the har-
mony of foreground objects and the generation of corresponding
realistic shadows. Therefore, we have constructed a high-quality
real outdoor dataset IH-SG, including composite images 𝐼𝑐 , real
images 𝐼𝑟𝑒𝑎𝑙 , foreground obeject masks 𝑀𝑓 𝑜 , foreground shadow
masks𝑀𝑓 𝑠 , background object masks𝑀𝑏𝑜 and background shadow
masks𝑀𝑏𝑠 .

3.1 Image Collection
We take photos outdoors that meet our requirements, including
background images, real images, and relighting images:

Background images 𝐼𝑏𝑎𝑐𝑘 : Choose optimal weather conditions
and time periods with moderate lighting, avoiding excessively dim
or harsh lighting conditions. Additionally, steer clear of rainy days
or periods around sunrise or sunset, as these times exhibit signif-
icant changes in lighting. Select appropriate shooting angles and
positions, stabilize the camera on a tripod, and control it via a
mobile device to ensure camera stability.

Real images 𝐼𝑟𝑒𝑎𝑙 :Without altering camera parameters, posi-
tions, etc., placing foreground objects and capturing images to be
used as real images in the training set. The camera remains stable

3
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Figure 4: Pipeline of the proposed method. IH-SG Diffusion model includes coarse shadow prediction network (SP) and denoise
network 𝑓𝑡 . Given a disharmonious image, our model can generate a harmonious image with controllable foreground objects
and reasonable cast shadows.

throughout the process, ensuring consistency between background
and real images, thus reducing alignment and correction efforts
during subsequent image synthesis. Rapid placement of foreground
objects generally assumes minimal changes in lighting between
background and real images captured in a short time.

Relighting foreground images 𝐼 𝑖
𝑟𝑒𝑙𝑖𝑔ℎ𝑡

:Without altering the
shooting scene or camera position, we employ appropriately sized
and shaped shading equipment to shade the scene, ensuring that
neither the camera nor the objects are affected. Shading equipment
is utilized to effectively block external light interference. Placing
lights and adjusting their brightness and direction to illuminate fore-
ground objects. Camera parameters such as exposure time, aperture
size, and ISO sensitivity are adjusted based on the actual shooting
environment and lighting conditions to achieve the desired expo-
sure effects. Subsequently, adjust the lighting conditions to capture
different relighted images 𝐼 𝑖

𝑟𝑒𝑙𝑖𝑔ℎ𝑡
, 𝑖 ∈ 𝑁 , where N represents dif-

ferent lighting conditions.

3.2 Image Synthesis
Based on the acquired real images 𝐼𝑟𝑒𝑎𝑙 , background images 𝐼𝑏𝑎𝑐𝑘 ,
and relighting images 𝐼 𝑖

𝑟𝑒𝑙𝑖𝑔ℎ𝑡
, composite images 𝐼𝑐 are obtained.

To obtain refined data, we used Photoshop to obtain corresponding
masks, including foreground object masks𝑀𝑓 𝑜 , foreground shadow
masks𝑀𝑓 𝑠 , background object masks𝑀𝑏𝑜 , and background shadow
masks𝑀𝑏𝑠 . Then, we use the obtained foreground object masks to

extract relighting foreground objects and merge them with back-
ground images to generate composite images:

𝐼𝑐 = 𝐼𝑟𝑒𝑙𝑖𝑔ℎ𝑡 ×𝑀𝑓 𝑜 + 𝐼𝑏𝑎𝑐𝑘 ×
(
1 −𝑀𝑓 𝑜

)
. (1)

Then, 𝐼𝑐 and 𝐼𝑟𝑒𝑎𝑙 form a pair of input composite image and ground-
truth target image. Due to shooting conditions, there may be signifi-
cant differences between the background images and the real images
in the background area. If there are differences in color or brightness,
they could be adjusted using style transfer techniques. Additionally,
some unsuitable images could be filtered out. After that, we ob-
tained tuples in the form of

{
𝐼𝑐 , 𝑀𝑓 𝑜 , 𝑀𝑓 𝑠 , 𝑀𝑏𝑜 , 𝑀𝑏𝑠 , 𝐼𝑟𝑒𝑎𝑙

}
, which

will be used for model training.

4 METHOD
4.1 Problem Definition
The input is a tuple (𝐼𝑐 , 𝑀𝑓 𝑜 ), where 𝐼𝑐 ∈ 𝑅𝐻×𝑊 ×𝐶 , with 𝐻 and𝑊
representing the height and width of image, and𝑀𝑓 𝑜 ∈ 𝑅𝐻×𝑊 ×1.
This model aims to generate foreground object that is consistent
with the background, and to generate reasonable cast shadow.

4.2 Coarse Shadow Predict Module
The coarse shadow prediction module aims to predict cast shadows
for foreground objects, including a background feature extraction
network (BE) and a shadow generation network (SG). The compos-
ite image and foreground object mask are the inputs.

4
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4.2.1 Background Extraction Module. For the shadow gen-
eration task, while complete background information may pro-
vide more details, it does not directly yield reasonable shadows for
image-to-image transformation networks. This is because it may
not adequately focus on crucial areas in the background, such as ob-
jects and their shadow information. Therefore, the BE module can
learn relevant information from the background image to generate
attention maps for reference objects and their shadows.

The module adopts an encoder-decoder network with an atten-
tion mechanism as basic architecture, comprising an encoder and
two decoders. The composite image without foreground object
shadow andforeground object mask are concatenated along the
channel dimension and serve as input to the encoder 𝐸. The ex-
tracted high-level features are fed into two separate branches of
decoders. One decoder 𝐷1 predicts the reference object mask𝑀𝑏𝑜 ,
while the other decoder 𝐷2 predicts the corresponding shadow
mask𝑀𝑏𝑠 :

𝑀𝑏𝑜 = 𝐷1 (𝐸 (𝐼𝑐 )), (2)
𝑀𝑏𝑠 = 𝐷2 (𝐸 (𝐼𝑐 )). (3)

4.2.2 Shadow Generation Module. Given a composite image 𝐼𝑐
without foreground shadow and a foreground object mask𝑀𝑓 𝑜 , this
module aims to generate coarse foreground shadow 𝐼𝑠ℎ𝑎𝑑𝑜𝑤 . The
specific network structure is as follows: Two same encoders, one
decoder, and one special channel-spatial cross-attention mechanism
(CSCA).

Through the BE module, we can identify key areas in the back-
ground image that are beneficial for shadow generation. Inspired by
[16], in order to better utilize the information in the background, we
adopt foreground encoder 𝐸𝐹 and background encoder 𝐸𝐵 , respec-
tively. The foreground encoder 𝐸𝐹 takes the concatenation of the
composite image 𝐼𝑐 and the foreground object mask𝑀𝑓 𝑜 as input,
generating a foreground feature map 𝑋𝑓 . The background encoder
𝐸𝐵 takes the concatenation of 𝐼𝑐 and 𝑀𝑏𝑜𝑠 as input to generate a
background feature map 𝑥𝑏 :

𝑋𝑓 = 𝐸𝐹 (𝐼𝑐 , 𝑀𝑓 𝑜 ), (4)

𝑋𝑏 = 𝐸𝑏 (𝐼𝑐 , (𝑀𝑏𝑜 +𝑀𝑏𝑠 )) . (5)
Taking inspiration from existing attention methods, we introduce
a channel-spatial cross-attention (CSCA) to assist the foreground
feature map 𝑋𝑓 in obtaining relevant reference information from
the background feature map 𝑋𝑏 . Then, the decoder D is used to
predict coarse shadow images for foreground objects:

𝐼𝑠ℎ𝑎𝑑𝑜𝑤 , 𝑀𝑠ℎ𝑎𝑑𝑜𝑤 = 𝐷 (𝐶𝑆𝐶𝐴(𝑋𝑓 , 𝑋𝑏 )) . (6)

4.2.3 Channel-Spatial Cross-AttentionModule. Obtaining rel-
evant illumination information is crucial for generating accurate
foreground shadows. Inspired by previous attention-based methods,
we used a Channel-Spatial Attention Module (CSAM), as shown
inFigure 5, to help the foreground feature map 𝑋𝑓 extract rele-
vant illumination information from the background feature map
𝑋𝑏 . By constructing the relative positional relationship between
reference information and foreground through this module, it effec-
tively guides the generation of foreground shadows in a reasonable
direction.

Channel cross-attention: To project foreground and back-
ground features into a common space, we reshape 𝑋𝑓 ∈ 𝑅𝑊 ×𝐻×𝐶

Figure 5: Channel-Apatial Cross-Attention Module. It in-
cluds channel cross-attention and spatial cross-attention sub-
modules.

.

to 𝑋𝑟
𝑓
∈ 𝑅𝑊𝐻×𝐶 and 𝑋𝑏 ∈ 𝑅𝑊 ×𝐻×𝐶 to 𝑋𝑟

𝑏
∈ 𝑅𝑊𝐻×𝐶 . Then, we

compute the dependencies between any two elements of 𝑋𝑓 and
𝑋𝑏 in the global context:

𝐴 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
(𝑋𝑟

𝑓
)𝑇𝑋𝑟

𝑏

)
. (7)

Using the obtained similarity map A, we incorporate information
from 𝑋𝑟

𝑓
, then reshape it, and obtain the weighted feature map 𝑋𝑏2:

𝑋𝑏2 = 𝑋𝑓 + 𝑟𝑒𝑠ℎ𝑎𝑝𝑒
(
𝑋𝑟
𝑏
𝐴

)
. (8)

Spatial cross-attention: Similar to the channel cross-attention,
we reshape 𝑋𝑓 ∈ 𝑅𝑊 ×𝐻×𝐶 to 𝑋𝑟

𝑓
∈ 𝑅𝑊𝐻×𝐶 and 𝑋𝑏2 ∈ 𝑅𝑊 ×𝐻×𝐶

to 𝑋𝑟
𝑏2 ∈ 𝑅𝑊𝐻×𝐶 . Then compute the similarity between feature

maps:
𝐵 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑋𝑟
𝑓
(𝑋𝑟

𝑏2)
𝑇
)
. (9)

Using the obtained similarity image B, weight 𝑋𝑟
𝑏2, then reshape it

to obtain the weighted feature map 𝑋𝐶𝑆𝐴𝑀 :

𝑋𝐶𝑆𝐴𝑀 = 𝑋𝑏2 + 𝑟𝑒𝑠ℎ𝑎𝑝𝑒
(
𝐵𝑋𝑟

𝑏2

)
. (10)

4.3 Harmony Diffusion Module
Controlling the generation of desired images in a controllable man-
ner poses a challenging task for diffusion models. Especially when
the objective is to obtain harmonious foreground images, it is cru-
cial to ensure that the foreground and background share the same
lighting distribution while preserving the content and structural
information of the foreground objects. With the introduction of
CLIP technology, text-guided diffusion models offer some control-
lable guidance. However, we recognize that images often provide
more information than long texts. Therefore, in this module, we
use compsite images with coarse shadows as conditions to guide
the controllable generation of the diffusion model.

Diffusion model generates an image 𝑥0 by denoising a random
image following a Gaussian distribution 𝑥𝑇 ∼ N(0, I) progressively
closer to the data distribution through multiple denoising steps
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Figure 6: Three testing cases of diferent methods on IH-SG dataset. From left to right are composite images, the results of
our results, DIH-GAN [1], ObjectStitch [42], DucoNet [44] and the SGDiffusion [26], ARshadowGAN [25] and ground truth,
respectively.

𝑥𝑇−1, ..., 𝑥0. Diffusion model is divided into forward diffusion and
inverse denoising phases.
Forward process. To construct training data, the forward process
involves adding noise perturbations to the training image 𝑥0 to
generate noisy data 𝑥1, ..., 𝑥𝑇 :

𝑥𝑡 =
√
𝛼𝑡𝑥0 + (1 − 𝛼𝑡 )𝜖, (11)

with 𝜖 ∼ N(0, I), and 𝛼𝑡 =
∏𝑡

𝑠=0 𝛼𝑠 =
∏𝑡

𝑠=0 (1 − 𝛽𝑠 ).
Reverse process. The reverse process aims to derive the posterior
distribution for the less noisy image 𝑥𝑡−1 given the more noisy
image 𝑥𝑡 using the denoising network 𝑓𝜃 :

𝑝 (𝑥𝑡−1 |𝑥𝑡 , 𝑥0) ∼ N (𝑥𝑡−1; 𝜇𝑡 (𝑥0, 𝑥𝑡 ), 𝜎2
𝑡 I). (12)

In addition to adjusting the lighting effect of foreground objects,
there are also issues with predicting rough shadows in the previous
stage, which require further refinement through the network. We
have observed the following issues:

• The shape of the shadows generated in the previous stage
is unrealistic.

• The lighting of the foreground is inconsistent with the
background image.

We propose a method that uses composite images with coarse
foreground object shadow (y) as conditional guidance to generate
harmonized foreground object with realistic cast shadow. We train
the denoising network 𝑓𝜃 to predict 𝑥0 instead of the noise 𝜖 :

𝑥0,𝑚𝑡−1 = 𝑓𝜃 (𝑥𝑡 , 𝑦,𝑚, 𝑡) . (13)

Following [15], our harmony diffusion model objective function is

L𝑝𝑖𝑥 =


𝑥𝑔𝑡 − 𝑥0



2
2 , (14)

where 𝑥𝑔𝑡 is the real image, m is the predicted foreground object-
shadow mask. Considering that we need to iteratively optimize
the shadow area, we also need to calculate the loss between the

foreground object-shadow mask𝑚𝑓 and the generated foregroung
object-shadow mask𝑚𝑡 for our method :

L𝑚𝑎𝑠𝑘 =


𝑚𝑓 −𝑚𝑡



2
2 . (15)

Therefore, the total loss can be formulated as:

L𝑇𝑜𝑡𝑎𝑙 = 𝐿𝑝𝑖𝑥 + 0.2 × 𝐿𝑚𝑎𝑠𝑘 . (16)

5 EXPERIMENTS
5.1 Experimental Setups
The proposed method is implemented using PyTorch, and training
is performed using two GeForce RTX 3090. The training epoch
is set to 1000. We utilize the Adam optimizer with a momentum
of (0.9, 0.999). The initial learning rate is set to 0.9. Following, we
employ the Kaiming initialization technique to initialize the weights
of the proposedmodel, and use a 0.9999 exponential moving average
(𝐸𝑀𝐴) throughout all experiments. We adopt a U-Net architecture
similar to the denoiser 𝜖𝜃 in [10]. Training is carried out with 200
diffusion steps T and a noise schedule 𝛽𝑡 that linearly increases
from 0.0001 to 0.02, and inference is performed with 200 steps.

5.2 Dataset and Evaluation Metrics
We evaluated the performance of our method on IH-SG for object
harmonization and shadow generation tasks. We resized the input
and ground truth images to a size of 256 × 256 pixels. We calculated
the Root Mean Square Error (RMSE), the Structural Similarity Index
(SSIM) , fMSE, fSSIM for the generated images. And fMSE (resp.,
fSSIM) means MSE (resp., SSIM) within the foreground regions. In
general, smaller values of RMSE and fMSE and larger values of
SSIM and fSSIM indicate better quality of the generated images.

5.3 Comparison with Baselines
We compare with following methods: DIH-GAN [1], ObjectStitch
[42], DucoNet [44], SGDiffusion [26] and ARshadowGAN [25].
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Figure 7: Comparisons on iharmony4 dataset. From left to right are composite images, the results of DucoNet [44], CDTNet [5] ,
our results, and ground truth, respectively.

(a) Input (b) w/o y (c) w/o SP (d) w/o CSCA (e) Full (f) GT

Figure 8: Ablation study results. The pictures fully demon-
strate the effectiveness of image condition (y), coarse shadow
predict module (SP) and channel-spatial cross-attentionmod-
ule (CSCA).

Quantitative comparison. Table 1 reports the comparison re-
sults on IH-SG test set. It can be observed that our method achieves
the best quantitative results across all four evaluation metrics. This
is mainly because existing image harmonization methods strug-
gle to generalize well to outdoor real-world datasets, while exist-
ing shadow generation methods either rely on simple estimations
of foreground shadow masks or directly generate shadows using
learned data distributions. Such inaccurate estimations often lead
to inferior results. In contrast, our method leverages the coarse
shadow prediction module (SP) to effectively utilize background in-
formation, and the harmonization diffusion model can better guide
the lighting editing of inserted objects, refine features, bridge the
lighting gap between inserted objects and background environ-
ments. Additionally, by iteratively refining shadow regions, our
method achieves more realistic shadow effects closer to real images.

Visual comparison.We provide some visual comparison results
in Figure 6. It can be observed that our method not only achieves
lighting variations across different scenes but also achieves the
best visual effects of realistic shadows. Among these competing
methods, for ARShadowGAN, it is difficult to edit object lighting,
and the generated shadows are not accurate in shape and direction.

Table 1: Results of quantitative comparison on our testing
set. "↑" indicates the higher the better, and "↓" indicates the
lower the better. The best results are marked in bold.

Method RMSE ↓ SSIM ↑ fMSE ↓ fSSIM ↑
DucoNet [44] 7.249 0.858 452.65 0.917
DIH-GAN [1] 6.108 0.849 579.12 0.886

ObjectStitch [42] 9.487 0.762 1249.48 0.794
ARshadowGAN [25] 9.146 0.812 977.81 0.807
SGDiffusion [26] 8.727 0.833 868.92 0.811

Ours 5.248 0.923 374.89 0.935

(a) Input (b) 𝑀𝑏𝑜 (c) 𝑀𝑏𝑠 (d) SP result (e) GT

Figure 9: Shadow prediction module. The second and third
columns reflect themodule’s attention to background objects
and their shadows.

On the other hand, SGDiffusion can generate relatively accurate
shadows but still lacks in shape and shadow color accuracy. As for
DucoNet, they fail to generalize well to outdoor real-world datasets.
It aims to achieve visual harmony in images, which does not ef-
fectively address the problem of object shadows. The semantics of
the image generated by the ObjectStitch have changed. In contrast,
DIH-GAN, with its multi-scale attention mechanism and lighting
feature exchange mechanism, can automatically infer object shad-
ows and lighting generation. However, the shadows generated by
this method lack completeness in details. In comparison, our model
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Figure 10: The results on the shadow generation dataset. The
first two rows are images from the shadowAR dataset, and
the last two rows are images from the DESOBAv2 dataset.

can harmonize foreground objects and generate realistic and rea-
sonable cast shadows.

5.4 Ablation Study
We study the impact of image condition y, shadow prediction mod-
ule (SP), and channel-spatial cross-attention (CSCA) mechanism of
our method on test images from IH-SH. The results are shown in
Table 2, Figure 8.

We visualized the coarse shadow predict module in Figure 9. It
can be observed that model can effectively focus on the relevant
areas in the background image, such as background objects and
their shadows, and predict approximately correct shadows.

To demonstrate the effectiveness of image conditions, we re-
moved the guidance from images, denoted as "w/o y". The perfor-
mance of "w/o y" is inferior compared to other models, indicating
that utilizing image-condition guidance better preserves content
structural information.

To investigate the necessity of the coarse shadow prediction
module SP, we removed this module, referred to as "w/o SP". It can
be observed that without the SP module, there is a slight deficiency
in shadow generation, and even the direction may be inaccurate.
The performance of "w/o SP" is inferior to that of the full module,
demonstrating the advantage of extracting background information
and estimating coarse shadow regions.

To demonstrate the effectiveness of the CSCA attention mecha-
nism, the module was removed and replaced with a CAI layer [16],
known as "w/o CSCA". The results are not as good as the entire
model, indicating that this mechanism can help the model generate
more realistic images.

5.5 Discussion
Comparison on iHarmony4 [6] dataset. The results in Figure 7
demonstrate the applicability of our method in image harmoniza-
tion tasks. It can be observed that DucoNet [44] and CDTNet [5]
do not effectively transfer low-level illumination to the foreground,
while our method achieves the best results. Our method can bridge

Table 2: Abletion experiments results. "↑" indicates the higher
the better, and "↓" indicates the lower the better. The best
results are marked in bold.

Method RMSE ↓ SSIM ↑ fMSE ↓ fSSIM ↑
w/o y 9.372 0.669 1027.164 0.811
w/o SP 8.994 0.726 783.271 0.893

w/o CSCA 6.532 0.873 390.661 0.923
Full 5.524 0.915 362.713 0.935

(a) Input (b) Our (c) GT

Figure 11: Failed cases. There are difficulties in generating
non planar cast shadows.

the lighting gap between foreground objects and background envi-
ronments while preserving the structural information of foreground
objects, achieving lighting effects closer to ground truth (GT) im-
ages without changing the structure and detail of the foreground
objects.

Comparison onDESOBAv2 [26] and shadowAR [25] dataset.
We perturbed the foreground objects in the DESOBAv2. As depicted
in Figure 11, the results demonstrate that our method can learn il-
lumination information in the background to generate harmonious
foreground objects and shadows for foreground objects. However, it
is also observed that the generate shadows are somewhat unrealistic
in few cases.

Limitations: As depicted in Figure 11, the proposed method
has been successfully applied to image harmonization and shadow
generation tasks in various environments. However, there are also
some challenges. Firstly, our method faces challenges in generating
non-planar cast shadows. This is because generating non-planar
shadows requires more information, such as object geometry and
environmental depth information, and the shadow generation re-
sults may be affected by mutual object occlusion.

6 CONCLUSION
In this work, we have introduced a diffusion model-based method
to edit the lighting of foreground objects and generate visually
reasonable cast shadows with preserving the structure of the image.
In addition, we have proposed a large-scale high-quality outdoor
real-world dataset IH-SG for image harmonization and shadow
generation tasks. Our future work is to solve the generation of
non-planar cast shadows of foreground objects.
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