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Figure 1: Pipeline of the proposed method. IH-SG Diffusion model includes coarse shadow prediction network (SP) and denoise
network f;. Given a disharmonious image, our model can generate a harmonious image with controllable foreground objects

and reasonable cast shadows.

In this supplementary document, we first provide a detailed struc-
ture of our IH-SGDiffusion network to ensure better understanding
and reproducibility. And in Figure 1, we have made some corrections
to the rough shadow prediction module, as the original foreground
extraction module EF was mistakenly marked as EB. In addition,
we will provide more visual comparison results of different methods
on IH-SG dataset. Our code, trained models, and dataset will be
released upon the acceptance of our manuscript.

1 NETWORK STRUCTURE

The detailed structure of our IH-SG diffusion network is shown in
Table 1. Symbols of the operators are listed as follows:

e Conv(cin, cout, k, s, p):aconvolution operation with
cin input channels, cout output channels, kernel size of k,
stride size of s, and padding p.

e ConvT(cin, cout, k, s, p):atransposed convolution
operation with cin input channels, cout output channels,
kernel size of k, stride size of s, and padding p.

e BN: Batch Normalization.

e RelLU: Rectified Linear Unit, a widely used activation func-
tion in neural networks.

e Resblock: a Residual Block (Resblock), proposed by He et al.
[3], extracts feature maps. Each Residual Block consists of
consecutive operations including convolution (Conv), batch
normalization (BN), and Leaky ReLU activation function.

e Concat: a concatenation operation in the channel dimen-
sion.

Overall, the Background Extraction module can be seen as a
U-shaped network with two shared encoders, so it is not listed
repeatedly. For the shadow generation module, it consists of two
identical encoders and a decoder, as well as a channel space cross
attention mechanism.

2 QUALITATIVE ANALYSIS

We have demonstrated more methods and the light and shadow
editing results of IH-SG Diffusion. As shown in Figure 2. Compared
with other methods, our results are more reasonable, harmonious,
and visually closer to real images.
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Figure 2: Three testing cases of diferent methods on IH-SG dataset. From left to right are composite images, the results of our
results, DIH-GAN [1], PCTNet [2], DucoNet [6] and the SGDiffusion [5], ARshadowGAN [4] and ground truth, respectively.
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233 Table 2: The structure of shadow generation module. Table 1: The structure of background extraction module. 201
234 292
235 Layer name(s) Layer name(s) 293
26 1 Conv(3, 64, 3, 1, 1) + ReLU 1 Conv(4, 64,7, 2, 3) + BN + ReLU + Avgpool 24
237 295
s D1-1 Conv(64, 64, 3,1, 1) + ReLU D1 Resblock + Avgpool ot
239 D1-2 Conv(64, 64, 3, 1, 1) + ReLU + maxpool D2  Resblock + Avgpool 207
240 D2-1 Conv(64, 128, 3,1, 1) + ReLU D3  Resblock + Avgpool 298
:2 D2-2 Conv(128, 128, 3, 1, 1) + ReLU + maxpool D4  Resblock + Avgpool :g
s D3-1 Conv(128, 256, 3, 1, 1) + ReLU M1 Conv(512, 1024, 3,1, 1) .
244 D3-2  Conv(256, 256, 3, 1, 1) + ReLU + maxpool C1  ConvT(1024, 512, 3, 2, 1) 302
245 D4-1 Conv(256, 512, 3,1, 1) + ReLU Ul Concat(D4, C1) + Conv + BN + ReLU 303
e D4-2 Conv(512, 512, 3, 1, 1) + ReLU + maxpool C2  ConvT(512, 256, 3, 2, 1) jO:
i; M1 Conv(512, 1024, 3, 1, 1) U2 Concat(D3, C2) + Conv + BN + ReLU 32;’
249 M2 Conv(1024, 1024, 3, 1, 1) C3 ConvT(256, 128, 3,2, 1) 207
250 U4-1 ConvT(1024, 512, 3,2, 1) U3 Concat(D2, C3) + Conv + BN + ReLU 308
! C1  Concat(U4-1, D4-2) C4  ConvT(128,64,3,2,1) 1‘”
jz U3-1 Conv(1024, 512,3,1,1) + ReLU U4 Concat(D1, C4) + Conv + BN + ReLU 2?
254 U3-2 Conv(512, 512, 3, 1, 1) + ReLU out Conv(64,2,3,1,1) 312
255 U3-3 ConvT(512 256, 3, 2, 1) 313
j: C2 Concat(U3-3, D3'2) [5] Qingyang Liu, Junqi You, Jianting Wang, Xinhao Tao, Bo Zhang, and Li Niu. 2024. ::
: Shadow Generation for Composite Image Using Diffusion model. arXiv preprin e
258 Uz2-1 COHV(512, 256, 3: 25 1) + ReLU arXiv:2403.15Z?;(2024). ) p At ¥ N ¢ preprint 316
2w  U2-2 Conv(256, 256, 3, 1, 1) + ReLU e oninion 13 Dol Coior Spaces. n Frovesdugs of s 315t ARt ntomarionat %V
260 U2-3 COI’IVT(256 128, 3, 2, 1) Conference on Multimedia. 2159-2167. 318
j”i C3 Concat(U2-3, D2-2) i(
ves U1l-1 Conv(256, 128, 3, 2, 1) + ReLU 1
264 U1-2 COI’IV(128, 128, 3, 1, 1) + ReLU 322
265 Ul-3  ConvT(128, 64, 3, 2, 1) 2
- C4  Concat(U1-3, D1-2) o
sos U0-1 Conv(128, 64, 3,1, 1) + ReLU 126
269 U0-2 COHV(64, 64, 3, 1, 1) + ReLU 327
270 out Conv(64, 1,3, 1, 1) 328
271 329
272 330
273 331
274 332
275 333
276 334
277 335
278 336
279 337
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