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ABSTRACT

This work explores the application of quantum annealing to enhance robotic ma-
nipulation systems. Specifically, we aim to theoretically illustrate how QA can be
employed to optimize robotic manipulation tasks. By formulating problems using
either Quadratic Unconstrained Binary Optimization or Ising models, we intro-
duce the Fully Integrated Quantum Annealing for Robotic Manipulation (FIQA-
RM) system. This system utilizes D-Wave’s quantum annealer to effectively ad-
dress complex optimization challenges in robotic manipulation. Our approach
demonstrates the feasibility of optimizing robotic systems using quantum anneal-
ing techniques.

1 INTRODUCTION

Robotic manipulation represents a cornerstone of contemporary robotics research, with substantial
implications for industrial automation, healthcare, and service robotics Billard & Kragic (2019);
Mason (2018); Hägele et al. (2016); Holland et al. (2021); Hussain (2024). Optimization plays
an important role in robotic manipulation, as it involves finding the most efficient ways to execute
tasks under various constraints and uncertainties. Many problems in robotics are inherently NP-
hard, meaning they are computationally intensive and lack efficient solutions that can be found in
polynomial time. Examples of such problems include path planning, task scheduling, and grasp
planning. The NP-hard nature of these problems necessitates the use of advanced optimization
algorithms and heuristics to find approximate solutions within a reasonable timeframe. However,
accurately simulating the manipulation of soft and deformable objects remains an open problem
Almaghout & Klimchik (2024).

Quantum Annealing (QA) Salloum et al. (2024b); Morita & Nishimori (2008); Rajak et al. (2023);
Yarkoni et al. (2022), a quantum computing Karim Eddin et al. (2024); Salloum et al. (2024a); Sal-
loum et al. paradigm that utilizes the principles of quantum mechanics (as shown in Figure 1), offers
promising solutions to the complex optimization problems inherent in robotic manipulation. Quan-
tum annealers, like those developed by D-Wave Systems, can explore vast solution spaces efficiently,
providing optimal configurations for given problems. This capability is particularly advantageous
for robotic manipulation, where rapid and accurate optimization can significantly enhance perfor-
mance.

In this context, the integration of QA into robotic manipulation systems addresses several persis-
tent challenges, including motion planning, manipulator dynamics, and vision processing. QA can
optimize these processes, providing solutions within feasible time frames, leading to substantial
economic benefits, increased productivity, and reduced operational costs.

To the best of the authors’ knowledge, the application of QA in the field of robotics is notably rare,
and there may be no existing work integrating QA into manipulator robotic systems. Moreover,
the recent demonstration by D-Wave Inc. of computational supremacy in quantum simulation King
et al. (2024); D-Wave Systems; The Quantum Insider; Quantum Zeitgeist marks a pivotal milestone
in the realm of quantum computing. Their success in simulating the non-equilibrium dynamics of a
magnetic spin system, particularly through a quantum phase transition, underscores the remarkable
power and efficiency of QA in confronting intricate optimization tasks that elude classical computers
Preskill (2018); Vasseur & Moore (2016); Bauer et al. (2020); Georgescu et al. (2014)

1



Under review as a conference paper at ICOMP 2024

Figure 1: This graph shows the the advantage of quantum annealing over simulated annealing.
Adapted form Sharma & Maharjan (2018)

Figure 2: The FIQA-RM System Architecture

Therefore, our main contribution is to explore the application of QA in the field of robotics. Specif-
ically, we aim to theoretically illustrate how robotic manipulation systems can be optimized using
QA. By achieving either QUBO or Ising formulation, we demonstrate the FIQA-RM System (see
Figure 2), which efficiently solves robotic manipulation problems using D-Wave’s quantum an-
nealer. This approach demonstrates how robotic manipulation systems can be effectively optimized
for QA applications.

The paper structure is as follows: Section 2 presents the QA models for manipulator applications,
covering three case studies: manipulation of deformable linear objects, manipulator dynamics, and
stereo matching. In Section 3, the conclusion and future outlook are provided.
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2 QA MODELS FOR MANIPULATOR APPLICATIONS

QA utilizes the Ising model Kadowaki & Nishimori (1998); Morita & Nishimori (2008); Santoro
et al. (2002); McMahon (2007), which can be represented mathematically as follows:

ĤIsing = −
∑
i

hiσ̂
z
i −

∑
i<j

Jij σ̂
z
i σ̂

z
j (1)

where σ̂z
i are Pauli Z matrices representing the spin variables, hi are local fields, and Jij are coupling

constants between spins. the Hamiltonian for the transverse-field Ising model used in QA:

Ĥ(t) = −A(t)
∑
i

σ̂x
i +B(t)ĤIsing (2)

where A(t) and B(t) are annealing schedules, and σ̂x
i are Pauli X matrices. The time-dependent

Hamiltonian Ĥ(t) interpolates between the initial Hamiltonian and the problem Hamiltonian.

We can further refine this to include the complexities of robotic manipulation by incorporating ad-
ditional terms to the Hamiltonian that model various interaction potentials and constraints. For
example, a more comprehensive Hamiltonian might take the form:

Ĥ(t) = −A(t)
∑
i

σ̂x
i +B(t)

−
∑
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i −

∑
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z
j +

∑
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Kijkσ̂
z
i σ̂

z
j σ̂

z
k +

∑
i

giσ̂
x
i σ̂

z
i


(3)

where Kijk are higher-order interaction terms and gi are additional local field terms that could
represent external constraints or interactions.

In the context of QUBO, the Ising model can be reformulated as:

E(s) = sTQs =
∑
i

Qiisi +
∑
i<j

Qijsisj (4)

where s is a vector of binary variables, and Q is a matrix encoding the problem’s constraints and
interactions. The goal is to find the binary vector s that minimizes the energy function E(s).

Following in this paper, we address three key robotics applications:

2.1 MANIPULATION OF DEFORMABLE LINEAR OBJECTS (DLOS)

The robot controller is formulated as an optimization problem, where the main objective is to min-
imize the error between the current shape and the desired shape, while ensuring the diminishing
rigidity property of the DLO as a constraint. In the work Almaghout et al. (2024), the intermediary
shapes generation (ISG) algorithm takes the initial and desired shapes (each represented as a set of
points), and generates intermediary shapes which can be considered as local desired shapes. Once
these intermediary shapes are generated, the robots guide the DLO from the current shape to the
desired shape through these intermediary ones, but in our work, we will consider form the work
Almaghout et al. (2024) the robots’ motion which is planned as an optimization control problem
(OCP), where the desired displacement of the robot end-effectors is computed to minimize the error
between the current DLO shape and the next intermediary shape, in an iterative manner towards the
desired shape.

Let us consider two robotic arms rigidly grasping a DLO at its two ends. The robots cooperatively
manipulate the DLO on a 2D plane to move it from an initial to a desired shape. The problem is to
design the robots’ controller to guide the DLO towards its desired shape as shown in Figure 3.

This task will be formulated as a QUBO problem by modeling the interactions between the robot
and the deformable object taking into account the DLO physical constraints. The objective is to
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Figure 3: Illustrious of the manipulation of DLO problem. Adapted from Almaghout et al. (2024).

convert the optimization control problem (OCP) for DLO manipulation into a QUBO problem. The
original OCP, which consider that the cable is represented at a set of N points connected by rigid
links, is given by:

min
r

N∑
n=1

∥cκn − cn∥ (5)

subject to:
ċ = Jṙ (6)

|ṙ| ≤ ν (7)

where κ is the next local desired shape, c = [c1, c2, · · · , cN ]T and s = [s1, s2, · · · , sN ]T ∈ R2N

are the vectors of DLO point coordinates and desired shape point coordinates, respectively. For each
n = 1, 2, . . . , N :

cn =

[
cnx
cny

]
and sn =

[
snx
sny

]
The robots’ end-effectors configurations are defined by the vector r = [r1, r2]

T ∈ R6, where for
m = 1, 2:

rm =

[
rmx

rmy

ϕm

]

To transform this OCP (eq 5, 6, and 7) into a QUBO problem, we utilize the Laplace transform
which is a powerful mathematical tool used to convert differential equations into algebraic equations,
simplifying their analysis and solution.

Applying the Laplace transform to both sides of equation 6, we use the property of the Laplace
transform of derivatives:

L{ċ(t)} = sC(s)− c(0) (8)

L{ṙ(t)} = sR(s)− r(0) (9)

Thus, the Laplace-transformed equation becomes:

sC(s)− c(0) = J · (sR(s)− r(0)) (10)

Rearrange to solve for C(s):

sC(s)− c(0) = J · sR(s)− J · r(0) (11)

sC(s) = J · sR(s) + c(0)− J · r(0) (12)

C(s) = JR(s) +
c(0)− Jr(0)

s
(13)
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Here, C(s) and R(s) are the Laplace transforms of c(t) and r(t), respectively. c(0) and r(0) are the
initial conditions of c and r, respectively.

Substituting C(s) into equation 5:

min
R(s)

N∑
n=1

∥∥∥∥JR(s) +
cκn(0)− Jr(0)− cn(0)

s

∥∥∥∥ (14)

For the constraint |ṙ| ≤ ν, applying the Laplace transform yields:
|L{ṙ}| = |sR(s)− r(0)| ≤ ν (15)

To convert the continuous variable r into binary variables, let r be approximated by binary variables
xi:

s ≈
k∑

i=1

2i−1xi (16)

where xi are binary variables (0 or 1), and w is the number of binary variables.

Substituting this approximation (eq 16) into equation 5:

min
R(s)

N∑
n=1

(
J

(
w∑
i=1

2i−1xi

)
+

cκn(0)− Jr(0)− cn(0)

s

)2

(17)

Let:
An = J (18)

Bn =
cκn(0)− Jr(0)− cn(0)

s
(19)

Then the objective function becomes:

Objective =

N∑
n=1

(
An

w∑
i=1

2i−1xi +Bn

)2

(20)

Expanding the objective function:

Objective =

N∑
n=1

A2
n

(
w∑
i=1

2i−1xi

)2

+ 2AnBn

(
w∑
i=1

2i−1xi

)
+B2

n

 (21)

Objective =

N∑
n=1

A2
n

k∑
i=1

k∑
j=1

2i−12j−1xixj + 2AnBn

k∑
i=1

2i−1xi +B2
n

 (22)

The constraint |s
(∑w

i=1 2
i−1xi

)
− r(0)| ≤ ν is transformed into a penalty term. substituting eq 16

in eq 15, the constrained is given as:

Penalty = λ

(
max

(
0,

∣∣∣∣∣s
(

w∑
i=1

2i−1xi

)
− r(0)

∣∣∣∣∣− ν

))2

(23)

Approximate the penalty term as:

Penalty = λ

(s w∑
i=1

2i−1xi − r(0)

)2

− ν2

2

(24)

Combining the objective function and penalty term, we get the final QUBO formulation:

Q =

N∑
n=1

A2
n

w∑
i=1

w∑
j=1

2i−12j−1xixj + 2AnBn

w∑
i=1

2i−1xi +B2
n

+λ

(s w∑
i=1

2i−1xi − r(0)

)2

− ν2

2

(25)

This QUBO formulation is suitable for implementation on the D-Wave quantum annealer, where it
can find the minimum energy configuration.
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2.2 MANIPULATOR DYNAMICS

In this task, we aim to construct the motion equations for manipulators as QUBO problems. This
involves formulating the dynamic constraints and control objectives of the robotic manipulators into
a quadratic binary optimization problem. The QUBO formulation will address the optimization
of motion trajectories and control inputs while adhering to dynamic constraints. The dynamics of
a robotic manipulator, particularly for applications such as a robot inspector traversing a conduc-
tor, can be effectively modeled using the deflection equation of a stretched string, as described in
Bahrami & Abed (2019):

Tu′′(x, t) + f(x, t) = ρu′′(x, t) (26)

In this equation, T signifies the tension force within the string, f(x, t) denotes the linear load, ρ
represents the density, and u(x, t) indicates the deflection, with differentiation taken with respect to
the spatial coordinate x and time t. The force is localized at the specific point x = ξ using the delta
function:

f(x, t) = F (t)δ(x− ξ(t)) (27)

The differential equation solution is derived using the Lagrange equations, which leads to a system
of ordinary differential equations (ODEs):

q′ = w (28)

w′ = M−1(−Cq +Q(t)) (29)

In the eq 28 and eq 29, q and w are the generalized coordinates and velocities, M is the kinetic energy
matrix, C is the potential energy matrix, and Q(t) represents the generalized forces determined from
the principle of virtual work.

To solve these equations using a quantum annealer, we transform them into an Ising model Hamil-
tonian, beginning with a minimization problem Criado & Spannowsky (2022). The domains are
discretized into finite subsets, and the loss function is defined as:

L[f ] =
∑
i

∑
x∈Xi

(Ei(x)[f ])
2 (30)

Here, Xi represents the subsets. The function f is parameterized as a linear combination of basis
functions Φm, and the equations are rewritten as linear functions of the parameters wnm:

Ei(x,w) =
∑
nm

Hin(x)[Φm]wnm +Bi(x) (31)

In this formulation, Bi(x) represents the inhomogeneous terms. The loss function then becomes a
quadratic function of the parameters:

L(w) =
∑

n,m,p,q

wnm

 ∑
i,x∈Xi

Hin(x)[Φm]Hip(x)[Φq]

wpq+
∑
n,m

2
∑

i,x∈Xi

Hin(x)[Φm]Bi(x)

wnm

(32)

The Ising model Hamiltonian H(ŵ) is derived by binary encoding of the weights using spin vari-
ables ŵ(α)nm = ±1:

ŵnm = cnm+ snm

nspin∑
α=1

ŵ(α)nm
2α

(33)
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The solution is obtained by minimizing H on a QA device, and decoding the weights. The accuracy
is improved through an iterative algorithm with a scaling factor S over multiple epochs.

This method involves several hyperparameters that need to be tuned based on the specific problem
and the limitations of the QA device. These parameters, and their typical values, are discussed for
efficiently solving differential equations.

This approach provides a novel way to solve complex differential equations using the computational
power of QA. By transforming the equations into an Ising model Hamiltonian and solving them
on QA devices, we can efficiently address problems that are challenging for classical computing
methods.

2.3 STEREO MATCHING

Stereo matching is a fundamental problem in computer vision aimed at estimating depth by finding
correspondences between pixels in two rectified stereo images Hamid et al. (2022); Hamzah &
Ibrahim (2016). The optimization task involves assigning disparity values to pixels in the left image
Il to minimize an energy function that integrates data fidelity and smoothness constraints.

Given rectified stereo images Il and Ir, each of dimensions n × m, and a disparity set D =
{dmin, dmin + 1, . . . , dmax}, the objective is to minimize the energy function F (w). Here, Q denotes
a pair of index pairs {(i, j), (i′, j′)}, which defines the pairs used in the function δ. The function
F (w) is defined as:

F (w) =
∑

(i,j)∈P

θi,j(wi,j) + λ
∑
Q∈N

δ(wi,j , wi′,j′) (34)

where:

• Data Term θi,j(wi,j):

θi,j(wi,j) = ∥Il(i, j)− Ir(i− wi,j , j)∥ (35)

This term measures the cost of matching pixel intensities between the left and right images,
ensuring that disparities minimize this mismatch.

• Smoothness Term δ(wi,j , wi′,j′):

δ(wi,j , wi′,j′) =

{
0, if wi,j = wi′,j′

1, otherwise
(36)

This term enforces smoothness in disparity values, penalizing inconsistencies between
neighboring pixels. The smoothness parameter λ adjusts the trade-off between data fidelity
and smoothness.

The problem is converted to a QUBO format using binary variables xi,j,d, where xi,j,d is 1 if pixel
(i, j) is assigned disparity d, and 0 otherwise Heidari et al. (2024).

For our use case, we will have to modify the infeasibility penalty - it should be able to serve the
images of an arbitrary size and color scale, never letting the infeasible solutions (for fixed i, j either
zero or more than one xi,j,d are equal to 1) have less cost than feasible ones.

Let k be the number of color channels having integer values in [0, 255] (k = 3 in RGB, k = 1 in
grayscale) and m × n be the image size. P is the set of image pixel coordinates (i, j), N is the set
of unordered adjacent pixel pairs {(i, j), (i′, j′)}, where (i′, j′) ∈ {(i± 1, j), (i, j ± 1)}.

In feasible solutions, data term θi,j(wi,j) can go up to 255k for each pixel, as we consider the
Manhattan distance between [255 ... 255]T and [0 ... 0]T vectors denoting pixel colors. Therefore,
the sum of data terms over an m× n image shall not exceed 255kmn.

The smoothness term considers all the elements of N . In m× n image, |N | = 2mn−m− n, then
the smoothness cost over the image shall not exceed λ(2mn−m− n), leading to the total penalty
in feasible solutions not exceeding 255kmn+ λ(2mn−m− n).
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Then the QUBO model is:

H(x) = (255kmn+ λ(2mn−m− n))
∑

(i,j)∈P

(1−
∑
d∈D

xi,j,d)
2

+
∑

(i,j)∈P

∑
d∈D

θi,j(d) · xi,j,d

+ λ
∑
Q∈N

∑
d∈D

∑
d′∈D

δ(d, d′) · xi,j,d · xi′,j′,d′

(37)

Components:

• Infeasibility Penalty Term:

(255kmn+ λ(2mn−m− n))
∑

(i,j)∈P

(
1−

∑
d∈D

xi,j,d

)2

(38)

This term penalizes the assignment of multiple disparity values to a single pixel. The
scaling factor 255kmn + λ(2mn − m − n) ensures that infeasible solutions are heavily
penalized, maintaining the requirement that each pixel has exactly one disparity value.

• Data Cost Term: ∑
(i,j)∈P

∑
d∈D

θi,j(d) · xi,j,d (39)

Incorporates the pixel matching cost, guiding the optimization to minimize the intensity
differences between corresponding pixels in the stereo images.

• Smoothness Cost Term:

λ
∑
Q∈N

∑
d∈D

∑
d′∈D

δ(d, d′) · xi,j,d · xi′,j′,d′ (40)

Penalizes disparity variations between neighboring pixels, with the penalty size determined
by the smoothness parameter λ. A higher λ promotes larger regions with consistent dispar-
ity values.

Therefore, the D-Wave quantum annealer, by utilizing the QUBO formulation, can effectively find
the optimal solution to the problem by identifying the minimum energy configuration.

3 CONCLUSION & FUTURE WORK

In this work, we have successfully formulated complex robotic manipulation problems as Quadratic
Unconstrained Binary Optimization (QUBO) models. The formulations cover key areas such as ma-
nipulator dynamics, stereo matching, and the handling of deformable linear objects (DLOs). These
QUBO models are designed to leverage the capabilities of QA to address optimization challenges
in robotic systems. Future work will focus on extending this research through extensive experi-
mental validation. We aim to conduct comprehensive experiments to evaluate the effectiveness of
our QUBO formulations in practical scenarios. Additionally, we will compare the performance of
our quantum-optimized models with state-of-the-art classical methods to assess their relative advan-
tages and limitations. This comparison will provide valuable insights into the practical benefits and
potential improvements of QA for robotic manipulation applications.
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