Denoising Diffusion Probabilistic Models for High-Fidelity {MRI
Intrinsic Connectivity Network Data Generation

Abstract— The emergence of diffusion models such as Glide,
Dalle-2, Imagen, and Stable Diffusion marks a significant
breakthrough in generative Al-based image generation. This
paper introduces an rs-fMRI image synthesis framework that
leverages the nonlinear capabilities of denoising diffusion
probabilistic models (DDPMs) to overcome the limitations of
linear methods like independent component analysis (ICA) in
neuroimaging analysis. Unlike ICA, which assumes linearity,
DDPMs capture the intricate and complex patterns inherent
in neuroimaging data. Our approach advances from 2D to
3D representations, providing a comprehensive visualization of
intrinsic connectivity networks (ICNs). This framework also
addresses the challenge of sparse training datasets commonly
encountered in deep learning applications for neuroimaging.
Trained on a large database, our model captures the intricate
variability of different ICNs, generating realistic connectivity
patterns. The proposed method is evaluated quantitatively to
compare the synthesized ICNs against ground truth data. Re-
sults demonstrate that the proposed DDPM-based framework
showcases competitive performance accuracy in reflecting the
true complexity of neural connectivity patterns.

Index Terms: rs-fMRI data, generative modeling, image syn-
thesis, diffusion model.

[. INTRODUCTION

In recent years, deep learning (DL) based methods for
medical image synthesis, such as generative adversarial net-
works (GANSs) [1], have shown remarkable success across
various tasks, including image denoising [2], super-resolution
[3], data augmentation [4], cross-modality image synthesis
[5], and image-to-image translation [6]. However, GANs en-
counter challenges such as mode collapse, training instability,
and a lack of interpretability. To tackle this issue, diffusion-
based generative models [7] were introduced in 2015. These
models gained popularity recently with the emergence of
denoising diffusion probabilistic models (DDPMs) [8] and
latent diffusion models (LDMs) [9]. These alternatives to
GANSs provide higher quality and more diverse synthetic im-
ages by employing U-nets [10] to learn denoising for image
generation. Furthermore, by avoiding adversarial training,
diffusion models also enhance training stability and produce
more realistic images.

In a recent study, DDPM was used to generate 3D brain
structural MRI images, and in a quantitative comparison, it
outperformed a 3D-a-Wasserstein GAN [11]. Another study
employed a conditional latent DDPM for medical image
generation, comparing it with GAN-based models using
images from ophthalmology, radiology, and histopathology.
They showed that DDPMs excelled over GANs in both
precision and diversity [12]. These studies have demonstrated
that DDPMs offer a promising alternative to GANSs in the

field of neuroimaging. In this work, we use DDPMs for high-
quality intrinsic connectivity networks (ICNs) generation. In
our work, ICNs are specific independent components (ICs)
obtained through independent component analysis (ICA)
that have been identified as representing meaningful and
reproducible patterns of functional connectivity within the
brain. Here, we generate 2D and 3D synthetic ICNs using
the proposed model by training on real ICNs obtained
from a pipeline called NeuroMark [13], which leverages an
a spatially constrained ICA model [14]. While ICA is a
powerful method for extracting ICs from neuroimaging data,
using DDPMs offers several distinct advantages. DDPMs
can generate many synthetic ICNs, which is valuable for
augmenting limited datasets. This is particularly useful in
neuroimaging, where acquiring new data can be expensive
and time-consuming. DDPMs can be used to generate ICNs
with controlled variability, allowing researchers to create
datasets with specific characteristics or test hypotheses un-
der various conditions. Moreover, DDPMs can effectively
denoise data, potentially improving the quality of the ICNs
generated compared to direct ICA results, which may still
contain residual noise and artifacts. Finally, DDPMs are
nonlinear models, whereas ICA assumes linearity. This non-
linearity allows DDPMs to capture more complex patterns in
neuroimaging data that linear methods like ICA might miss.

II. METHODS
A. Data

The neuroimaging training dataset for this analysis was
acquired from the UK Biobank database. It comprised 30,000
participants who had undergone rs-fMRI scanning using 3
Tesla Siemens Skyra scanners with 32-channel head coils.
Preprocessing steps for the rs-fMRI data included motion
correction with MCFLIRT, grand-mean intensity normal-
ization, high-pass temporal filtering, and geometric correc-
tions using FSL’s Topup tool. Additionally, EPI unwarping
and gradient distortion correction were applied. Artifacts
were eliminated using ICA and FMRIB’s ICA-based X-
noiseifier, and the data were standardized to an MNI EPI
template, followed by Gaussian smoothing with a 6mm
FWHM. Subsequently, the NeuroMark ICA process was
applied to the 4D-preprocessed rs-fMRI data, utilizing the
Neuromark_fMRI_1.0 template with 53 intrinsic connec-
tivity networks (ICNs) derived from multiple blind ICA
decompositions. These 53 ICNs were categorized into seven
domains: subcortical (SC: 5 ICNs), auditory (AUD: 2 ICNs),
sensorimotor (SM: 9 ICNs), visual (VIS: 9 ICNs), cognitive
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Fig. 1: Modified U-Net architecture of the DDPM model. This architecture has been tailored to enhance the model’s ability
to effectively add and remove noise from images across multiple scales, leveraging the U-Net’s strengths in capturing fine

details and broader contextual information simultaneously.

control (CC: 17 ICNs), default mode (DM: 7 ICNs), and
cerebellar (CB: 4 ICNs). Six different ICNs were employed
for training the proposed model.

B. Denoising Diffusion Probabilistic Model

DDPMs form the foundation of current diffusion models in
the field of generative Al. These models operate through two
main steps: the forward noising process and the backward
denoising process. In the forward noising process, DDPMs
employ a Markov chain model with a predefined number
of time steps, denoted as 7. During each step, noise is
incrementally introduced to the input image, starting at t = 0
and proceeding until ¢ = T'. The objective of this process
is to transform the image into pure Gaussian noise by the
final time step 7. This transformation is governed by a
noising function, represented by the conditional distribution
q(x¢|x¢—1), which determines the noise addition at each step
based on the image from the preceding time step. Noise
schedulers are utilized to regulate the amount of noise added
at each step.

The goal is to develop a generative model that can predict
the noise added to an image at a specific timestamp. This
is achieved through the concept of the backward process,
utilizing the conditional distribution function p(x¢—1|x¢).
Directly modeling this function is impractical due to the
vast number of possible images x;_; for a given x;. Conse-
quently, neural networks are employed for estimation, mod-
ifying the function to pg(x;—1|x¢,t) where 0 represents the
network parameters. For this purpose, a U-Net architecture
is employed, as illustrated in Fig.1.

The modified U-Net architecture comprises three down-
sampling parts, where each part typically includes a con-
volutional layer followed by a max-pooling operation, re-
ducing the feature maps’ spatial dimensions. The central
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Fig. 2: Graphical model illustrating the DDPMs. This model
depicts the process of gradually adding noise to an image and
then reversing this process to denoise the image, effectively
learning to generate high-quality images from random noise.

bottleneck consists of multiple convolutional layers, reducing
the number of feature maps. Following the bottleneck, there
are three up-sampling steps, each consisting of a transposed
convolutional layer, followed by concatenation with feature
maps from the corresponding down-sampling step. Thus, the
model takes as input the image at time ¢ and the timestep ¢
and outputs the noise present in the image, as illustrated in
Fig. 2. The model effectively captures spatial dependencies
in the data and learns to predict the noise distribution based
on both the current image and the timestep.

ITII. RESULTS

The proposed model was initially utilized to generate
2D representations of ICNs. Subsequently, the model was
adapted and extended to produce 3D ICNs. This progression
from 2D to 3D generation allowed for a more comprehensive
and detailed visualization of ICNs, capturing their spatial
complexity and differences in their functional characteristics.
The single-subject rs-fMRI data generates 53 ICNs through
ICA each of them belonging to different functional domains.
The dataset used for training the model was sourced from
the UK Biobank and comprised data from 10,000 subjects.
Before training, we performed preprocessing steps such

I = Downsample convolution



as normalization and background removal. Leveraging this
large and diverse dataset, the model effectively captured
variability across different networks, learning to generate
realistic images that reflect the complex patterns of brain
activity observed in each ICN.
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Fig. 3: Comparison of ICA, Progressive GANs and 2D-
DDPM generated ICN images. The figure illustrates the
accuracy and realism of the 2D-DDPM model in replicating
the ICNs, highlighting the SM, VIS, CC, and DM domains.

The ICN images generated using DDPMs are compared
with ICNs obtained from ICA, as illustrated in Fig. 3. While
ICA is a linear method primarily designed for blind source
separation, DDPMs are advanced nonlinear generative mod-
els. The comparison between them was done to highlight the
specific strengths of DDPMs in capturing complex, nonlinear
relationships within the data, which ICA may not fully ad-
dress due to its linear nature. This also demonstrates the abil-
ity of DDPMs to generate more realistic and representative
ICNss that better reflect underlying brain dynamics. Addition-
ally, the model was compared with Progressive GANs [15]
, which, despite also being a nonlinear approach, resulted in
inconsistent structural patterns in the generated ICNs. These
likely occurred due to the challenges Progressive GANs face
with mode collapse and instability during training. Unlike
DDPMs, which employ a gradual noise addition and removal
process that enhances stability and coverage of the data
distribution, Progressive GANs struggle to accurately capture
the complex variability inherent in ICNs. Furthermore, we
extended our approach by training 3D-DDPMs on ICNs
specifically from the Sensorimotor and Visual domains,
as shown in Fig. 4. These 3D models were designed to
capture the intricate three-dimensional spatial patterns of
brain activity, providing a more detailed and comprehensive

visualization of the connectivity networks. An assessment of
the reconstruction quality of the 3D-DDPMs was performed
through a numerical evaluation, utilizing metrics such as
MS-SSIM (Multiscale Structural Similarity Index Measure),
MSE (Mean Square Error), and PSNR (Peak Signal-to-
Noise Ratio). They are standard metrics used in literature
for assessing image quality, measuring structural similarity,
and quantifying reconstruction error, respectively. MS-SSIM
measures image similarity across various scales, encompass-
ing luminance, contrast, and structure, with values ranging
from -1 to 1. A score of 1 represents perfect similarity, while
-1 indicates perfect dissimilarity. Hence it is crucial to ensure
that the generated ICNs maintain the intricate structures of
neuroimaging data. MSE and PSNR provide insights into the
generated images’ pixel-wise accuracy and signal fidelity.
Together, these metrics offer a comprehensive evaluation
of both the visual quality and quantitative accuracy of the

generated ICNs.
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Fig. 4: Comparison between ICNs obtained from ICA and
those generated by the 3D-DDPM model.

The study evaluates the model using both the UK Biobank
and an independent dataset, specifically the Human Connec-
tome Project (HCP) dataset[16], across all 53 ICNs. This
approach helps mitigate the risk of overfitting associated with
the complexity of DDPMs and ensures the generalizability
of the findings to other datasets. After cross-validation with
the UK Biobank dataset, the mean MS-SSIM was found to
be 0.74, the mean MSE was 0.001, and the mean PSNR
was 26.37. For the HCP dataset, the mean MS-SSIM was
0.72, the mean MSE remained 0.001, and the mean PSNR
was 28.74. The results show that the model performs com-



petitively on the HCP dataset, similar to its performance on
the UK Biobank data, indicating that the model generalizes
effectively.

Moreover, Fig. 5 depicts pixel-wise variance heatmaps
derived from generated images. These heatmaps provide a
visual representation of the variability in pixel values across
50 samples generated by the DDPM. High variance areas
are indicated by cooler colors, exhibiting greater variability
in pixel values across the generated images. Conversely, low
variance areas are indicated by warmer colors, suggesting
more consistent pixel values across the generated samples.
In the heatmaps corresponding to the three different ICNs,
the variance values range from 0.001 to 0.008. The narrow
range of variance indicates relatively low variability in pixel
values across the generated images, implying that the diffu-
sion model consistently generates images with similar pixel
values. Additionally, low variance in pixel values is also
indicative of high-quality image generation. While this work
currently uses only a few ICNs, it can be extended to all 53
ICNs to further demonstrate the model’s versatility and ro-
bustness in generating accurate and realistic representations
of brain connectivity networks.
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Fig. 5: Pixel-wise variance heatmap of three distinct gen-
erated ICNs. This heatmap highlights regions of high and
low variability, with black/red indicating low variance and
yellow/white indicating higher variability.

IV. CONCLUSION

In conclusion, DDPMs offer a promising approach in the
field of generative modeling in neuroimaging. By model-
ing the underlying probability distribution of data, DDPMs
provide a powerful framework for generating high-quality
samples. One of the key advantages of DDPMs is their
versatility across dimensions, making them suitable for
various types of data. This flexibility allows DDPMs to
capture complex nonlinear dependencies in the data and
generate realistic samples in different domains. The quantita-
tive evaluation using various metrics also demonstrated the
reconstruction capability of the DDPMs. However, scaling
from 2D to 3D image generation using DDPMs presents
significant computational challenges due to the increased
data volume and complexity. Handling 3D data requires
more memory, processing power, and sophisticated opera-
tions, leading to higher computational overhead. To address
these challenges, strategies such as employing efficient 3D
convolutional operations and utilizing distributed computing
across multiple GPUs were implemented. These approaches
collectively reduced the computational burden, making 3D
generation more feasible and efficient. In future work, we

will focus on subject-specific ICN generation using condi-
tional DDPMs. This approach aims to generate personalized
ICNs by conditioning the model on rs-fMRI data, allowing
for a more tailored and individualized understanding of brain
connectivity.
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