
Fixed-Distance Hamiltonian Monte Carlo
Supplementary Material

Hadi Mohasel Afshar
CSIRO’s Data61

Eveleigh, NSW 2015, Australia
Hadi.Afshar@data61.csiro.au

Sally Cripps
CSIRO’s Data61 & The University of Sydney

Eveleigh, NSW 2015, Australia
Sally.Cripps@data61.csiro.au

In Section 1, we further clarify what we mean (and what we do not mean) by the terms bias and
reversibility to prevent any confusion or misunderstanding.

In Section 2, we present a formal proof for the reversibility of the FDHMC-Leapfrogs.

In Section 3, we present the algorithms which we have used to tune the FDHMC’s hyper-parameters.

In Section 4, we study the sensitivity of the performance of FDHMC with respect to the chosen
fixed-distance hyper-parameter. We also study the performance of the presented tuning algorithm in
finding a reasonable fixed-distance value.

Finally, in Section 5, we plot samples drawn from FDHMC as well as 3 existing static/dynamic HMC
algorithms on a multimodal distribution.

1 Clarifying the terminology

Different communities use different terminologies and this, in cases, may cause misunderstandings.
In the main paper, we have already defined and used the terms: (a) biased/unbiased sampling, in the
sense they are usually used by the Machine Learning community, and (b) reversibility, in the sense it
is often used in the context of the Hamiltonian Monte Carlo sampling (Neal, 2011).

However, these terms have other meanings in different contexts. To resolve any possible confusion,
here we explain exactly in what sense we use these terms and in what sense we do not:

Biased/unbiased sampling (Sense 1). An MCMC sampling algorithm is unbiased if the chain,
{q(c)}Nc=1, of samples that it generates, converges to the target, (say, πQ(q)), in distribution. That is,
when the length of the MCMC chain tends to infinity, N →∞, then the number of samples that are
within any subset, A, of the probability space is proportional to the target probability mass associated
with that subset,

∫
A πQ(q)dq. If this condition does not hold, then we say that the sampler is biased

i.e. does not converge to the target distribution.

This is the terminology that we have used throughout the paper. However the statisticians often use
the term bias in another sense:

Biased/unbiased estimation (Sense 2). If the difference between an estimated expected value and
the true value of the parameter that is being estimated is 0, then the estimator is unbiased otherwise it
is biased.

Clearly if a sampler is unbiased in Sense 1 then it is also unbiased in Sense 2 as well, but the opposite
does not always hold. In this paper, we have not used the term bias in Sense 2.

Reversibility (of a deterministic mapping) (Sense 1). A deterministic transformation, F , is called
reversible if it is a diffeomorphism i.e. a differentiable mapping that is the inverse of itself:

F(x) = x′, if and only if, F(x′) = x. (Reversibility condition) (1)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



In the literature of the Hamiltonian Monte Carlo sampling, reversibility (of dynamics) is often defined
as above (Neal, 2011) and throughout the present paper, the term reversibility is exclusively used in
this sense.

Reversibility (of a Markov Chain) (Sense 2). A Markov chain is called reversible or time reversible
if it satisfies the detailed balance condition:

πQ(q)P (q→ q′) = πQ(q′)P (q′ → q), ∀q,q′

where P (q→ q′) is the transition kernel probability density from state q to state q′.

The reversibility of the mapping, F , that is used in an RJMCMC sampler (Sense 1) is required for the
detailed balance condition of the MCMC chain (i.e. reversibility in Sense 2). However, to avoid any
ambiguity we have not used the term reversibility in its second sense.

2 Proof of the reversibility of the Fixed-distance Leapfrog Mechanism
(FD-Leapfrogs)

Here is the FD-Leapfrogs algorithm (as presented in the main paper):

FD-Leapfrogs. Given the leapfrog step-size, ϵ, and the total evolution distance, D, as hyper-
parameters, and an input vector, (q,p := p[0], τ) where q ∼ πQ(q) (on Rn), p ∼ πP(p) (on Rn),
and τ ∼ Unif(0, ϵ), FD-Leapfrogs, F : R2n+1 → R2n+1, maps (q,p, τ) to (q′,p′, τ ′) as follows:

1. Initial position τ -step: Evolve the position, q, for time τ with fixed momentum, p.

q[1] := q+ τp (2)

2. Initial momentum full-step:

p[1] := p− ϵ∇U(q[1]) (3)

3. Interchanged position and momentum full-steps: For i = 2, . . . , k, update the position and
momentum vectors interchangeably as follows:

q[i] := q[i−1] + ϵp[i−1] (4) p[i] := p[i−1] − ϵ∇U(q[i]) (5)

where k is the maximum number of leapfrogs such that the total traversed distance does not exceed
D:

d[k](q,p, τ) ≤ D < d[k+1](q,p, τ), (6)

with,

d[j](q,p, τ) := τ∥p∥+
j−1∑
i=1

ϵ∥p[i]∥, ∀j ∈ N. (7)

4. Final position τ ′-step: With momentum p[k], the remaining distance,

d := D− d[k](q,p, τ), (8)

is traversed in time,

τ ′ :=
d

∥p[k]∥
, (9)

to reach the final position state, q′,

q′ := q[k] + τ ′p[k]. (10)

As such, the fixed traversed distance, D, is equal to:

D = d[k](q,p, τ) + d , by (8)

= d[k](q,p, τ) + τ ′∥p[k]∥ , by (9)

= τ∥p∥+
k−1∑
i=1

ϵ∥p[i]∥+ τ ′∥p[k]∥ , by (7) (11)

2



(a)

A phase state
(q,p)

q

p

Position τ -step
q[1] ← q + τp

t = τq

p

p

q[1]

Momentum full-step
p[1] ← p − ϵ∇U(q[1])

−ϵ∇U(q[1])

p[1]

p

Position full-step
q[2] ← q[1] + ϵp[1]

p[1]

p[1]

q[2]

(b)

t = τ q′

t = τ ′

q

p

p[5] = −p′

p[1]

p[2] p[3]

p[4]

q[1]

q[2]

q[3]
q[4]

q[5]

q[k+1]

(c)

p′[2]

p′[1]

t = τ
q′

t = τ ′

p′[5] = −p

p′

q′[5]

q′[1]

q

Figure 1: Reversibility of FD-leapfrogs: (a) The first 3 steps of FD-leapfrog mechanism. (b) FD-
leapfrogs map (q,p, τ) to (q′,p′, τ ′). (c) FD-leapfrogs map (q′,p′, τ ′) back to (q,p, τ).

5. Negating the final momentum: (q′,p′, τ ′) is returned as F(q,p, τ), where:

p′ := −p[k] (12)

Lemma. Fixed-distance Leapfrog Mechanism (FD-Leapfrogs) is reversible.

Proof. We should show that F(q′,p′, τ ′) = (q,p, τ). Firstly, we show that for i = 1, . . . , k − 1:

q′[i] = q[k+1−i], p′[i] = −p[k−i]. (13)
The proof is by mathematical induction. The base case is established for (i = 1):

q′[1] (2)
= q′ + τ ′p′ (12)

= q′ − τ ′p[k] (10)
= q[k], (14)

p′[1] (3)
= p′ − ϵ∇U(q′[1])

(12),(14)
= −p[k] − ϵ∇U(q[k])

(5)
= −p[k−1]. (15)

In the induction step, we assume that (13) holds for i, and show that q′[i+1] = q[k−i] and p′[i+1] =
−p[k−i−1]:

q′[i+1] (4)
= q′[i] + ϵp′[i] (13)

= q[k+1−i] − ϵp[k−i] (4)
= q[k−i], (16)

p′[i+1] (5)
= p′[i] − ϵ∇U(q′[i+1])

(13), (16)
= −p[k−i] − ϵ∇U(q[k−i])

(5)
= −p[k−i−1]. (17)

Therefore, by following the (backward) interchanged full-steps, we revisit all the forward states in
the reversed order till we reach:

q′[k] = q[1], p′[k] = −p[0] := −p. (18)

The interchanged full-steps terminates at the state (q′[k],p′[k]) (i.e. the (backward) termination
condition (6) is satisfied at k′ = k).

The reason is that,

D
(11)
= τ∥p∥+

k−1∑
i=1

ϵ∥p[i]∥+ τ ′∥p[k]∥ = τ∥p′[k]∥+
k−1∑
i=1

ϵ∥p′[i]∥+ τ ′∥p′∥, by (18), (13) & (12)

(7)
= τ∥p′[k]∥+ dk(q′,p′, τ ′) < dk+1(q′,p′, τ ′), since τ < ϵ.

As such, according to (9), the final position τ ′′-step is carried out for the duration τ ′′ := τ∥p′[k]∥
∥p′[k]∥ = τ ,

Therefore, by (10) and (18), it ends in q′′ := q′[k] + τ ′′p′[k] = q[1] − τp = q. Finally by negating
the final momentum, (q′′ := q,p′′ := p, τ ′′ := τ) is returned. □

3



Algorithm 1: FDHMC-GIVEN-STEPSIZE-AND-DISTANCE
(
q(c), U, ϵ,D

)
Input: q(c), current state ∈ X ⊂ Rn;

U : X → R, Potential energy function (neg log of the target density, πQ);
ϵ ∈ R, leapfrog step-size;
D ∈ R, total evolution distance.

▷ The following line is equivalent to: p(c) ∼ πP(p) ∝ ∥p∥ exp(− ∥p∥2
2

)

s ∼ N (0n, In×n); m ∼ χ(m;n+ 1); p(c) ← m · s
∥s∥ ▷ where χ(m;n+ 1) ∝ mn exp(−m2/2)

τ (c) ∼ Unif(0, ϵ) ▷ duration of the initial fixed-momentum evolution
q← q(c) + τ (c) · p(c) ▷ initial evolution of the position vector for time τ (c)

d = D− τ (c) · ∥p(c)∥ ▷ This is the remaining distance
p← p(c) − ϵ∇U(q) ▷ initial evolution of the momentum vector for time ϵ

▷ while a position full-step evolution is possible without exceeding the remaining distance, d:
while ϵ · ∥p∥ < d do

q← q+ ϵ · p ▷ position full-step
d← d− ϵ · ∥p∥ ▷ update the remaining distance
p← p− ϵ∇U(q) ▷ momentum full step

τ (p) ← d
∥p∥ ; q(p) ← q+ τ (p) · p; p(p) ← −p; ▷ constructing the final proposal

α← min
{
1, exp

(
U(q(c)) + ∥p(c)∥2/2− U(q(p))− ∥p(p)∥2/2

)}
▷ acceptance probability

if u ∼ Unif(0, 1) < α then return
(
q(p), α

)
else return

(
q(c), α

)

3 Automated Tuning of the Fixed-Distance Hamiltonian Monte Carlo
(FDHMC)

In this section we present algorithms to automatically tune the hyper-parameters of the FDHMC
algorithm, i.e. the leapfrog step-size, ϵ, and the fixed evolution distance, D. The same automated
tuning is used in all the experiments that are presented in the main text.

Basic FDHMC. Algorithm 1, is the same FDHMC algorithm that is presented in the main text, except
that here,

• The acceptance probability is computed in terms of the Hamiltonians,

α = min{1, exp(H(c) −H(p))}

= min

{
1, exp

(
U(q(c)) +

∥p(c)∥2

2
− U(q(p))− ∥p

(p)∥2

2

)}
,

rather than the direct form. This is recommended since the logarithmic computations lead to
more numerical stability.

• The hyper-parameters, ϵ and D, are passed as (extra) inputs and the acceptance probability,
α, is returned as the second output. These minor modifications are required so that we can
use this algorithm as a module inside Algorithms 2 and 4 to tune the hyper-parameters.

Tuning the leapfrog step-size. Algorithm 2 tunes the FDHMC leapfrog step-size, ϵ, by dual
averaging (Nesterov, 2009; Hoffman and Gelman, 2014). The input values of this Algorithm are:
(a) an initial MCMC state, q(0), (b) the target potential energy function, (c) an initial leapfrog
step-size, ϵ0, and (d) the fixed evolution distance, D. In this Algorithm, we set the hyper-parameter
µ = log(ϵ0) and the other hyper-parameters, i.e. log ϵ0, H0, γ and κ are set to the values proposed
by Hoffman and Gelman (2014). We have not tried other configurations since the performance of the
dual-averaging algorithm with the above choice of hyper-parameters already seemed satisfactory on
all our experimental models.

Finding an initial step-size. Algorithm 3 shows the heuristic by which we choose the initial
step-size, ϵ0: We firstly choose a step-size ϵ∗ = 1 and then repeatedly double or halve the value of ϵ∗

4



Algorithm 2: TUNE-FDHMC-LEAPFROGSTEP
(
q(c), U, ϵ,D

)
Input: q(0) ∈ Rn, initial state;

U : Rn → R, Potential energy function (−log of the target density, πQ);
ϵ0 ∈ R, initial leapfrog step-size;
D ∈ R, total evolution distance.

Hyper-parameters: M adapt = 200, no. samples based on which the leapfrog step-size is tuned;
δ = 0.65, target mean proposal acceptance probability;
µ = log(ϵ0); log ϵ = 0; H̄ = 0; γ = 0.05; t0 = 10; κ = 0.75.

ϵ← ϵ0; q← q(0)

for m = 1 to M adapt do
(q, α)← FDHMC-GIVEN-STEPSIZE-AND-DISTANCE (q, U, ϵ,D)

H̄ ←
(
1− 1

m+t0

)
H̄ + 1

m+t0
(δ − α)

ϵ← exp
(
µ−

√
m
γ H̄

)
log ϵ← m−κ log(ϵ) + (1−m−κ) log ϵ

return exp(log ϵ)

Algorithm 3: LARGEEPSILON (q, U, m̄)

Input: q ∈ Rn, a state;
U : Rn → R, Potential energy function (−log of the target density, πQ);
m̄, momentum magnitude.

s ∼ N (0n, In×n); p← m̄ · s
∥s∥

ϵ← 1
(q′,p′)← LEAPFROG(q,p, ϵ)

if exp
(
U(q) + ∥p∥2/2− U(q′)− ∥p′∥2/2

)
> 0.5 then a← 1 else a← −1

while
[
exp

(
U(q) + ∥p∥2/2− U(q′)− ∥p′∥2/2

)]a
> 2−a do

ϵ← 2aϵ
(q′,p′)← LEAPFROG(q,p, ϵ)

return ϵ

LEAPFROG(q,p, ϵ) :
p∗ ← p− ϵ

2∇U(q); q′ ← q+ ϵp∗; p′ ← p∗ − ϵ
2∇U(q′)

return (q′,p′)

till the acceptance probability of the Langevin proposal (i.e. a single HMC leapfrog step with random
momentum) crosses 0.5.

This is similar to the heuristic suggested by Hoffman and Gelman (2014) except that we further
stabilise the outcome by choosing a momentum which has an average magnitude. That is, m̄ =
Em∼χ(n+1)(m) =

√
2Γ(n/2 + 1)/Γ((n+ 1)/2).1

Choosing the evolution distance. In Algorithm 4, the fixed distance is also set automatically. This
leads to an FDHMC sampler where no manual hyper-parameter tuning is required.

The proposed tuning method is based on the following heuristic:

1This fraction can be further simplified for even and odd values of n but this is not necessary because the
mean value of a Chi distribution can simply be obtained from the existing libraries e.g. in Python:

m̄ = scipy.stats.chi.stats(df=n + 1, moments=’m’).

5



Algorithm 4: AUTO-TUNED-FDHMC
(
q(0), U,N

)
Input: q(0) ∈ Rn, initial state;

U : Rn → R, Potential energy function (−log of the target density, πQ);
N ∈ R, no. samples to be returned.

Hyper-parameters: N adapt = 500, no. samples by which the fixed distance, D, is tuned;
c = 10, a hyper-parameter for choosing a sufficiently large distance.

▷ I. Tuning FDHMC’s fixed distance and leapfrog step-size:

m̄←
√
2
Γ(n

2 +1)
Γ(n+1

2 )
▷ expected momentum magnitude: Em∼χ(n+1)(m)

ϵ∗ ← LARGEEPSILON(q(0), U, m̄) ▷ sufficiently large but reasonable initial step-size
D∗ ← c · m̄ · ϵ∗ ▷ sufficiently large distance

▷ Tune the leapfrog step-size of an auxiliary FDHMC sampler associated with fixed distance D∗:
ϵ1 ← TUNE-FDHMC-LEAPFROGSTEP(q(0), U, ϵ∗,D∗)

dsum ← 0 ▷ to compute the total distance between N adapt successive samples
for i = 1 to N adapt do

(q,−)← FDHMC-GIVEN-STEPSIZE-AND-DISTANCE
(
q(0), U, ϵ1,D

∗)
dsum ← dsum + ∥q− q(0)∥
q(0) ← q

D← dsum

N adapt ▷ final tuned fixed-distance
ϵ← TUNE-FDHMC-LEAPFROGSTEP(q, U, ϵ1,D) ▷ final tuned leapfrog step-size

▷ II. Drawing N Samples:
for i = 1 to N do

(q(i),−)← FDHMC-GIVEN-STEPSIZE-AND-DISTANCE
(
q(i−1), U, ϵ,D

)
return q(1), . . . ,q(N)

If D is sufficiently large, its correlation with the expected distance of the successive samples,
E[∥q(i) − q(i−1)∥], is low. In this case, the latter value, E[∥q(i) − q(i−1)∥], depends more on the
geometry of the target density function, πQ(q).

As such, in Algorithm 4

1. An auxiliary FDHMC sampler is build that is associated with a sufficiently large fixed-
distance:

D∗ = 10 · m̄ · ϵ∗,
where m̄ is the expected FDHMC momentum magnitude and ϵ∗ is a large step-size that is
determined by Algorithm 3.

2. N adapt = 500 samples, q(i), are drawn from the auxiliary sampler to approximate the
expected distance between the successive samples. We set the tuned fixed-distance, D, to
this value:

D← E[∥q(i) − q(i−1)∥] ≈
N adapt∑
i=1

∥q(i) − q(i−1)∥/(N adapt).

3. Having the final fixed-distance, D, we also tune the step-size, ϵ by Algorithm 2.

Comparison with static and dynamic variations of HMC. For tuning FDHMC, in total we take 900
samples (200 samples to tune the step-size of the auxiliary sampler by dual averaging, N adapt = 500
samples to choose the final D and another 200 samples to tune the final step-size). For tuning static
HMC and the two variations of NUTS (i.e. Dyanamic Slice HMC (DSHMC) and and Dynamic
Multinomial HMC (DMHMC)) by dual averaging, we take 200 samples. Note that the time and
computation resources that are spent on tuning FDHMC is less than time/computation required to
tune NUTS samplers because drawing an FDHMC sample is in average much faster.

On each model and for each algorithm we run 50 separate MCMC chains that after an initial 200
burn-in draws, return 1000 samples (50,000 in total).

6



Model dim Tuned fixed distance

MVN 10 2.57052 ± 0.12061
MVN 30 2.29134 ± 0.04483
MVN 100 2.22110 ± 0.00386
MVN 300 2.03197 ± 0.00308
FNNL 5 3.97946 ± 0.35447
FNNL 10 4.77171 ± 0.39750
FNNL 50 5.07557 ± 0.43943
FNNL 100 5.43784 ± 0.83692
AusCr 15 4.51966 ± 0.46677
SPECT 23 6.50499 ± 0.18321
GrCr 25 0.80260 ± 0.01084

Table 1: Expected value of the parameter D and ±95% confidence interval that is tuned by running
Algorithm 4 on 50 MCMC chains.

The approximation of the Effective sample size (ESS) is based on the details suggested by Hoffman
and Gelman (2014). (a) For each dimension i = 1, . . . , n, the univariate ESS that is associated with
function f = qi is approximated and the minimum of these n values is returned. (b) The estimate
of the auto-correlation spectrum is truncated when the auto-correlations first dip below 0.05. (c) To
estimate the true means and variances of qi, we rely on an extra chain of 500,000 reference samples.
In the case of MVN and FNNL models, the reference samples are directly drawn from the model. In
the case of the three Bayesian Logistic Regression models, direct sampling is not possible and the
estimation is based on a separate chain of 500,000 FDHMC samples.

4 Quantitative Analysis

In this section we study the sensitivity of the performance of FDHMC to the fixed-distance parameter,
D, as well as the effectiveness of the proposed heuristic algorithm in tuning this parameter.

4.1 ESS/gradient versus fixed-distance

We repeat the experiments of the main text but instead of automated tuning, we set D to a value in
{1, 2, 3, 4, 5, 6, 7, 8}. For each configuration we run multiple independent MCMC chains.2

For each chain, the step-size is tuned by dual averaging as before (using Algorithm 2 with M adapt =
200 samples) and ESS per gradient is approximated based on 1000 samples. The resulting ESS per
gradient versus the chosen fixed-distance is plotted in Figure 2. In these plots, each circle represents
an MCMC chain. It can be seen that the sensitivity of performance to D as well as the range of its
optimal choices varies significantly and is model dependent.

4.2 Automated tuning of the fixed-distance

Table 1 depicts the expected chosen fixed-distance parameter (by running Algorithm 4 with N adapt =
500 samples to tune D) for the experimental models of the main text ±95% confidence interval
(based on 50 independent MCMC chains). Comparing the results of this table with the plots of
Figure 2 suggests that the proposed automated parameter tuning performs reasonably well and in
the majority of the experimental models, chooses parameter values that are not far from the optimal
range.

5 Exploring multimodal distribution

In this section we plot samples taken by FDHMC, Dyanamic Slice HMC (DSHMC) (Hoffman and
Gelman, 2014) and Dynamic Multinomial HMC (DMHMC) (Betancourt, 2017) from a multimodal
distribution.

2We have run 10 MCMC chains for the configurations associated with MVN and FNNL models and 50
MCMC chains for the configurations associated with the three Bayesian Logistic Regression models.

7



(a) MVN (dim=10) (b) MVN (dim=30) (c) MVN (dim=100)

(d) FNNL (dim=10) (e) FNNL (dim=50) (f) FNNL (dim=100)

(g) AusCr (h) SPECT (i) GrCr

Figure 2: ESS/grad versus the fixed-distance, D, in FDHMC sampling.

FDHMC is automatically tuned by Algorithm 4 (with default hyper-parameters) while DSHMC
and DMHMC are tuned by the default dual averaging step-size adaptor that is available in Mici
probabilistic programming language (Graham, 2019).

The target is the following mixture of four Normal distributions (M4N):

π(x1, . . . , xd) = π(x) =
1

4

4∑
i=1

N (x;mi, σ
2) (19)

where the means of the modes are chosen to be

m1 = [−1.5, 0, 0, . . . , 0]⊤, m2 = [+1.5, 0, 0, . . . , 0]⊤,

m3 = [0,−1.5, 0, . . . , 0]⊤, m4 = [0,+1.5, 0, . . . , 0]⊤

We set σ2 = 0.5 and let the dimension d ∈ {2, 10, 20}.
2K samples are drawn from this model and the first two elements (x1, x2) of the samples are plotted
in Figure 3. The conditional distribution, π(x1, x2|x3 = 0, . . . , xd = 0), is plotted in the background
to indicate the approximate location of the modes. It can be seen that as the dimension increases, the
rejection rate of FDHMC proposals gradually increases and the samples look sparser. However, even
in the high dimensional model, the transition between the four modes of the distribution is not rare.

In comparison, in high dimensions, DSHMC and DMHMC has more difficulty in switching between
the distribution modes. This observation matches our expectation, because the expected magnitude
of FDHMC’s momentum vectors is higher than the expected momentum magnitude of the existing
variations of HMC. Therefore we expect that with large momentums, FDHMC’s state passes through
the potential energy barriers easier and therefore transits between the distribution modes more
frequently.

8



(a) dim=2

(b) dim=10

(c) dim=20

Figure 3: 2K draws from a) 2D (b) 10D and (c) 20D symmetric mixture of 4 normal distributions
(M4N) with automatically tuned FDHMC (left), Dynamic slice HMC (middle) and Dynamic Multi-
nomial HMC (right).

References
Michael Betancourt. A conceptual introduction to hamiltonian monte carlo. arXiv preprint

arXiv:1701.02434, 2017.

Matthew Graham. Graham: Mici: Markov chain Monte Carlo (MCMC) methods for Python. URL:
https://git.io/mici.py, 2019.

Matthew D Hoffman and Andrew Gelman. The No-U-Turn sampler: adaptively setting path lengths
in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1):1593–1623, 2014.

Radford M. Neal. MCMC using Hamiltonian dynamics. In Steve Brooks, Andrew Gelman, Galin
Jones, and Xiao-Li Meng, editors, Handbook of Markov Chain Monte Carlo, pages 113–162.
Chapman & Hall, 2011.

Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical programming,
120(1):221–259, 2009.

9

https://git.io/mici.py

	Clarifying the terminology
	Proof of the reversibility of the Fixed-distance Leapfrog Mechanism (FD-Leapfrogs)
	Automated Tuning of the Fixed-Distance Hamiltonian Monte Carlo (FDHMC)
	Quantitative Analysis
	ESS/gradient versus fixed-distance
	Automated tuning of the fixed-distance

	Exploring multimodal distribution

