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1 STATISTICAL ANALYSIS OF 𝑁𝑠𝑒𝑒𝑑 IN TSQ
To explore the optimal setting of the initial sparsity level in TSQ,
denoted as the number of seed queries 𝑁𝑠𝑒𝑒𝑑 , we conducted a statis-
tical analysis on the Multi3DRes dataset. To facilitate quantitative
description, we introduce two concepts: coverage rate and repeti-
tion rate of seed queries. The Coverage Rate (CR) of seed queries
indicates the number 𝑁𝑐

𝑖𝑛𝑠
of instances containing seed queries as

a percentage of the total number 𝑁𝑖𝑛𝑠 of instances in the scene,
which can be formulated as:

𝐶𝑅 = 𝑁𝑐
𝑖𝑛𝑠/𝑁𝑖𝑛𝑠 (1)

The Repetition Rate (RR) of seed queries indicates the percentage
of seed queries that repeatedly cover the same instance with other
queries, out of the total number 𝑁𝑐

𝑞 of seed queries covering in-
stances, which can be formulated as:

𝑅𝑅 = (𝑁𝑐
𝑞 − 𝑁𝑐

𝑖𝑛𝑠 )/𝑁
𝑐
𝑞 (2)

We conducted an analysis of the entire Multi3DRes Dataset,
where we computed the coverage rate and repetition rate for differ-
ent numbers 𝑁𝑠𝑒𝑒𝑑 of seed queries, as shown in Fig. I-(a). When a
large number of seed queries 𝑁𝑠𝑒𝑒𝑑 are selected, it not only leads

∗Equal contribution.
†Corresponding author.

to higher coverage rate but also results in higher repetition rate.
Fewer seed queries always bring a lower repetition rate, but a lower
coverage rate may follow. We also calculated the coverage rate
and repetition rate of seed queries for Ground Truth instances. As
shown in Fig. I-(b), its trend follows the same pattern as Fig. I-(a).
The statistical results indicate that𝑁𝑠𝑒𝑒𝑑 = 256 is the optimal choice
after balancing the relationship between coverage rate and repeti-
tion rate. This also validates the conclusion drawn in Sec. 5.3.2 that
optimal performance is achieved when 𝑁𝑠𝑒𝑒𝑑 is set to 256.

2 TRADITIONAL 3D-RES
In this section, we evaluated our MDIN on the traditional 3D-RES
task. we compare MDIN with existing 3D-RES works on ScanRe-
fer [2] and Nr3D/Sr3D datasets of ReferIt3D [1].

2.1 Datasets
Nr3D and Sr3D. Nr3D [1] (Natural Reference in 3D) consists of
41.5K human descriptions collected using a referring game [5]. It
describes objects in 707 ScanNet scenes. Sr3D [1] (Spatial Reference
in 3D) contains 83.5K synthetic descriptions. It categorizes spatial
relations into 5 types: horizontal proximity, vertical proximity, be-
tween, allocentric and support, and then generates descriptions
using language templates.

https://orcid.org/0009-0005-3593-5142
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Table I: The results on ReferIt3D.

easy hard View Dep View Indep OverallMethod 0.25 0.5 mIoU 0.25 0.5 mIoU 0.25 0.5 mIoU 0.25 0.5 mIoU 0.25 0.5 mIoU
Nr3D

TGNN [4] 29.2 22.3 21.0 22.5 19.6 17.4 22.2 18.1 17.0 27.6 22.4 20.3 25.7 20.9 19.1
3D-STMN [7] 47.9 31.9 32.6 35.4 20.0 23.0 37.7 21.1 24.3 43.5 28.4 29.4 41.5 25.8 27.6
MDIN (Ours) 55.0 48.4 44.1 42.2 36.3 33.5 40.8 34.6 32.2 52.5 46.3 42.1 48.4 42.2 38.6

Sr3D

TGNN [4] 28.2 23.0 20.9 29.1 25.8 21.9 23.8 21.3 18.2 28.6 23.9 21.3 27.5 22.9 20.2
3D-STMN [7] 49.4 38.2 36.3 41.9 31.0 30.1 45.5 33.5 31.9 47.2 36.2 34.6 47.2 36.1 34.4
MDIN (Ours) 58.9 53.2 48.1 51.1 46.8 42.5 53.6 48.7 44.2 56.7 51.4 46.5 56.6 51.3 46.4

(a) Instances

(b) Ground Truth Instances

Figure I: The coverage rate and repetition rate of seed queries
for all instances / Ground Truth instances in the scene.

2.2 Quantitative Comparison on ReferIt3D
Wepresent the experimental results of ourmodel on the ReferIt3D [1]
benchmark in Tab. I. Unlike the the original setup of ReferIt3D, we
refrained from using ground truth bounding boxes or masks as
input in our experiments, thereby significantly heightening the
level of difficulty. Despite this heightened difficulty, our model still
achieved significant improvements. Notably, MDIN achieved an
Acc@0.5 gain of 16.4 points and a mIoU gain of 11.0 points on
Nr3D, as well as a 15.2-point increase in Acc@0.5 and a 12.0-point
increase in mIoU on Sr3D.

Table II: Ablation study on number of stacked layers.

Number of
mIoU

Acc@0.25 Acc@0.5

Stacked Layers Overall zt w/ dis st w/ dis mt Overall

𝑅1 1 40.5 59.1 30.2 18.4 40.5 34.7

𝑅2 3 45.6 65.2 38.1 25.3 45.7 41.9

𝑅3 6 47.5 67.0 47.9 29.5 46.8 44.7

𝑅4 9 46.3 65.3 39.4 25.1 45.8 42.1

Table III: Ablation study comparing text encoders.

Text Encoder mIoU
Acc@0.25 Acc@0.5

Overall zt w/ dis st w/ dis mt Overall

𝑅1 BERT-base [3] 47.1 66.7 44.2 27.6 46.5 43.9

𝑅2 BERT-large [3] 47.2 66.9 44.8 28.1 46.9 44.1

𝑅3 RoBERTa [6] 47.5 67.0 47.9 29.5 46.8 44.7

3 MORE ABLATION STUDIES
3.1 Number of Stacked Layers in MDIN
We investigated the impact of changing the number of stacked lay-
ers in MDIN. As shown in Tab. II, performance gradually improves
with increasing layers, reaching a peak at 6 layers, followed by a
slight decline. Performance severely degrades when there is only
one layer, indicating that refining layer by layer can enhance the
model’s reasoning ability. When the number of layers is excessive,
gradients may become unstable, leading to a risk of training col-
lapse. Therefore, selecting six layers strikes a balance that yields
the best model performance.

3.2 The Textual Backbone
In Tab. III, we compare the effects of commonly used natural lan-
guage encoders. It can be observed that that our method exhibits
robustness regarding the choice of the NLP backbone. We achieve
the optimal performance using Roberta [6].

4 MORE QUALITATIVE RESULTS
More qualitative comparison results of the highly competitive 3D-
STMN and MDIN on the Multi3DRes dataset are illustrated in Fig. II
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and Fig. III. Fig. II primarily showcases the segmentation results
in multi-targets scenarios. In multi-targets scenarios, due to the
lack of decoupling capability, 3D-STMN either simply segments all
instances with the same semantic category as the target (such as
(a), (b)), fails to segment all instances that match the description
(such as (c), (d)), or may even make semantic recognition errors
(such as (e), (f)). On the contrary, our MDIN accurately segments
all instances that match the description. For cases where the target
instances have small volumes or complex descriptions (such as
(g), (h)), MDIN also demonstrates its strong discriminative ability.
However, 3D-STMN fails to comprehend highly complex language
descriptions, leading to erroneous judgments.

Fig. III illustrates the segmentation results for single-target and
zero-target scenarios. Benefiting from decoupled modeling, MDIN
can capture information about objects in the scene and individually
discern their compliance, thus segmenting the correct instances or
making accurate predictions when no target instance are present.
By contrast, 3D-STMN either suffers from semantic misinterpreta-
tion (e.g., (a), (b), (e), (g), (h)) or makes erroneous segmentation
predictions by broadly leveraging semantics (e.g., (c), (d), (f)).

We also visualize the superpoints corresponding to the queries
selected by the prediction heads of MDIN, as shown in the last
column of Fig. II and Fig. III. The results indicate that in the presence
of targets, the selected superpoints accurately reflect the positions of
the target instances. Notably, for instances with simple geometric

features, such as flat surfaces of table, the selected superpoints
directly reflect the geometric shapes of the target instances. In the
absence of targets, however, no query contains any target instances,
hence no superpoints are selected.
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Description Original Scene Ground Truth MDIN3D-STMN Selected Queries

(a) A wooden table
of compact stature 
is situated against a 
wall with its front.

(b) A brown table
stands in the room, 
with tall bookshelves 
looming behind it.

(f) A black leather
loveseat can be 
found in the library.

(d) A cube-shaped 
footrest in red color 
is located near a 
blue couch and a 
wooden table.

(c) A brown chair
sits at the end of 
the long table.

(e) The chairs
near a bed.

(g) There is a toilet 
troll sitting on the 
toilet

(h) A rectangular chair
sits cozily beside a 
lush plant, perched 
atop a nearby table.

( Zero-Target )

Figure II: Qualitative comparison between the proposed MDIN and 3D-STMN on multi-targets cases. Zoom in for the best view.
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(a) Against a wall 
next to a couch, 
there's a gray shelf
with five levels of 
shelving, not inclu-
ding the top.

(c) An armchair, 
brown in color, is 
located opposite 
a desk.

(e) The gray rec-
tangular cabinet is 
mounted on the wall 
next to a shelf.

( Zero-Target )

(b) The rectangular 
dispenser is located 
beside a trash bin.

(d) A blue chair is 
located next to a 
black jacket on 
the table.

(f) The grey laundry 
folding table has a 
rectangular surface, 
with a row of white 
dryers to its right.

( Zero-Target ) ( Zero-Target )

(g) The grey washing 
machine is located to 
the left.

( Zero-Target ) ( Zero-Target )

(h) On the left is a 
black soap dispenser. ( Zero-Target ) ( Zero-Target )

Description Original Scene Ground Truth MDIN3D-STMN Selected Queries

Figure III: Qualitative comparison between the proposed MDIN and 3D-STMN on single/zero-target cases. Zoom in for the best
view.
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