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ABSTRACT
Recently, video diffusion models (VDMs) have garnered significant
attention due to their notable advancements in generating coherent
and realistic video content. However, processing multiple frame
features concurrently, coupled with the considerable model size, re-
sults in high latency and extensive memory consumption, hindering
their broader application. Post-training quantization (PTQ) is an
effective technique to reduce memory footprint and improve com-
putational efficiency. Unlike image diffusion, we observe that the
temporal features, which are integrated into all frame features, ex-
hibit pronounced skewness. Furthermore, we investigate significant
inter-channel disparities and asymmetries in the activation of video
diffusion models, resulting in low coverage of quantization levels
by individual channels and increasing the challenge of quantization.
To address these issues, we introduce the first PTQ strategy tailored
for video diffusion models, dubbed QVD. Specifically, we propose
the High Temporal Discriminability Quantization (HTDQ) method,
designed for temporal features, which retains the high discriminabil-
ity of quantized features, providing precise temporal guidance for
all video frames. In addition, we present the Scattered Channel
Range Integration (SCRI) method which aims to improve the cover-
age of quantization levels across individual channels. Experimental
validations across various models, datasets, and bit-width settings
demonstrate the effectiveness of our QVD in terms of diverse met-
rics. In particular, we achieve near-lossless performance degradation
on W8A8, outperforming the current methods by 205.12 in FVD.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence.

KEYWORDS
post-training quantization, video diffusion models, multimodal

1 INTRODUCTION
The diffusion model has experienced vigorous development in vi-
sion generation tasks due to its high controllability, photorealistic
generation, and impressive diversity. Recently, research on video
tasks based on diffusion models has gained increasing attention,
driving the emergence of numerous attractive applications includ-
ing, but not limited to, text-to-video [5, 18, 20, 65], image-guided
video generation [4, 18, 25, 44], video editing [14, 41, 59], and other
conditionally guided video generation tasks [53, 54, 60].
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Figure 1: Comparison of image diffusion (left) and video diffu-
sion (right). (a) Features of all frames rely on the same temporal
feature in VDMs. (b) Significantly inter-channel variation issue
occurs in temporal attention modules.

Despite the remarkable effects of diffusion models, their rela-
tively slow inference speed and substantial memory usage have
hindered their broader application, particularly in video tasks. The
core reasons for these limitations include: 1) The denoising pro-
cedure encompasses several hundred iterations, and 2) The exten-
sion of frame dimensions results in a notable escalation in memory
utilization compared with image diffusion models. There are pri-
marily two strategies to overcome such bottlenecks: minimizing the
number of iteration steps, including [37, 51], and optimizing the
efficiency of individual denoising operations through techniques
like pruning [16, 32], distillation [30, 39], or quantization [33, 47].
The former only focuses on the first issue while ignoring the sig-
nificant memory consumption. In this work, we mainly study the
quantization of video diffusion models.

Model quantization is a widely adopted and practical approach
for reducing model footprint and accelerating inference by mapping
floating-point values into low-bit integers. Among various quantiza-
tion methods, post-training quantization (PTQ) requires no retraining
or fine-tuning of the model and incurs minimal overhead, making it
more practical in deployment. PTQ methods have been extensively
studied in image diffusion models [19, 27, 33, 47, 49]. However,
these methods exhibit significant performance degradation when
directly applied to video diffusion models. We discover that the
rationale lies in two aspects, i.e., the introduction of the frame di-
mensions and temporal attention modules in video diffusion models.
Specifically, based on the following two observations, we explore
the difficulty of quantization for VDMs:

Observation 1: Highly reliant on discriminable temporal fea-
tures. As illustrated in Figure 1(a), in a single denoising iteration,
the features of all frames rely on the same temporal feature, which
implies that disturbances arising from the quantization of temporal
features will impact the generative quality of all frames. Furthermore,
we observe that the uniform quantizer leads to the homogenization
of temporal features, demonstrating a significant performance gap

https://doi.org/XXXXXXX.XXXXXXX
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compared to those utilizing full-precision temporal features. Upon
analyzing the distribution of temporal features, we observe a pro-
nounced skewness near zero, where outliers often exceed thousands
of times the magnitude of regular values, making conventional uni-
form quantizers unsuitable for temporal features.

Observation 2: Inter-channel variations reduce the coverage
of quantization levels. As depicted in Figure 1(b), in the image
diffusion model, activation across different channels tends to be
concentrated, with the range of activation for individual channels
closely approximating the range of overall activation. Each channel
covers nearly all quantization levels, indicating low quantization
difficulty. In contrast to the image diffusion model, the activation
values of the temporal attention module in video diffusion models
are discrete and asymmetric across channels. The range of individual
channels is significantly narrower than the overall activation. As a
result, each channel accesses only a tiny fraction of quantization
levels, posing a new challenge for PTQ.

To tackle these obstacles, we propose QVD, the first post-training
quantization scheme for video diffusion models. Figure 2 shows the
overall pipeline of the QVD. To mitigate the problem in observation
1, we introduce the High Temporal Discriminability Quantization
(HTDQ), which contains a High Discriminability Temporal Quantizer
(HiDi-TQ) to prioritize numerous near-zero values and retains high
identifiability of time, and the Temporal Discriminability score
(TDScore) to evaluate the similarity of adjacent temporal features.
To settle the issue in observation 2, we introduce a Scattered Channel
Range Integration (SCRI) method, which employs a per-channel
integration operation to enhance the coverage of quantization lev-
els by individual channels, therefore handle the discrete range of
activations. We conduct comprehensive experiments to validate the
superiority and versatility of our QVD.

In summary, our contributions are as follows:

• We propose QVD quantization framework, which, to our
knowledge, is the first PTQ method tailored explicitly for
video diffusion models.

• We identify the critical inter-channel variations issue in video
diffusion models and highlight the significance of accurate
and discriminable temporal features for video generation.

• We introduce SCRI to improve the coverage of quantization
levels across individual channels, TDScore to quantify tem-
poral similarity, and the HiDi-TQ quantizer to keep high
discriminability of temporal features.

• Extensive experiments on various models and datasets demon-
strate the superiority of QVD, which results in a 257.9 de-
crease in the FVD for the W6A8 PTQ of video diffusion
models compared to existing methods in the image domain.

2 RELATED WORK
2.1 Video Diffusion
Recently, Diffusion Probabilistic Models [22, 50] have overtaken
Generative Adversarial Networks (GANs) [13] as the leading ap-
proach in generative modeling, establishing a new benchmark for
the field. Following the success of image diffusion techniques, video
diffusion has also received widespread interest. VDM [23] becomes
the pioneer in video generation and adopts 3D U-Net [12] struc-
ture. Some text-to-video (T2V) methods, such as MagicVideo [64],

LVDM [21] utilize the Latent Diffusion Model (LDM) [46] and plug
temporal modeling technique to it. Subsequent T2V schemes [5, 55,
55, 62] extend the single-stage to multi-stages. Image-to-video (I2V)
methods, as another promising scheme, generate the video from a
conditional image. Initially, LaMD [26] focuses on training an au-
toencoder to isolate motion information contained in videos. Stable
Video Diffusion leverages text-to-image pretraining, video pretrain-
ing, and high-quality video finetuning to produce high-resolution
videos. AnimateDiff [18] integrates the LoRA [24] and avoids the
time-consuming retraining. Other conditions, such as pose [29, 38],
motion [7, 61], sound [31, 36] are also proposed. Substantial effi-
cient solutions, including retraining-free sampler [2, 35, 37] and
retraining-based methods [51, 63]. The first aims to decrease the
number of sampling steps and the second is time-consuming. How-
ever, there is a gap in the research on video diffusion, and our work
is the first to undertake a study in this area.

2.2 Quantization
Quantization has achieved substantial advancements in the domain of
neural network acceleration, as corroborated by numerous scholarly
investigations [6, 10, 28, 34, 40, 42, 56, 58]. Mainstream quantiza-
tion schemes can be briefly classified into two categories: quantization-
aware training (QAT) [9, 15] and post-training quantization (PTQ) [6,
10, 40]. QAT aims to retrain the network on the whole dataset, while
PTQ only requires a small amount of unlabeled datasets for calibra-
tion. Several classical quantization methods, such as MinMax [28],
Percentile [58], LSQ [15], PACT [9] are proposed successively for
the convolutional neural networks. In recent years, the quantization
of diffusion models [19, 27, 33, 47] has garnered widespread atten-
tion within the academic community. PTQ4DM [47] first discovers
the difficulty of multiple-step activation distribution and generates
the calibration data from a kew-normal distribution. Q-diffusion [33]
introduces the uniform sampling calibration and split shortcut quan-
tization for the bimodal activation distribution of the shortcut layers.
PTQD [19] decomposes the quantization noise into interrelated and
residual parts. TFMQ-DM [27] addresses the temporal feature dis-
turbance and optimizes them separately. However, these existing
methods mainly focus on image diffusion. In comparison, video
diffusion necessitates significantly greater computational resources
and storage. To the best of our knowledge, our work is the first to
conduct the quantization for video diffusion models.

3 PRELIMINARIES
3.1 Diffusion Models
Diffusion models employ a sophisticated approach to image genera-
tion, relying on the application of Gaussian noise through a Markov
chain in a forward process and a learned reverse process to gen-
erate high-quality images. Beginning with an initial data sample
x0 ∼ 𝑞(x) from a real distribution 𝑞(x), the forward diffusion pro-
cess incrementally adds Gaussian noise over 𝑇 steps:

𝑞 (x𝑡 |x𝑡−1) = N
(
x𝑡 ;

√︁
1 − 𝛽𝑡x𝑡−1, 𝛽𝑡 I

)
, (1)

where 𝑡 is an arbitrary timestep and {𝛽𝑡 } is the variance schedule.
The reverse process, in contrast, aims to denoise the Gaussian noise
𝑥𝑇 ∼ N(0, I) into the target distribution by estimating 𝑞 (x𝑡−1 |x𝑡 ). In
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every step of the reverse process, marked by 𝑡 , the model estimates
the conditional probability distribution using a network 𝜖𝜃 (x𝑡 , 𝑡),
which incorporates both the timestep 𝑡 and the prior output x𝑡 as its
inputs:

𝑥𝑡−1 ∼ 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) =

N
(
𝑥𝑡−1;

1
√
𝛼𝑡

(
x𝑡 −

1 − 𝛼𝑡√
1 − 𝛼𝑡

𝝐𝜃 (x𝑡 , 𝑡)
)
, 𝛽𝑡 I

)
, (2)

where 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼𝑡 =
∏𝑇

𝑖=1 𝛼𝑖 . When extending the image
diffusion to video diffusion, the latent noise adds a new dimension
𝐾 which denotes the length of the video frames.

3.2 Model Quantization
Model quantization represents a technique for model compression,
vital in optimizing neural networks for resource-constrained envi-
ronments. Quantization transforms the network’s weights and ac-
tivations from a floating-point to a low-bit representation, thereby
reducing memory footprint and computational intensity. This trans-
formation is quantitatively described as follows:

𝑤𝑞 = clamp
(
⌊𝑤
𝑠
⌉ + 𝑧, 0, 2𝑏 − 1

)
, (3)

�̂� = 𝑠 · (𝑤𝑞 − 𝑧) ≈ 𝑤, (4)

where 𝑤 and �̂� denote the original and de-quantized weights or
activations,𝑤𝑞 is the quantized integer representation, 𝑠 represents
the scaling factor, 𝑧 is the zero point, and 𝑏 is the bit precision
corresponding to 2𝑏 quantization levels. The uniform quantization
here has equal intervals between each level. Quantization introduces
an approximation (quantization) and a subsequent reconstruction
(de-quantization) of network parameters.

Expanding upon uniform quantization, our research incorpo-
rates logarithmic quantizer that also aligns well with the hardware-
oriented aspects. For instance log2 quantization, used primarily on
positive activation values, is succinctly represented as:

𝑤𝑞 = clamp
(
⌊− log2

𝑤

𝑠
⌉, 0, 2𝑏 − 1

)
, (5)

�̂� = 𝑠 · 2−𝑤𝑞 ≈ 𝑤. (6)

This method, like uniform quantization, involves the scaling factor
𝑠 but introduces a logarithmic approach to the quantization process.
It offers rapid bit-shifting operations, making it a strategic choice
for efficiently implementing models on hardware platforms. The
integration of log2 quantization into our model framework further
exemplifies our commitment to enhancing computational efficiency
while maintaining fidelity in the intricate process of diffusion-based
video generation.

3.3 Temporal Features in Video Diffusion Models
In the video diffusion model, the time step 𝑡 is encoded by the
function ℎ (·) into a temporal encoding, which is then mapped to
temporal features by the embedding function 𝑓 (·). These temporal
features are channel-adjusted by the function 𝑔 (·) in every Resnet-
block3D of the noise estimation network and fused with all frame

features. Formally, for the 𝑖-th Resnetblock3D, this process can be
described using the following equation:

F𝑡 = F + 𝑔𝑖 (𝑓 (ℎ(𝑡))), (7)

where F𝑡 represents the frame feature fused with the projected tem-
poral feature. We denote the temporal feature at time-step t as T𝑡

𝑒𝑚𝑏
:

T𝑡
𝑒𝑚𝑏

= 𝑓 (ℎ(𝑡)) . (8)

4 MODIFICATIONS
4.1 High Temporal Discriminability Quantization
As previously discussed, video diffusion models introduce a frame
dimension, which enables the model to predict the noise for N
frame features in each inference, a concept illustrated in Figure 2.
In contrast, in image diffusion models, the frame count remains
fixed at one. Structurally, temporal features are integrated into the
features of each frame, and the quantization noise consequently
spreads across all frames. Features from different frames are further
fused within the temporal attention blocks, which results in the
effects of quantization being compounded. As indicated in Table 4,
omitting the quantization of temporal features leads to a significant
reduction in the FVD by 160.82 compared to the uniform baseline.
These findings highlight the critical importance of precise temporal
features for video diffusion models.

To further explore this, we investigate the temporal features to
explain why uniform quantizers fail to function effectively. The dis-
tribution of temporal features demonstrates a pronounced skewness,
with a majority of the values aggregating near zero, and outliers are
several orders of magnitude greater than the typical values observed
as depicted in Figure 4(a). Even with a 10-bit uniform quantizer,
dense intervals utilize only one of the 1024 quantization levels, as
depicted in Figure 4(b). This causes most values in the temporal fea-
tures to collapse to a single value, as shown in Figure 3(b), severely
impairing their distinguishability. The log2 quantizer, as shown in
Figure 4(c), allocates more quantization levels to dense intervals,
preserving the distribution of small values in the temporal features
and thus their discriminability. As indicated in Table 4, the log
quantizer reduces FVD by 131.63 compared to the linear quantizer,
demonstrating its effectiveness. However, we note that despite the
improved FVD with the log quantizer, it incurs a greater L2 quanti-
zation loss compared to the uniform quantizer, as shown in Figure 5.
We hypothesize that L2 loss prioritizes the impact of larger values
while neglecting smaller values, which is inappropriate given the
unique distribution.

We conduct comparative experiments to further validate the con-
tribution of minor values to the discriminability of temporal features.
Specifically, in setting 1, we zero the interval [−0.5𝑚𝑖𝑛, 0.5𝑚𝑎𝑥],
and in setting 2, we apply a noise mask ranging from [−1.5, 1.5] to
scale values within the [0.9𝑚𝑎𝑥,𝑚𝑎𝑥] interval, where𝑚𝑎𝑥 and𝑚𝑖𝑛
denote the maximum and the minimum for the temporal feature, re-
spectively. As detailed in Table 4, the model exhibited robustness to
disturbances in large values, while homogenization of small values
lead to a collapse in model performance, underscoring the critical
importance of minor values in preserving the discriminability of
temporal features.

This analysis indicates the necessity of designing a quantizer
specifically for the unique distribution of temporal features and
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Figure 2: Overview of QVD. The left is the High Temporal Discriminability Quantization, which uses the HiDi-TQ quantizer to
retain the low TDScore of temporal features. The red arrow points to the location of the outlier. The right is the Scattered Channel
Range Integration, which aims at mitigating the discreteness and asymmetry in inter-channel activation ranges, thereby enhancing the
utilization rate of quantization levels by individual channels.

developing a metric to measure the discriminability of temporal
features. Driven by the above motivations, we propose the Temporal
Discriminability Score (TDScore) and High Discriminability Quan-
tizer for the Temporal Feature (HiDi-TQ).

4.1.1 Temporal Discriminability Score. The TDScore evaluates
the similarity between the current temporal feature and several ad-
jacent temporal features. We denote the discriminability score of
the 𝑡-th temporal feature as TDScore𝑡 . We initially apply a logarith-
mic function to T𝑡

𝑒𝑚𝑏
to enhance focus on minor values within the

temporal feature as defined in Equation 9:

T𝑡
′

𝑒𝑚𝑏
= 𝑠𝑖𝑔𝑛(T𝑡

𝑒𝑚𝑏
) ·

��𝑙𝑜𝑔2
��T𝑡
𝑒𝑚𝑏

���� . (9)

Subsequently, we compute the mean cosine similarity between the
feature and its 𝑛 contiguous time steps following Equation 10:

𝑇𝐷𝑆𝑐𝑜𝑟𝑒𝑡 =
1
𝑛

𝑖=𝑡+𝑛∑︁
𝑖=𝑡+1

cos _𝑠𝑖𝑚(T𝑡
′

𝑒𝑚𝑏
,T𝑖

′

𝑒𝑚𝑏
). (10)

A lower TDScore indicates higher discriminability of the tempo-
ral feature. We can employ the TDScore to assess the efficacy of
quantization precisely.

4.1.2 High Discriminability Quantizer for Temporal Feature.
As aforementioned, the quantization of temporal features not only
necessitates minimizing quantization loss but also preserving distinc-
tions between time steps. We evaluate quantizers calibrated using
min-max or mean squared error (MSE) calibration strategy, as il-
lustrated in Figure 5. These quantizers minimize quantization loss
but concurrently diminish the distinguishability of temporal features

FP Uniform HTDQ

(a) (b) (c)

Figure 3: Heat maps of full-precision temporal feature and its
quantized versions of the uniform quantizer and the HTDQ.

(TDScores are near 1). We introduce the high discriminability quan-
tizer considering the unique distribution of temporal features. This
quantizer is based on a logarithmic quantizer which is non-uniform.
It allocates more quantization levels to values concentrated around
zero, unlike uniform quantizers. Conversely, sparse distributions of
large values are allocated fewer quantization levels. However, the
vanilla logarithmic quantizer maps both the positive part and the
negative part of temporal features to the same positive interval. This
causes the data concentration regions of positive and negative inter-
vals to overlap, exacerbating data concentration. Consequently, this
reduces the utilization of available quantization levels. To address
this issue, a relaxation coefficient 𝛽 is introduced, as follows:

T𝑧
𝑒𝑚𝑏

= 𝑠𝑖𝑔𝑛(T𝑒𝑚𝑏 ) · 𝑐𝑙𝑖𝑝 (
⌊
−𝑙𝑜𝑔2

|T𝑒𝑚𝑏 − 𝛽 |
𝑠

⌉
, 0, 2𝑏 − 1) . (11)
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Figure 4: Histogram of the temporal feature. (a) shows the his-
togram of 100% data of a temporal feature. (b) presents the mid-
dle 90% of the data which is concentrated within the range of
[−0.002, 0.002] and a single blue rectangle in the background in-
dicates that these data are mapped to the same value. (c) depicts
the distribution of the middle 90% of data processed through a
logarithmic function, covering 10 quantization levels.

The quantization process is initiated by a 𝛽 shift in the temporal
features, thereby reducing the clustering of absolute values. T𝑧

𝑒𝑚𝑏
represents the quantized temporal features. The scaling factor 𝑠 is
typically set to be greater than the maximum absolute value of T𝑒𝑚𝑏

to ensure that the scaled activation values fall within the range [0, 1].
Additionally, 𝑠 can be adjusted to modify the data concentration,
where increasing the value of 𝑠 narrows the range of activation
values and makes it more concentrated.

As illustrated in Figure 5, although the logarithmic quantizer en-
sures foundational temporal discrimination (low TDScore), it also
incurs a considerable L2 loss (MSE loss). To balance the precision
of quantization and temporal discrimination, we utilize a compos-
ite metric 𝐾 as defined in Equation 12, which incorporates both
TDScore and L2 loss, to search the optimal 𝑠 and 𝛽:

𝐾 =

𝑇∑︁
𝑖=1

𝑇𝐷𝑆𝑐𝑜𝑟𝑒𝑖 +
𝑇∑︁
𝑖=1

(T𝑖
𝑒𝑚𝑏

− T̂𝑖
𝑒𝑚𝑏

)2 . (12)

The TDScore allows 𝐾 to prioritize smaller values, while the L2
component ensures attention to losses in larger values. To mitigate
truncation errors, We constrain the value of 𝑠 to the interval[

𝑚𝑎𝑥 ( |T𝑒𝑚𝑏 |),
𝑚𝑖𝑛 ( |T𝑒𝑚𝑏 |) + 𝑒𝑝𝑠

21−2𝑛

]
. (13)

This typically spans a very large range, to enhance search efficiency,
we employ exponential step sizes where 𝑠𝑖 =𝑚𝑎𝑥 |T𝑒𝑚𝑏 | × 20.05×𝑖 .

4.2 Scattered Channel Range Integration
Compared to the image diffusion models, we observe significant
inter-channel variations in the video diffusion model. As depicted in
Figure 1(b), we plot box plots for the activation sampled from the
image diffusion model and output of the temporal attention block in
the video diffusion model. It is evident that the activations generated
by the temporal attention block exhibit discrete and asymmetric char-
acteristics, referred to as inter-channel variations. The narrow range
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Figure 5: Performance of various quantization strategies. The
left axis represents the TDScore. The right axis delineates the
L2 quantization loss.

of individual channels leads to minimal overlap in the activation
ranges across channels, resulting in low coverage of quantization
levels per-channel, as illustrated in Figure 6, this diminishes the
performance of the quantized model.
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Figure 6: Quantization level coverage of activation sampled from
the image and video diffusion models. It is defined as the ratio of
each channel’s range to the overall range used for quantization.
VDM-SCRI denotes the SCR-integrated version.

Unlike the issues previously identified in large language models
(LLMs), the problem of inter-channel variations is particularly pro-
nounced in video diffusion models. This issue differs significantly
from the outliers extensively studied in LLMs. In LLMs, as indicated
by OS+ [57], outliers manifest as extreme shifts in specific channels.
These shifts are consistent across samples, which allows for the
straightforward identification and adjustment of an accurate shift
amount to align the channel midpoints. Such a method is effectively
utilized in LLMs, where techniques like OS+ [57] align and scale
channel midpoints in the activation of the Layer-Norm layer through
a channel-wise shift to address these outliers. However, in video
diffusion models, the challenge of inter-channel variations requires
distinct approaches due to its more complex and variable nature com-
pared to the channel-specific shifts observed in LLMs. Specifically,
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in video diffusion models, most channels exhibit varying degrees
of shift that change with each sample, making it challenging to
calculate an accurate shift for aligning the channel midpoints.

To address this issue, we propose the method of Scattered Channel
Range Integration (SCRI). Formally, SCRI is a straightforward
approach, as illustrated in Equation 14:

X̃ = X ⊘ s, s =
Xcmax
𝑡

, (14)

where X denotes the activations with 𝐶 channels, while s, a vector
of length 𝐶 similar to that used in OS+ [57], is employed to adjust
the range of activation values. X𝑐𝑚𝑎𝑥 represents a vector composed
of the maximum activation values within each channel, and 𝑡 serves
as an adaptive parameter.

The SCRI, through meticulous design, can amplify the range
of activation values for each channel, reducing discreteness and
increasing overlap. However, an excessively large activation range is
not conducive to improving the coverage of quantization levels for
individual channels. To strike a balance between the activation range
and the coverage of quantization levels, identifying the optimal
value for 𝑠 is essential. Specifically, through a forward pass, we
use a calibration set to determine the maximum activations values
X𝑐𝑚𝑎𝑥 . Concurrently, we determine the optimal 𝑡 using a grid search
approach, confining our search within [𝑚𝑖𝑛(X𝑐𝑚𝑎𝑥 ),𝑚𝑎𝑥 (X𝑐𝑚𝑎𝑥 )].
The optimization criterion during this search is the minimization of
the MSE loss, comparing the output of the quantized model block
against that of the full-precision model, as follows:

arg min
𝑡



F (W,X) − F𝑄 (W,X; 𝑡)


 , (15)

where F represents the mapping function for the layers following
LayerNorm in temporal attention modules and self-/cross-attention
modules in the video diffusion model and F𝑄 denotes the mapping
function corresponding quantized module.

Specifically, we identify several layers to apply SCRI: the Feed
Forward Network (FFN), the projection layer, typically a linear layer
or a convolution layer, and the attention layer subsequent to the
LayerNorm. Similar to OS+ [57], we implement SCRI by making
equivalent transformations to LayerNorm and subsequent layers,
which incurs no additional overhead during inference. As depicted
in Figure 6, SCRI significantly enhances the coverage of quantization
levels by individual channels.

5 EXPERIMENTS
5.1 Implementation Details
Datasets and Quantization Settings. Video synthesis experiments
are conducted on two cutting-edge models, MagicAnimate [60] and
AnimateDiff [17], utilizing the TED-talks [48], FS-COCO [11] and
COCO Captions [8] datasets. Both the input and output layers are
consistently set at an 8-bit representation, whereas all remaining
convolutional and linear layers are quantized in accordance with
the predetermined target bit-width. To calibrate the models accu-
rately, samples from all time steps of application (25 in this work)
are collected to form a calibration set, corresponding to one video
consisting of 16 consecutive frames. This process ensures that the
models are finely tuned for generating high-quality video sequences,
establishing a benchmark in the domain of video synthesis.

Table 1: Quantization results on motion-guided video generation
with TED-talks. ∗ denotes our implementation according to open-
source codes.

Method Bits (W/A) Size (Gb) TBOPs
TED-Talks

FID-VID↓ FVD↓
Full Precision 32/32 22.8 9735 44.47 361.54
Linear Quant∗ [43] 8/8 5.7 716 80.70 618.33
PTQ4DM∗ [47] 8/8 5.7 716 77.55 590.89
Q-Diffusion∗ [33] 8/8 5.7 716 75.16 593.81
QVD 8/8 5.7 716 49.38 385.77
Linear Quant∗ [43] 6/8 4.3 555 82.43 649.02
PTQ4DM∗ [47] 6/8 4.3 555 84.40 644.42
Q-Diffusion∗ [33] 6/8 4.3 555 83.03 644.37
QVD 6/8 4.3 555 50.94 386.47
Linear Quant∗ [43] 6/6 4.3 430 119.02 1130.76
PTQ4DM∗ [47] 6/6 4.3 430 109.08 1074.93
Q-Diffusion∗ [33] 6/6 4.3 430 110.42 1006.69
QVD 6/6 4.3 430 77.54 683.72

Evaluation Metrics. In our experimental framework, we report
the spatiotemporal fidelity of video synthesis using the FID-VID [1]
and FVD [52] metrics, combining image quality assessment through
Fréchet Inception Distance with temporal coherence evaluation us-
ing Fréchet Video Distance. Following AnimateDiff [18], semantic
integrity is evaluated using the CLIP metric [45], which leverages
a sophisticated language-image pretraining model to measure the
alignment between generated animations and reference imagery.
This involves calculating the cosine similarity between CLIP im-
age embeddings of each animation frame and reference images,
thereby evaluating domain similarity (Domain). Furthermore, our
assessment is enhanced by examining the similarity between the
prompt embeddings and individual frames to assess text alignment
(Text) and by analyzing the similarity between consecutive frames
to evaluate motion smoothness (Smooth). For computational per-
formance, we calculate Bit Operations (BOPs) [3, 19] per video
diffusion model during each forward pass, balancing efficiency with
processing demands.

5.2 Main Results
Motion Guided. In this section, we apply our quantization method
to the task of Human Image Animation, utilizing the MagicAni-
mate [60] framework on the TED-talks dataset [48]. MagicAnimate
uses a motion sequence and a reference image to generate a video
clip where the sequence directs the person’s movements. We use
the plain round-to-nearest Linear Quantization [43], PTQ4DM [47]
and Q-Diffusion [33] as our baselines. As shown in table 1, our
QVD consistently outperforms other methods by a large margin.
Actually, these methods specifically designed for image diffusion,
namely PTQ4DM and Q-Diffusion, do not achieve significant per-
formance improvements in video diffusion quantization. On the
contrary, at W8A8, our QVD gains a FID-VID reduction of 25.78 (
75.16→49.38 compared with Q-Diffusion) and a FVD reduction of
205.12 (590.89→385.77 compared with PTQ4DM) on TED-Talks,
which is almost lossless. When the bit-width decreases (i.e., W6A8
and W6A6), other methods drop drastically while our QVD main-
tains the performance to a great extent, merely introducing a 1.56
upswing in FID-VID and a 0.7 upswing in FVD.
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Table 2: Quantization results on motion-guided and sketch-guided video generation with FS-COCO and COCO Captions, respectively.
∗ denotes our implementation according to open-source codes.

Method Bits (W/A) Size (Gb) TBOPs
FS-COCO COCO Captions

CLIP-Metric CLIP-Metric
Text.↑ Domain.↑ Smooth.↑ Text.↑ Domain.↑ Smooth.↑

Full Precision 32/32 22.8 9735 29.87 75.23 99.03 30.34 89.92 95.71
Linear Quant∗ [43] 8/8 5.7 716 28.05 69.40 98.68 30.00 84.97 92.80
PTQ4DM∗ [47] 8/8 5.7 716 28.23 70.92 98.46 29.61 83.88 91.49
Q-Diffusion∗ [33] 8/8 5.7 716 28.73 72.47 98.87 29.77 83.84 91.52
QVD 8/8 5.7 716 29.67 75.48 98.92 30.21 90.39 95.66
Linear Quant∗ [43] 6/8 4.3 555 28.19 69.59 98.77 29.93 83.80 91.92
PTQ4DM∗ [47] 6/8 4.3 555 28.96 71.39 98.48 29.93 83.13 90.62
Q-Diffusion∗ [33] 6/8 4.3 555 28.87 71.54 98.79 29.70 82.89 90.79
QVD 6/8 4.3 555 29.71 75.24 98.83 30.15 89.40 94.93
Linear Quant∗ [43] 6/6 4.3 430 26.32 64.52 96.35 29.24 78.51 91.91
PTQ4DM∗ [47] 6/6 4.3 430 27.83 68.43 96.12 27.98 72.83 89.58
Q-Diffusion∗ [33] 6/6 4.3 430 27.99 69.02 96.20 28.23 74.07 89.81
QVD 6/6 4.3 430 28.88 70.92 96.86 29.57 80.50 92.61

Table 3: The effect of different methods proposed in the paper
on TED-talks.

Method Bits (W/A) FID-VID↓ FVD↓
Full Precision 32/32 44.47 361.54
Linear Quant (Baseline) 8/8 80.70 618.33
+ HTDQ 8/8 61.22 483.99
+ SCRI 8/8 67.57 529.70
QVD (HTDQ + SCRI) 8/8 49.38 385.77

Table 4: Detailed ablation of temporal features. † denotes using
the full-precision temporal feature.

Method Bits (W/A) FID-VID↓ FVD↓
Full Precision 32/32 44.47 361.54
SCRI + Linear Quant 8/8 67.57 529.70
SCRI + Log2 Quant 8/8 50.43 398.07
SCRI + HTDQ 8/8 49.38 385.77
Linear Quant † 8/8 64.85 457.51
Linear Quant 8/8 80.70 618.33
perturbates outliers 8/8 65.94 487.91
perturbates values near zero 8/8 75.04 580.67

Image-guided and Sketch-guided To demonstrate the superiority
and versatility of our QVD, we further conducted experiments on
AnimateDiff [18]. AnimateDiff utilizes both a visual modality (im-
age or sketch) and a text prompt as inputs to generate videos. Our
quantitative comparison mainly focuses on text alignment, domain
similarity, and motion smoothness by employing the CLIP metric.
Specifically, for the text alignment, our approach achieves a pioneer-
ing breakthrough on the FS-COCO dataset with Text-CLIP, surpass-
ing 29 for the first time. For the domain similarity, Our QVD method
leads the Q-Diffusion by 6.51 on the Domain-CLIP at W6A8 when
evaluated on the COCO Captions dataset. For the motion smooth-
ness, our method exhibits extraordinary video coherence on W8A8,

Table 5: Detailed ablation of SCRI.

Method Bits (W/A) FID-VID↓ FVD↓
Full Precision 32/32 44.47 361.54
HTDQ + OS+ [57] 8/8 51.21 407.93
HTDQ + OS+ [57] without shift 8/8 50.48 405.16
HTDQ + SCRI 8/8 49.38 385.77

Table 6: Different calibration settings for SCRI.

Frame Time-step FID-VID↓ FVD↓ Time-cost(s)
1 1 52.37 415.64 100.87
16 1 51.21 407.93 100.87
16 25 50.60 406.95 2534.51

remarkably achieving a score of only 0.05 lower than that of full
precision (Smooth-CLIP).

5.3 Ablation Studies
In our ablation studies, we meticulously dissect the impact of each
component in our QVD. These experiments are performed using
the TED-talks dataset with W8A8 quantization, aiming to elucidate
the individual contributions of different components to the overall
effectiveness of the model. Linear quantization served as the baseline,
adopting the MinMax calibration strategy for weight quantization
and the MSE calibration strategy for activation quantization. Our
analysis involves examining the effects of SCRI and HTDQ, as
detailed in the following.

Overall Effect of HTDQ and SCRI. Table 3 outlines the col-
lective impact of these components. The baseline model with linear
quantization scores an FID-VID of 80.70 and an FVD of 618.33.
Incorporating HTDQ remarkably improves these metrics to 61.22
and 483.99, respectively. Similarly, adding SCRI yields an improve-
ment, achieving scores of 67.57 (FID-VID) and 529.70 (FVD). The
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Figure 7: A comparison of generation samples between Q-Diffusion, QVD, and the full-precision model. The upper figure demonstrates
the generative outcomes of AnimateDiff, while the lower figure showcases the results from the Magic-Animate model.

combination of both HTDQ and SCRI (our complete Magic-animate
model) further reduces these scores to 49.38 (FID-VID) and 385.77
(FVD), underlining the benefit of integrating both components.

Detailed Ablation of HTDQ. To dissect the influence of HTDQ,
we consider two stages in its integration (Table 4): the log quanti-
zation and our enhanced HTDQ. The experimental data presented
in Table 4 clearly indicates the superiority of our enhanced HTDQ
over the log quantization. When comparing the SCRI+Log2 Quant
method and that with full SCRI+HTDQ, there is a noticeable im-
provement in both FID-VID and FVD scores, dropping from 50.43
to 49.38 for FID-VID, and from 398.07 to 385.77 for FVD. This
demonstrates that our HTDQ, with its additional refinements, effec-
tively enhances the quality of the quantized animations, offering a
more faithful representation compared to the baseline.

Exploring the Impact of SCRI. In our ablation study detailed
in Table 5, we compare the impact of different scaling methods on
quantization quality. When the shift operation is removed from the
OS+ [57] method, we see a modest improvement in both FID-VID
(reduced from 51.21 to 50.48) and FVD (lowered from 407.93 to
405.16). Further refining the scale computation in our SCRI method
yields even better results, with a notable decrease in FID-VID to
49.38 and FVD to 385.77, demonstrating the effectiveness of our
adjustments in scale calculation for quantization.

Investigating Calibration Efficiency. To enhance the efficiency
of the search process of SCRI, we investigate the impact of varying
the number of frames and time steps on the calibration outcomes.

As shown in Table 6, a calibration setup using 16 frame features
and 1 time-step achieves a balance between performance and time
efficiency. All the experiments are conducted based on this setup.

5.4 Comparison of Visualization Results
Figure 7 shows the W8A8 qualitative results on FS-COCO and
TED-talks datasets. When the reference is sketch (top), Linear Quan-
tization and Q-Diffusion exhibit grid-like artifacts in their prediction
results, while QVD successfully eliminates this issue and more
closely approximates the performance of a full-precision model.
When the reference is the motion video (bottom), Q-Diffusion gen-
erates noise and disordered backgrounds in its outputs. Moreover,
QVD demonstrates superior detail retention for moving objects,
exemplified by the hand of the speaker in the lower right corner.

6 CONCLUSION
In this work, we explore the application of post-training quantization
in video diffusion models. We identify the significance of distinctive
features for high-quality video generation and introduce the HTDQ
method to preserve the discriminability of temporal features after
quantization. Additionally, we observed a severe inter-channel varia-
tion issue in video diffusion models. To address this, we proposed
the SCRI method to integrate activations across channels, thereby
enhancing the performance of the quantized model. Our proposed
QVD quantization framework is the first to quantize video diffusion
models to 8-bit without significant performance degradation.
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