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In this supplementary material, we briefly introduce the volumetric mapping of TANDEM (sec-1

tion 1), discuss the initialization in section 2, show further experimental results (section 3), give2

more details regarding our experiments (section 4) and, finally, provide implementation details for3

TANDEM in section 5 including the possibility to deploy TANDEM on an embedded device (cf.4

section 5.3). Upon publication, we will release our code for TANDEM as well as the rendered5

Replica sequences to facilitate the reproduction of our results.6

We also urge the readers to watch the supplementary video which shows the real-time demos of7

TANDEM running on the unseen sequences.8

1 Volumetric Mapping9

We use TSDF fusion [1] to fuse the per-keyframe estimated depth maps into a globally consistent and10

dense 3D model. Storing the TSDF values within a dense voxel grid has a cubic memory requirement11

in the spatial resolution of the grid and is thus unpractical. We employ voxel hashing [2] to alleviate12

this issue. The TSDF fusion is run on the GPU to ensure real-time performance.13

For each voxel of the grid we store the estimated TSDF value Di(x) ∈ R, the estimated RGB values14

Ci(x) ∈ R3, and the weight Wi(x) ∈ R, where x indexes the 3D location and i indexes the time.15

After our CVA-MVSNet has predicted a new depth map, we iterate over all voxels within the trun-16

cation distance and update their stored quantities. Let di+1(x) ∈ R be the projective TSDF value17

of the voxel at x based on the depth map from the CVA-MVSNet. Furthermore, let ci+1(x) be the18

associated RGB value from the input image, then19

Di+1(x) =
Wi(x)Di(x) + di+1

Wi(x) + 1
, (1)

Ci+1(x) =
Wi(x)Ci(x) + ci+1

Wi(x) + 1
, (2)

Wi+1(x) = min(Wi(x) + 1, 64) . (3)

The weight Wi(x) is truncated at 64 (cf. Equation 3) to ensure that new measurements can influence20

the estimated quantities and avoid over-saturation. Depth maps are rendered from the TSDF volume21

using raycasting [1] and used for the proposed dense front-end tracking.22

Because TANDEM is a monocular, geometry-based method the overall scale of the scene is not23

observable. Therefore, the voxel grid is scaled with the same scale as the visual odometry. The24

grid uses a voxel size of 0.01 which roughly corresponds to 2.5cm depending on the exact scale25

of a particular scene and run. We use a truncation distance for the TSDF of 0.1 which roughly26

corresponds to 25cm. The global scale ambiguity that is common to all monocular, geometry-27

based methods renders the voxel size scene dependent. For our experiments the scene scale does28

not vary considerably and therefore we use a fixed voxel size. However, when considering scenes29

of different extent, the voxel size and truncation distance have to be set accordingly, which is also30
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necessary when running classical TSDF fusion. The internal scale of TANDEM is generally such31

that the mean depth of the sparse points in the first frame is approximately identity.32

The CVA-MVSNet requires a minimum and maximum depth value for inference, which is usually33

given in the dataset. However, during the live operation of TANDEM, we do not know the relative34

scale between the world and our reconstruction. To facilitate the live operation of TANDEM, we35

choose a simple strategy: the minimum depth is set 0.01, which is small enough to capture all36

objects, and the maximum depth is initially set to ten times the mean depth of the sparse points. For37

each following invocation of the CVA-MVSNet, we set the maximum depth to 1.5 times the previous38

maximum depth estimated by the network, which ensures that the whole scene is covered while39

providing good depth resolution. We found this simple scheme to work well in our experiments.40

2 Initialization41

The proposed CVA-MVSNet operates on a keyframe window and thus the tracking is initialized the42

same way as in DSO [3] with non-linear optimization on poses and the sparse depth. The TSDF43

volume is initialized to represent empty space, i.e. with zero weights W0(x) = 0 ∀x. Because we44

use voxel hashing [2] to represent the TSDF volume, empty space can be represented very efficiently45

by not allocating any voxel blocks. After the first dense depth map is predicted and integrated into46

the TSDF volume, TANDEM uses the rendered nearly dense depth maps for tracking as can be seen47

from Figure 5.48

3 Further Experimental Results49

We show the trajectory evaluation on ICL-NUIM in Figure 1 and Table 1. Similar to the evaluation50

on the EuRoC dataset in the main paper, we see that the proposed TANDEM shows better results51

than DSO and DeepFactors [4]. Furthermore, TANDEM performs favourably in comparison to the52

tracking component of DeepTAM [5] that uses ground truth depth maps. We compare the trajectories53

for DeepFactors and TANDEM on the office1 sequence of the ICL-NUIM dataset in Figure 2. In54

Figure 3 we reproduce Figure 3 from the main paper in higher resolution to enable closer inspection55

of the generated depth maps. Furthermore, we show additional qualitative depth map comparisons56

in Figure 4. In section 3.1 we discuss failure cases and challenges for TANDEM. The nearly dense57

depth maps used for tracking by TANDEM and the sparse depth maps from the photometric bundle58

adjustment are shown in Figure 5 and Figure 6.59

3.1 Failure Cases and Challenges60

Dense monocular SLAM is a challenging problem [6] and most systems fail in certain scenarios or61

perform worse given certain challenges. Any system that involves deep learning has to consider the62

generalization capability of neural network since, for SLAM, the training and testing datasets will63

practically always differ. Pure rotational motion is a known challenge for both visual SLAM and 3D64

reconstruction due to the unobservability of depth. Dynamic scenes, rolling shutter, and geometric65

errors are well known failure cases in SLAM if they are not modelled explicitly. While some of66

the aforementioned failure cases and challenges can be overcome by explicit modelling or through67

employing different techniques for tracking or mapping, this often leads to an increase in runtime68

and system complexity. In the following, we describe the weaknesses and the failure cases of the69

proposed system in order to facilitate further research in this direction:70

Neural Network Generalization Generalization of deep neural networks is well known to pose71

challenges [7] and a general solution has yet to be proposed. For deep MVS multiple remedies72

have been proposed, including diverse training datasets [8], specific architecture choices [9, 10],73

and self-supervised adaption [11, 12]. While our CVA-MVSNet already shows good generalization74

capabilities as it was trained on either the ScanNet or the Replica dataset and generalizes to the ICL-75

NUIM and EuRoC datasets, the error metrics are better for the training datasets. Although initial76

experiments with specific architectures as well as self-supervised adaption didn’t show convincing77

results for our training and testing datasets, we consider this a good direction for future research. For78

practical applications we consider the utilization of diverse training data together with re-training for79

new scenarios the most promising direction.80
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Figure 1: Trajectory evaluation on the ICL-NUIM dataset. Because all systems use monocular
images we perform Sim(3) alignment w.r.t. the ground truth trajectories. We show the color-coded
absolute trajectory error (ATE) for five runs. The results show that our dense tracking improves
the robustness over DSO. DeepFactors produces nearly identical results for all five runs in this
experiment but shows a higher median error.

Pure Rotational Motion Pure rotational motion is critical because the depth of a point cannot81

be inferred, which leads to problems for tracking as well as depth estimation using MVS. While82

some purely rotational motion can be handled by TANDEM if the system has been initialized well,83

rotation-only motion during initialization will lead to failure in tracking. We experimentally val-84

idate this using the sequence office0 from the ICL-NUIM dataset. This sequence contains highly85

rotational motion and thus the results of TANDEM and DSO are worse in comparison to the office186

sequence or the living room sequences (cf. Table 1). We investigate the effect of rotational motion87

during initialization by starting the office0 sequence at frame 300, which is followed by a rotation88

along the ceiling of the office. Although the subsequence is shorter than the full sequence, the mean89

RMSE of the absolute pose error for TANDEM increases from 0.056m to 0.354m, which shows90

that rotational motion during initialization remains an open challenge.91

Dynamic Scenes While the photometric bundle adjustment of TANDEM can implicitly handle92

dynamic objects if they constitute a relatively small fraction of the scene, the deep MVS fully relies93

on a static scene. Such scenarios are favourable for mono-to-depth-based methods as they are inde-94

pendent of the scene dynamics when predicting the depth. On the other hand, dynamic objects can95

be explicitly modelled within the cost volume [13].96

Rolling Shutter The rolling shutter effect is known to be problematic for direct SLAM because97

not all pixels correspond to the same time and thus the same pose [14]. To investigate the effect of98

rolling shutter on TANDEM we use the ICL-NUIM living room sequences with synthetic rolling99

shutter proposed in [15]. For the sequences living0 and living1 the mean ATE RMSE increases from100

0.006m to 0.018m and from 0.005m to 0.074m, respectively.101

Geometric Error Photometric methods are susceptible to geometric errors, e.g. from an inaccu-102

rate camera calibration, because these geometric errors are, in contrast to feature-based methods,103

not modeled explicitly. We simulate geometric errors by using an incorrect calibration for the ICL-104

NUIM living room sequences, specifically we add 5 px to fx, fy, cx, and cy . For the sequences105

living0 and living1 the mean ATE RMSE increases from 0.006m to 0.041m and from 0.005m to106

0.026m, respectively.107

4 Experimental Details108

4.1 Poses and Alignment109

For the ablation study, we use ground-truth poses and a fixed set of keyframe windows to enable a110

fair and accurate comparison.111

For the depth evaluation on ICL-NUIM and EuRoC, we run our visual odometry once to generate112

poses as well as keyframe windows. We use the same poses and keyframe windows to evaluate Cas-113
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Figure 2: Estimated trajectories of DeepFactors and TANDEM on icl/office1. For both methods we
select the run with the median error (cf. Figure 1).

Table 1: Pose evaluation on ICL-NUIM [18]. All the methods except DeepTAM are Sim(3) aligned
w.r.t. the ground-truth trajectories. The mean absolute pose errors in meters and the standard de-
viations over five runs are shown. †For DeepTAM the official implementation contains only a pure
tracking mode that requires ground truth depth maps for tracking, therefore, SE(3) alignment is per-
formed because the scale is observable through the depth maps. Note that we show the result of a
single run for DeepTAM since the results are consistent across multiple runs.

Sequence DeepTAM† [5] DeepFactors [4] DSO [3] TANDEM

icl/office0 0.086 (-) 0.226 (± 0.000) 0.270 (± 0.070) 0.056 (± 0.126)
icl/office1 0.030 (-) 0.175 (± 0.001) 0.069 (± 0.102) 0.017 (± 0.021)
icl/living0 0.025 (-) 0.315 (± 0.001) 0.006 (± 0.000) 0.006 (± 0.000)
icl/living1 0.034 (-) 0.049 (± 0.000) 0.005 (± 0.000) 0.005 (± 0.000)

MVSNet, Ours (ScanNet), and Ours (Replica) to enable a fair and accurate comparison. Evaluating114

based on the full system would introduce significant non-determinism into the results. Because115

TANDEM is a monocular method, we use the scale estimated from the Sim(3) alignment of the116

trajectory to scale the depth maps. Since DeepFactors does not estimate very accurate poses on the117

EuRoC dataset (cf. Table 4 in the main paper), we scale align each depth map individually using118

the median scale between the ground-truth depth map and the predicted depth map. This procedure119

potentially overestimates the accuracy of DeepFactors, which is important to note when comparing120

with other methods.121

For the comparison to iMAP, we use the Sim(3) alignment of the trajectory of TANDEM and the122

ground truth trajectory to transform the mesh into the same coordinate frame as the reference.123

For the comparison on EuRoC we rectify the images s.t. the resulting images have resolution124

640× 480 and evaluate all methods except CodeVIO on the same rectified images for a fair com-125

parison. For CodeVIO no public source code is available and we thus use the numbers published by126

the authors. Using a different rectification protocol can result in different results, which is often not127

obvious from the paper.128

4.2 Depth Evaluation Metrics129

For the following we will use y∗i to denote the ground-truth depth value in meters and yi to denote130

the corresponding predicted depth value. All metrics are computed per image first and then the131

average is taken over all images within the sequence. We let the index i = 1, . . . , N enumerate all132

pixels with valid ground-truth depth for a given image. Note that thus there holds y∗i > 0, ∀i.133

The paper uses inconsistent metrics, e.g. a1 and d1, because prior works, e.g. DeepFactors and134

CodeVIO, used inconsistent metrics. Additionally, for some prior works, e.g. CodeVIO and CNN-135

SLAM, the source code is not available and therefore we cannot evaluate all methods using one136

consistent metric.137
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For the comparison on ICL-NUIM we follow DeepFactors and use the a1 metric138

a1 =
100

N

N∑
i=1

1(|yi − y∗i |/y∗i < 0.1) , (4)

where 1(·) is the indicator function. The a1 metric gives the percentage of pixels for which the139

estimated depth falls within 10% of the ground-truth depth.140

For the ablation study, we follow DeepFactors and use the a1 metric. We found that this metric is141

saturated because all configurations reach more than 98% and thus also show the stricter a2 and a3142

metrics defined by143

a2 =
100

N

N∑
i=1

1(|yi − y∗i |/y∗i < 0.01) , (5)

a3 =
100

N

N∑
i=1

1(|yi − y∗i |/y∗i < 0.001) . (6)

The a2 and a3 metrics give the percentage of pixels for which the estimated depth falls within 1%144

and 0.1% of the ground truth depth. Additionally, we show the mean absolute error in centimeters145

Abs =
100

N

N∑
i=1

|yi − y∗i | . (7)

For the comparison on EuRoC we follow CodeVIO and use the d1 metric as introduced by Eigen et146

al. [19]147

d1 =
100

N

N∑
i=1

1

(
max(

yi
y∗i

,
y∗i
yi

) < 1.25
)
. (8)

5 Implementation Details148

5.1 CVA-MVSNet149

We list all the hyperparameters and their corresponding values in Table 5.150

Architecture. The proposed CVA-MVSNet consists of three trainable components: the feature151

extraction network (cf. Table 2), the view aggregation network (cf. Table 3), and the cost regulariza-152

tion network (cf. Table 4). The feature extraction network takes as input each frame Ii and outputs153

the corresponding multi-scale feature maps Fs
i , which are denoted by out.stage1, out.stage2,154

out.stage3 in Table 2. The weights are shared for all frames. The view aggregation network takes155

as inputs the single frame cost volumes (Vs
i −Vs

j)
2 and outputs the aggregation weights Ws

i . The156

weights are shared for all frames but are not shared for the three stages. The cost regularization157

network takes as input the aggregated cost volume158

Cs =

∑n
i=1,i6=j(1 +Ws

i ) � (Vs
i −Vs

j)
2

n− 1
,

and outputs the probability volume Ps. There is a single network for all frames and the weights are159

not shared for the three stages.160

5.2 Runtime161

We report the mean runtimes for the single components of TANDEM in Table 6. Overall, TANDEM162

requires an average of 47 ms of processing time per frame, which gives a throughput of ca. 21 FPS.163

Additionally, Table 6 shows that using asynchronicity and parallelism between CPU and GPU is164

necessary to achieve real-time capability.165
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Table 2: Feature extraction network. Layers are 2D convolutions or nearest neighbor interpolation
with a scale factor 2, which we denote by ↑. For all layers we show the input and the channels (chns).
For convolutions, we additionally show the kernel size (k), the stride (s), the padding (p), if the layer
uses batch normalization (bn), and the activation function (act). Only the layers skip.stage2 and
skip.stage3 have a bias term. We use batch normalization before the activation function.

Layer input k s p chns bn act

conv0.0 image 3 1 1 3→ 8 X ReLU
conv0.1 conv0.0 3 1 1 8→ 8 X ReLU

conv1.0 conv0.1 5 2 2 8→ 16 X ReLU
conv1.1 conv1.0 3 1 1 16→ 16 X ReLU
conv1.2 conv1.1 3 1 1 16→ 16 X ReLU

conv2.0 conv1.2 5 2 2 16→ 32 X ReLU
conv2.1 conv2.0 3 1 1 32→ 32 X ReLU
conv2.2 conv2.1 3 1 1 32→ 32 X ReLU

out.stage1 conv2.2 1 1 0 32→ 32

skip.stage2 conv1.2 1 1 0 16→ 32
inter.stage2 ↑ conv2.2+ skip.stage2 32→ 32
out.stage2 inter.stage2 3 1 1 32→ 16

skip.stage3 conv0.1 1 1 0 8→ 32
inter.stage3 ↑ inter.stage2+ skip.stage3 32→ 32
out.stage3 inter.stage3 3 1 1 32→ 8

Table 3: View aggregation network. All layers are 3D convolutions. We show the input, the kernel
size (k), the stride (s), the padding (p), the channels (chns), if the layer uses batch normaliza-
tion (bn), and the activation function (act). All layers have a bias term. We use batch normalization
before the activation function. The single frame cost volumes (single frame cost volume) have
32 channels for stage 1, 16 channels for stage 2, and 8 channels for stage 3.

Layer input k s p chns bn act

conv0
single frame
cost volume

1 1 0 (32, 16, 8)→ 1 X ReLU

conv1 conv0 1 1 0 1→ 1 X ReLU

5.3 Deployment on an Embedded Device166

For a SLAM system in the context of mobile robotics the deployment to an embedded platform is167

necessary for operation in the real world, if no uninterrupted connection to a server is available to168

offload computation. While we consider the actual deployment to an embedded system outside the169

scope of this research work, we show in the following that such a deployment is possible while170

maintaining accurate results.171

An embedded system can benefit from software optimizations such as 16-bit float inference or172

NVIDIA TensorRT [24], which can bring speedups of up to 2× and 2.5×, respectively [25]. How-173

ever, we consider these engineering-focused optimizations outside the scope of this work.174

The inference time for our CVA-MVSNet given in the main paper is 158 ms and decreases to 133175

ms by switching from PyTorch 1.5 to PyTorch 1.9. The 2D feature extraction network is run on all176

images from the keyframe window, while for all but one image the feature maps have been computed177

before. This fact can be used to save computational cost, however, to simplify the implementation,178

we did not use this optimization for the timings in Table 1. If the feature extraction network is run179

for only one image, the overall inference time decreases from 133 ms to 118 ms.180

For the EuRoC experiment in the main paper we use images of size 640 × 480, which is relatively181

high in comparison to the image size used by DeepFactors of 256 × 192. Using this smaller image182

size decreases the inference time from 118 ms to 26.5 ms, a 77.5% relative improvement. The183
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Table 4: Cost regularization network. All layers are either 3D convolutions (conv) or 3D trans-
posed convolutions (convT). For all layers, we show the input, the kernel size (k), the stride (s),
the padding (p), the channels (chns), if the layer uses batch normalization (bn), and the activation
function (act). For transposed convolutions we show the output padding (op). We use batch nor-
malization before the activation function. No layer has a bias term. The stride S (cf. conv5 and
convT7) is 2 for the first stage of CVA-MVSNet and (1, 2, 2) for stages 2 and 3 because of the re-
duced number of depth planes. For the same reason, the output padding P (cf. convT7) is 1 for stage
1 and (0, 1, 1) for stages 2 and 3. The cost volume (aggregated cost volume) has 32 channels
for stage 1, 16 channels for stage 2, and 8 channels for stage 3.

Layer input k s p op chns bn act

conv0
aggregated
cost volume

3 1 1 (32, 16, 8)→ 8 X ReLU

conv1 conv0 3 2 1 8→ 16 X ReLU
conv2 conv1 3 1 1 16→ 16 X ReLU

conv3 conv2 3 2 1 16→ 32 X ReLU
conv4 conv3 3 1 1 32→ 32 X ReLU

conv5 conv4 3 S 1 32→ 64 X ReLU
conv6 conv5 3 1 1 64→ 64 X ReLU

convT7 conv6 3 S 1 P 64→ 32 X ReLU

convT8 conv4 + convT7 3 2 1 1 32→ 16 X ReLU

convT9 conv2 + convT8 3 2 1 1 16→ 8 X ReLU

prob conv0 + convT9 3 1 1 8→ 1 Softmaxdepth

model trained on 640×480 images can be used for any resolution due to the fully-convolutional and184

geometry-based CVA-MVSNet and achieves an absolute error of 6.52 cm on the Replica validation185

set in comparison to 2.33 cm for the full resolution. However, when evaluating on EuRoC using the186

lower resolution results in an average accuracy (d1) of 91.43% in comparison to 94.40%. The much187

smaller difference is due to the domain shift and additionally due to the relative laxness of the d1188

metric. Overall, the lower-resolution model is computationally much more efficient at a reasonable189

accuracy decrease.190

Finally, TANDEM produces new keyframes often and marginalizes them early, which has been191

shown to aid tracking [3, 26]. A new keyframe is created roughly every 5 frames and the MVS192

network is called for each new keyframe. It would be possible to estimate depth only for every193

second keyframe to trade-off runtime and reconstruction quality.194

Combining all the aforementioned measures decreases the inference time from 158 ms to 25.6 ms,195

a 83.2% decrease, while maintaining reasonable reconstruction quality and without optimizations196

like Nvidia TensorRT. Additionally, the network could be used on every second keyframe, i.e. with197

ca. 2 Hz. This combination makes our CVA-MVSNet 20× real-time on an RTX 2080 super. The198

embedded Nvidia Jetson AGX Xavier has ca. 15% of the computing power of the RTX 2080 super199

and thus our CVA-MVSNet could potentially reach real-time on this device even without NVIDIA200

TensorRT. The classic SLAM components of TANDEM can be run in real-time on an embedded201

device [27], hence the proposed TANDEM could likely be implemented on an embedded device in202

real-time while maintaining reasonable reconstruction quality.203
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Table 5: Hyperparameter Table.

Value Description

min depth 0.01 Minimal depth value in meters used for generating
the depth planes for our CVA-MVSNet.

max depth 10.0 Maximal depth value in meters used for generating
the depth planes for our CVA-MVSNet.

depth planes (48, 4, 4) Number of depth planes for each stage.

depth intervals (0.213, 0.106, 0.053) The distance in meters between two depth planes
for each stage. For the first stage, the planes are
evenly spaced between the minimum and maximum
depth. For stages 2 and 3 the interval is divided by
2 and 4, respectively.

optimizer Adam We use the default parameters: (β1, β2) =
(0.9, 0.999) and ε = 10−8.

learning rate 0.004 Learning rate at the start of the schedule.

learning rate schedule linear decay Linear decay from lr to lr/100.

epochs 50 The number of training epochs on the Replica
dataset.

batch size 4× 2 We train with 4 GPUs with batch size 2 on each
GPU without synchronized batch norm.

BN momentum 0.1 Batch normalization momentum.

image size 640× 480 The size of images and depth maps on the finest
scale, i.e. stage three.

Table 6: Timing results for TANDEM on EuRoC/V101. We show the averaged per-frame times and
the averaged per-keyframe times and timed 2685 single frames for which 722 keyframes were cre-
ated. Processing one frame takes 47 ms, which gives a throughput of ca. 21 FPS. The CVA-MVSNet,
TSDF fusion, and Bundle Adjustment are run only for keyframes and thus we show the time taken
per keyframe as well as the average time taken per frame, which is ca. four times lower due to the
ratio of frames and keyframes. Note that the CVA-MVSNet per-keyframe time is lower than what
we reported in the main paper (cf. Table 1) because we use asynchronicity and parallelism between
CPU and GPU to ensure real-time performance.

Per Frame [ms] Per Keyframe [ms]
Number 2685 722

CVA-MVSNet 22.6 53.0
TSDF Fusion 29.3

Coarse Tracking 10.5
Bundle Adjustment 13.9 45.2

Sum 47.0
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Figure 3: Depth comparison for DeepFactors [4], Atlas [16], and TANDEM on unseen sequences.
TANDEM produces finer-scale details, e.g. the plant in the second column, or the ladder in the third
column. For EuRoC only sparse ground-truth depth is available. This is a high-resolution version of
Figure 3 from the main paper. In Figure 4 we show further qualitative results.
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Figure 4: Further depth comparison for DeepFactors [4], Atlas [16], and TANDEM on unseen
sequences. TANDEM produces finer-scale details, e.g. the computers in the first column, the pillows
in the second column, or the radiator in the third column. However, TANDEM can produce outliers
due to the cost volume-based formulation (cf. third column upper left corner of the image). For
Atlas, the reconstruction of office0 is too small and thus the rendered depth has an invalid region
(the blue blob in bottom left). For EuRoC only sparse ground-truth depth is available.
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Figure 5: Tracking Depth Maps for EuRoC/V201. For every second keyframe we show the image
(left), the depth map used for tracking by TANDEM (middle), and the sparse depth map that would
be used without the dense tracking (right). For the first few keyframes no dense depth is available
and thus TANDEM uses the sparse depth map for tracking. Note that, as in DSO, the sparse depth
maps are slightly dilated before they are used for tracking. Further frames are shown in Figure 6.
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Figure 6: Tracking Depth Maps for EuRoC/V201. For every second keyframe we show the image
(left), the depth map used for tracking by TANDEM (middle), and the sparse depth map that would
be used without the dense tracking (right). The nearly dense depth map represents the scene well
and thus the dense tracking can give more accurate results than the sparse tracking [17, 6]. The dense
depth map also incorporates the sparse depth values which can be seen at occlusion boundaries. Note
that, as in DSO, the sparse depth maps are slightly dilated. Previous frames are shown in Figure 5.
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