
A Implementation Details of Stochastic Three Point Approach1

In Alg.1 , we can see the typical workflow of the stochastic three-point algorithm (STP).2

Algorithm 1 Stochastic Three Point

while within Descent budget do
dx← random sampling
X← argmin(f(X), f(X + dx), f(X - dx))

end while

For our implementation, we have redesigned two versions of STP which are compatible with our3

search approach. In first place, the descent direction dx is not entirely random, but is sampled by4

Latin Hypercube Sampling within the domain of the step size. The length in each dimension is5

rescaled by the correlation length L from the local surrogate model, while maintaining the total length6

of dx: dx = dx · L · ||dx||/||dx · L||. Further, the choice of dx is made by maximizing the expected7

improvement on the local surrogate model G: train G(x), x ∈ collected samples at the node, and8

dx = argmin
dx

G(X + dx), where X is the best point at the node.9

The first implementation is fundamentally similar to the typical STP as in Alg.2, with the exception10

that it continues to test along the same dx whenever it find a better value for G(X+dx) or G(X−dx):11

Algorithm 2 STP for local descent optimizer

X ← best point at the node
Train surrogate model G(x), x ∈ collected samples
while within Descent budget do
DX ← Latin Sampling · Correlation Length L · Step Size α
dx← argmin

dx∈DX
G(X + dx)

k← 0
while G(X + (k + 1) · dx) < G(X + k · dx) do

k ← k + 1
end while
X← argmin(f(X + dx), f(X))

end while
12

Algorithm 3 Fine-grained STP

X ← best point at the node
Train surrogate model G(x), x ∈ collected samples
while within Descent budget do
DX ← Latin Sampling · Correlation Length L · Step Size α
dx← argmin

dx∈DX
G(X + dx)

k0, k−, k+ ← 0.0, -1.0, +1.0
while within computational budget do

k0← argmin
k∈(k0,k−,k+)

G(X + k · dx)

update k−, k+
end while
X← argmin(f(X + k0 · dx), f(X))

end while

The second one differs from the first implementation by always trying to test two more points, which13

have never been tested, on either side of the current point. As an example, if X , X + dx, and X − dx14

are currently being compared, and X + dx is the best point of the three, the two points that will be15

tested in the next step are X +2 · dx and X +0.5 · dx (since X + dx has already been tested and we16

need to select two more points in either side of X + dx for evaluation). Should X be the best point17

1

among X , X+dx, and X−dx, the next round will be to test X , X+0.5 ·dx, and X−0.5 ·dx. The18

second version of the STP model, illustrated in Alg.3, may yield better results in fine-grain, however19

it is more computationally expensive. As a result, we switch to this fine-grained model when the20

function value drops below a threshold.21

B Hyperparameters22

In this chapter, we demonstrate the hyperparameters for various test functions in LaMCTS and23

MCDesent24

B.1 LaMCTS25

In LaMCTS, Cp is responsible for controlling the amount of exploration. Having a small Cp will26

make the search focus exclusively on the current best found value, but may result in being stuck at a27

local optimum. By contrast, a large Cp encourages LaMCTS to explore poor regions more frequently,28

but this can result in overexploration. The type of kernel and gamma determine the shape of the29

boundary drawn by the classifier in LaMCTS. Additionally, the leaf size determines the splitting30

threshold and the rate of tree growth. In all tests LaMCTS uses TuRBO-1 sampling method as default.31

All hyperparameters for LaMCTS are as listed below:32

Table 1: Hyperparameters used in LaMCTS for each of the test functions
Functions Cp Leaf size Num. of initial Kernel type Gamma type

Ackley-50d 1. 10 40 rbf auto
Ackley-100d 1. 10 40 rbf auto

Michalewicz-100d 10. 8. 40 rbf auto
Hopper-33d 10 100 150 poly auto
Walker-102d 20 10 40 poly scale
Walker-204d 20 10 40 poly scale

HalfCheetah-102d 20 10 40 poly scale
CIFAR-10 10 8 10 poly auto

CIFAR-100 10 8 10 poly auto

B.2 MCDesent33

As part of our MCTD approach, we have several hyperparameters that can be tuned during tests.34

As a first step, we may allow a specific number of computational calls from both the local descent35

optimizer and the local BO optimizer to the objective function. Typically, the total number of calls36

allowed in a single iteration is either 30 or 40 in order to ensure that enough steps are performed by the37

optimizers in one iteration. One may, however, want to combine the two algorithms to maximize the38

benefits. Such a situation could be addressed by splitting the budget among a local descent optimizer39

and a local BO optimizer according to different ratios. Furthermore, in local descent, we can specify40

the step size α for the optimizer, and when to change over to fine-grained descent optimization. The41

step size in our algorithm is relative to the dimensional length of the test function, and we set to use42

the fine-grained descent optimizer when the best found value on the node is below a threshold. As a43

third point, the UCT of each node is determined by the equation44

ucti = −y∗i + Cd ·
J∑

j=1

(dyi,−j) + Cp ·
√

log nparent/ni (1)

, and one can adjust the weight of recent improvement Cd and the weight for exploration Cp. As45

a final step, we must decide when to expand the branch and the leaf node when selecting a path46

from the tree. To do this, we compute an additional UCT value that has the following setting:47

y∗
′
=

∑
(y∗i)/N , C

′

d = 0, and C
′

p ̸= Cp at every branch node, where N is the number of children at48

the branch node. This additional UCT value represents if the branch decides to explore in a new child49

domain, because the existing children are not performing well enough. And we apply the following50

2

criteria after selecting a leaf node in order to determine whether it is worth exploring or exploiting:51

−y∗ + C
′′

d ·
J

′′∑
j=1

dy−j > C
′′

p ·
√
log nleaf (2)

To summarize, we have the budget ratio, step size at local descent, function value at which using52

fine-grained descent, Cd and Cp at computing node UCT, C
′

p for branch exploration, and C
′′

d and C
′′

p53

for leaf exploration. The hyperparamters used for each test is as in Tab.2:54

Table 2: Hyperparameters used in MCTD for each of the test functions
Functions Bud. Rat. α Switch at f(x) Cd Cp C

′

p C
′′

d C
′′

p

Ackley-50d 1:1 0.2 10 10 0.5 0.1 50 0.1
Ackley-100d 1:1 0.2 4 20 0.5 0.1 5 0.1

Michalewicz-100d 1:2 0.02 -30 50 1. 0.2 1 10
Hopper-33d 1:2 0.1 -1000 100 1 10 100 200
Walker-102d 1:2 0.01 -100 100 0.1 50 50 50
Walker-204d 1:2 0.01 -100 100 0.1 50 50 10

HalfCheetah-102d 1:2 0.01 35000 50 1 1000 100 10
CIFAR-10 1:4 0.5 5 50 1 1 100 10
CIFAR-100 1:4 0.5 5 50 1 1 100 10

C Best Found Value in Test Functions55

On each of the functions tested, we present the best results using different methods and the fewest56

steps to achieve that result. Note for function Ackley-50d, Ackley-100d, and Michalewicz-100d we57

want to minimize the function value. In contrast, for MuJoCo tasks and NAS tests we want to find58

the highest reward or the highest accuracy.59

Table 3: Best Found Value / earliest step toward reaching that value from all tested functions. Bolded
result is the best one among all tested methods.

Functions MCTD TuRBO LaMCTS CMA Nealder-Mead RandomSearch
Ackley-50d 0.07/2342 1.33/1889 0.80/2018 0.13/3000 13.21/1225 12.32/1311

Ackley-100d 0.29/2826 2.81/2891 1.89/2971 1.77/3401 13.34/1616 12.37/1326
Michalewicz-100d -51.13/2975 -49.08/1776 -49.87/2945 -40.35/9015 -27.69/2017 -21.22/1759

Hopper-33d 3204/1890 3397/2574 2802/2858 3043/4128 67/4603 1220/193
Walker-102d 490/2472 665/1316 379/2056 657/3264 -4/414 91/1957
Walker-204d 993/2884 862/1673 498/1830 551/3386 - -

HalfCheetah-102d -3268/2446 -4679/2064 -4034/2970 -22062/3145 -101228/2271 -50542/1145
CIFAR-10 91.82/86 91.82/1296 91.48/2724 91.70/198 - 91.56/458
CIFAR-100 73.52/22 73.52/80 73.49/2433 73.52/135 - 73.52/338

Tab.3 illustrates that our MCTD approach obtains the best value with relatively fewer steps in most60

of the test cases out of five attempts. In particular, our approach performs reasonably well for cases61

where descent optimization can significantly improve the optimization performance. However, it62

should be noted that in some instances our approach leads to large variations between the different63

attempts. The adjustment of sample methods may provide one method for improving the descent64

optimization on those functions.65

D Selection of Nodes66

It is important to justify the expansion of the tree. Fig. 1 illustrates the nodes from which the query67

is made for the objective function. In Fig. 1(a), the root node is optimized for the first 200 queries;68

however, no significant improvement is evident for the next 300 queries. At this point, the tree decides69

to expand, so it creates a new child node, N01, and starts optimizing from this child. Nonetheless,70

3

(a) Node queries on HalfCheetah-102d (b) Node queries on Michalewicz-100d

Figure 1: Illustration of nodes at queries to the objective function

the optimization is also stuck after 200 more queries. Therefore, our tree abandons to optimize in71

N01, and adds a new child node named N02. On N02, the optimization procedure is significant,72

and a new best value is found. The tree in Fig. 1(b) attempts to optimize in the N01 and its new73

exploration child N011, however, the improvements on these nodes are insignificant. Consequently,74

the tree decides to optimize from the root inherit node. In light of the newly gathered samples upon75

exploring N01 and N011, optimization is able to proceed at the root inherit node. They demonstrate76

that the tuned tree model is capable of optimizing by selecting a correct node.77

E Optimization route78

Fig. 2 illustrates how MCTD, TuRBO, and LaMCTS optimize Ackley-2d and Michalewicz-2d in the79

first 30 samples after initialization. In both plots, LaMCTS explores a wide range of input domains,80

making it less likely to find a solution by a small number of calls. TuRBO locates efficiently the area81

where the optimal point is located in the beginning, however, its subsequent samples are diverse and82

fail to identify the global optimal solution. MCTD, on the other hand, samples much closer to the83

global optimal point and thus finds the solution more rapidly.84

(a) Search path on Ackley-2d (b) Search path on Michalewicz-2d

Figure 2: Search paths of different algorithms. The black star, the blue cross, and the orange circle
indicate the best values found by MCTD, TuRBO, and LaMCTS, respectively; the red dot represents
the starting point of all three methods.

4

	Implementation Details of Stochastic Three Point Approach
	Hyperparameters
	LaMCTS
	MCDesent

	Best Found Value in Test Functions
	Selection of Nodes
	Optimization route

