
Not All Errors Are Made Equal: A Regret Metric for
Detecting System-level Trajectory Prediction Failures

Kensuke Nakamura1 Ran Tian2 Andrea Bajcsy1

1Carnegie Mellon University 2 UC Berkeley
{kensuken, abajcsy}@andrew.cmu.edu, rantian@berkeley.edu

Abstract: Robot decision-making increasingly relies on data-driven human pre-
diction models when operating around people. While these models are known
to mispredict in out-of-distribution interactions, only a subset of prediction er-
rors impact downstream robot performance. We propose characterizing such
“system-level” prediction failures via the mathematical notion of regret: high-
regret interactions are precisely those in which mispredictions degraded closed-
loop robot performance. We further introduce a probabilistic generalization
of regret that calibrates failure detection across disparate deployment contexts
and renders regret compatible with reward-based and reward-free (e.g., gener-
ative) planners. In simulated autonomous driving interactions and social nav-
igation interactions deployed on hardware, we showcase that our system-level
failure metric can be used offline to automatically identify challenging closed-
loop human-robot interactions that generative human predictors and robot plan-
ners previously struggled with. We further find that the very presence of high-
regret data during predictor fine-tuning is highly predictive of closed-loop robot
performance improvement. Additionally, fine-tuning with the informative but sig-
nificantly smaller high-regret data (23% of deployment data) is competitive with
fine-tuning on the full deployment dataset, indicating a promising avenue for effi-
ciently mitigating system-level human-robot interaction failures. Project website:
https://cmu-intentlab.github.io/not-all-errors/

Keywords: Human-Robot Interaction, Trajectory Prediction, Failure Detection

1 Introduction

From autonomous cars in cities [1, 2, 3] to tabletop manipulators at home [4, 5, 6], robots operating
around people rely on data-driven trajectory during planning to to anticipate how others will behave.
Despite their widespread adoption in robot autonomy pipelines, current human prediction models
are still imperfect: they frequently mis-predict when faced with out-of-distribution interactions [7,
8] and are prone to causal misidentification [9] wherein the model “lazily” converges to incorrect
correlates in the data. These prediction errors can lead to critical downstream robot system failures,
impeding performance at best and compromising safety at worst. Thus, analyzing when and how
trajectory prediction errors lead to robot failures is critical for developing runtime monitors, creating
safety-focused benchmarks, and incrementally improving the prediction models themselves.

While current methods detect interaction data that is dissimilar to the training distribution [10]
or leads to highly uncertain or erroneous predictions [11, 12, 13], these are all fundamentally
component-level approaches that detect only when the predictor is faulty in isolation. However,
prediction errors at the component-level do not always lead to system-level robot decision-making
errors downstream [14]. Consequently, relying on component-level failures to evaluate, monitor, or
improve the prediction model is inaccurate and inefficient. For example, consider Figure 1. Even
though the robot’s predictions were faulty in all three scenarios, it is only in the latter two where this

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://cmu-intentlab.github.io/not-all-errors/

Figure 1: All scenarios have component-level prediction failures: mispredicting that parked cars will
turn (left), marooned truck will to move (center), and nearby cars will lane change (right). But, only
the center and right scenarios have system-level prediction failures which impact robot performance.

caused undesirable closed-loop robot behavior: collisions in the center and inefficiency in the right.
The core challenge we address is the automatic detection of such system-level prediction failures.

Our key insight is that the mathematical notion of regret is a rigorous way to identify system-
level prediction failures. High-regret interactions are precisely those in which mispredictions
caused the robot to make a suboptimal decision in hindsight. In Section 4 we formalize this idea
and introduce a probabilistic generalization of regret that no longer depends on explicit reward func-
tions for regret computation, extending its applicability to reward-free planners such as generative
models. In Section 6, we extract system-level failures offline from a dataset of collected deployment
interactions and compare our approach to alternative failure detection methods with a state-of-the-
art autonomous driving trajectory predictor and planner, and demonstrate the compatibility of our
approach with generative neural planners in a social navigation setting deployed on hardware with
on-board sensing. Finally, in Section 7, we conduct a case study where we find that fine-tuning a
robot’s human behavior predictor on the small amount of high-regret data (23% of the deployment
data) is highly predictive of system-level performance improvements at re-deployment.

2 Related Work

Interaction-aware Prediction. Interactive robots commonly use conditional behavior predictions
to model the influence between the robot’s decisions and other agents’ future behavior [15, 16,
4, 17]. More recently, there has also been a shift towards using multi-agent prediction models or
generative “foundation models” as planners [18, 19, 20, 21, 22, 23, 24]. However, these models
are overwhelmingly evaluated on log-replay data, missing out on the closed-loop interaction effects
between agents. This may lead to overly optimistic estimations of how the robot may influence
the behavior of others [25] and poorly affect downstream performance. We introduce a system-
level metric for evaluating interaction-aware predictors that quantifies closed-loop performance of
the trajectory predictor. We also show that fine-tuning such a predictor on identified system-level
failures leads to significant downstream performance improvements.

Component-level Failure Detection. Many prior works have studied the detection of anomalous
or out-of-distribution data (see [26] and [27] for surveys) relative to a prediction model’s training
data: classifying poor predictions based on average displacement error (ADE) [12, 28], Bayesian
filtering [8, 29, 30], kernel density estimation [31], uncertainty [11, 32], conformal prediction [33],
and evidential deep learning [10]. However, these approaches are fundamentally component-level,
ignoring the “downstream” effects of errors in the predictor on robot decision-making.

System-level Prediction Metrics. Our work contributes to the small-yet-growing area of developing
system-level metrics for evaluating components of the autonomy stack [34, 14, 35, 34, 36, 37, 38].
Existing system-level trajectory prediction metrics compare the difference between predicted and
incurred costs [37] or weight prediction errors by a task-dependent cost function [38, 39, 40]. In ad-
dition to evaluating predictors, system-level metrics can also be useful in the offline setting, wherein
datasets are mined for challenging examples. For instance, Stoler et al. [41] mine for safety-critical
interactions via heuristic features and Hsu et al. [42] mine via counterfactual responsibility metrics.
Our approach is also instantiated in an offline setting, but utilizes our novel regret metric to iden-
tify system-level human-robot interaction failures. Furthermore, our method does not require a cost
function to detect system-level failures, rendering our method compatible with reward-free planners.

2

3 Problem Formulation

Agent States, Actions, and Context. Let the robot state be denoted by sR ∈ RnR , and the state of
the M human agents in the scene be denoted by sHi ∈ Rni , i ∈ {1, . . . ,M}. For example, for an
autonomous driving application domain, each agent’s state can be represented as position, heading,
and velocity. All agents’ states evolve according to their respective control actions: aR ∈ RmR for
the robot (e.g., acceleration and turning rate) and aHi ∈ Rmi for the M humans, where nR and
mR are the dimensions of the robot state and action and are similarly defined for each human. For
shorthand, we denote the joint human-robot state at any time t as st = [sRt , s

H1
t , . . . , sHM

t]. Let a
T -length future sequence of actions starting at time t be aHi

t = [aHi
t , . . . , aHi

t+T] any human i and
aR
t = [aRt , . . . , a

R
t+T] for the robot. Finally, let C denote the scene or environment context (e.g.,

semantic map of the environment) used for both human prediction and robot decision-making.

Human Prediction & Robot Planning. We assume the robot has access to a pre-trained human
behavior prediction model Pθ with parameters θ capable of conditional generations [16, 18]. Math-
ematically, this predictor is:

Pθ(a
H1:HM
t | aR

t , st, C). (1)
The model can generate T -horizon predictions of all M humans in the scene, aH1:HM

t :=
[aH1

t , ...,aHM
t], conditioned on a robot action trajectory aR

t , scene context C, and current1 human-
robot state st. We also use the robot’s task-driven planner:

aR
t = πϕ(st, Pθ, C), (2)

with parameters ϕ. This planner generates a best-effort robot plan aR
t with respect to the current

joint state st, scene context C and predictions, Pθ. Within our framework, the robot’s planner
could be an optimization-based planner that uses a reward function (where ϕ are feature weights
of a pre-specified reward function) or a neural planner (where ϕ are the pre-trained neural network
weights). At deployment time, the robot’s planning model can be re-queried given new observations
and predictions in a receding horizon fashion. We assume that the planner is optimal under the given
reward function or the available data for planner design.

Problem Statement. We deploy the robot for T̂ time steps in N scenarios (e.g., different initial con-
ditions, environments) and collect an aggregate deployment dataset D = {(ŝ, âR, âH1:HM)n}Nn=1

consisting of observed state and action trajectories for the robot and M humans. Importantly, this
observed data exhibits how real interactions between the humans and robot occur, and are a function
of the robot’s predictive human model used during planning. We seek to automatically identify a
subset of deployment data, DF ⊂ D, that captures system-level prediction failures: deployment
interactions wherein prediction failures significantly impacted closed-loop robot performance.

4 A Regret Metric for Detecting System-level Trajectory Prediction Failures

Canonically, regret measures the reward (Rϕ) difference between the optimal action the robot could
have taken in hindsight (aR) and the executed action (âR) the robot took under uncertainty [43]:
Regt(d) := maxaR

t
Rϕ(a

R
t , â

H1:HM
t , ŝt, C)−Rϕ(â

R
t , â

H1:HM
t , ŝt, C), d ∈ D. If we were to rank

all the interactions in D by the robot’s regret, we could identify those with the highest regret as
a means of building our system-level failure dataset, DF . While regret is a principled measure of
system-level failures, directly using rewards during regret computation may not always be desirable.
First, not all robot planners use reward functions—for example, generative planners fit joint distribu-
tions to multi-agent behavior [18] and choose trajectories via their likelihood rather than an explicit
reward. This immediately makes canonical regret impossible to evaluate. Second, the canonical
regret definition assumes that the same difference in reward values in different deployment contexts
are fairly comparable. Unfortunately, in practice, when robots are deployed in a wide variety of
scenarios and contexts C, it is difficult to have such a perfectly calibrated reward. We illustrate this
technical point with an example from our simulation experiments (details in Section 5).

1The predictor Pθ can also accept a state history, st−h:t where h is the number of previous timesteps.

3

Figure 2: Illustrative Example. Left column:
robot’s predictions and deployment-time decision.
Right column: the counterfactual analysis given
observed human behavior. Each hindsight-optimal
action and executed action’s reward is on the right.

Illustrative Example. Consider Figure 2,
where the same robot (blue car) is deployed
in two different contexts: one where the robot
drives behind a stopped truck (C1) and the
other where it navigates an intersection (C2).
The robot’s reward is a tuned linear combina-
tion of control effort, collision penalty, road
progress, and lane-keeping.

In scenario C1, the robot mispredicts that the
stopped truck will accelerate; the robot initi-
ates a lane change and collides. In scenario
C2, the robot aggressively swerves to avoid
nearby traffic. Because of the absolute reward
difference between the best and the executed
action (right column, Figure 2), canonical re-
gret regards both scenarios as equally poor: C1 has a regret of 11.4 in C2 has 11.7. While the robot
could have taken a more optimal action in both scenarios, canonical regret is unable to identify that
the robot’s decision in C1 is more severely suboptimal than the decision in C2.

A Generalized Regret Metric. To address this calibration issue we propose that instead of looking
at the absolute reward of a decision, we consider the likelihood of it. This probabilistic interpretation
normalizes the quality of a decision relative to the context-dependent behavior distribution and is a
principled way to place all decision comparisons on the same scale—a value between zero and one.

Specifically, let Pϕ(a
R | âH1:HM , ŝ, C) be a likelihood model that yields the counterfactual prob-

ability of any candidate robot action sequence (aR) given the observed actions of the other human
agents (âH1:HM) and the observed joint state trajectory (ŝ) in that context C. Constructing this like-
lihood model only requires access to the robot’s planner; hence, it shares the same parameters as
the robot used for decision-making (ϕ). For example, if the robot is using a reward-based planner,
then this probability distribution is shaped according to the same reward weights and features that
the robot used for decision-making (see example in Equation 4). Additionally, this generalization to
probability-space allows us to calculate regret for generative neural planners, where the likelihood
model shares the same weights as the neural planner. For any human-robot deployment interaction
d := (ŝ, âR, âH1:HM) ∈ D, we quantify the generalized regret of a robot’s action at timestep t as:

Regt(d) := max
aR

t

Pϕ(a
R
t | âH1:HM

t , ŝt, C)− Pϕ(â
R
t | âH1:HM

t , ŝt, C). (3)

Illustrative Example. Consider the reward-based planning example from Figure 2. We model Pϕ

using the Luce-Shepard choice rule [44], which places exponentially more probability on robot de-
cisions that are high-reward. Our generalized regret metric results in an intuitive failure separation
where canonical regret failed: C1 has a higher regret of 0.56 compared to 0.34 in C2.

5 Simulation & Hardware Experimental Setup

We first instantiate our metric in the autonomous driving setting. Our prediction model Pθ is an ego-
conditioned Agentformer model [45] which takes as input a candidate robot (i.e., ego) trajectory aR

t ,
a history of all the vehicles in the scene st−h:t, and the map information C to output a prediction
of the behavior of all human (i.e., non-ego) vehicles aH1:HM

t . Our planner πϕ is an off-the-shelf
reward-based MPC planner [46] who’s parameters ϕ are weights of a hand-tuned reward function
consisting of lane progress, lane-keeping, collision cost, and control cost (see Appendix 9.1). We
pretrain Pθ on the nuScenes training split [47] and we obtain our closed-loop deployment dataset D
consisting of 96 simulated 20-second scenarios from the BITS simulator [48] where each scenario’s
map and initial agent history are initialized from the nuScenes validation split.

We further instantiate our approach for generative robot planners on an Interbotix LoCoBot [49],
shown in Figure 3. The LoCoBot has an Intel D435 RGB-D camera and RPLIDAR A2 2-D Lidar

4

Figure 3: Left: The robot correctly predicts the human will block its goal and proceeds straight.
Middle: The robot incorrectly predicts that the human will walk straight ahead, however it is able to
reach its goal despite the misprediction. Right: The robot mispredicts that the human will block its
goal and proceeds straight, colliding with the human who also walked straight ahead. The robot’s
executed trajectory is unlikely conditioned on the human’s true actions and is assigned high regret.

mounted on a Kobuki mobile base. We model the robot as a Dubins’ car [50] which must reach a goal
position gR unless it would cause a collision with a nearby freely moving pedestrian, in which case
it navigates to a backup location (Figure 3). For constructing the robot’s generative planner πϕ, we
model the joint human-robot state as the states of both agents along with a low-dimensional behavior
cue from the human δH (e.g., eye-gaze, head tilt) that leaks information about the human’s future
trajectory. We take s ≡ δH and fix all other initial conditions between deployments. The context
of the scene is the intended goal of the robot C ≡ gR. The generative planner πϕ is an encoder-
decoder architecture based on the vector-quantized variational autoencoder (VQ-VAE). It is trained
with a dataset of 10,000 simulated joint human-robot trajectories (aR,aH) generated via simple
rules (described in Appendix). The encoder Pα(z | δH, gR), with learnable parameters α, encodes
the human observation δH and the original goal gR and produces a categorical distribution over latent
embedding through vector quantization. The decoder Pβ(a

R,aH | z), with learnable parameters
β, takes the latent vector z ∼ Pα(· | δH, gR) and approximates the joint distribution over actions
aR,aH. Implementation details on datasets and hyperparameters are included in Appendix 9.2.

Generalized Regret Computation: Reward-based Planner. Our likelihood model follows from
the Luce-Shepard choice rule [44] where the parameters ϕ denote the weights of the reward function:

Pϕ(a
R | âH1:HM , ŝ, C) = η exp{Rϕ(a

R, âH1:HM , ŝ, C)}, (4)

where η := 1/
∑

āR exp{Rϕ(ā
R, âH1:HM , ŝ, C)}. For each timestep in deployment data d ∈ D

where the robot originally re-planned, we re-compute the reward of each candidate ego action with
respect to the ground truth behavior of the other agents, instead of predictions. With this we compute
the hindsight likelihood of each candidate ego action and obtain the scene’s regret:

∑
t Regt(d).

Generalized Regret Computation: Generative Planner. In our hardware experiments, the hu-
man’s positions were recorded as (x, y) planar positions at 12 Hz using the robot’s LIDAR, and
transformed to a global coordinate frame of a precomputed SLAM map. The behavioral cue δH is
obtained by tracking the position of the human and calculating the angle between timesteps, which
is given to the planner to generate a 6-timestep action trajectory âR which is executed at 2 Hz. After
each action is executed, we recorded smoothed measurements of the human’s trajectory by taking
a simple moving average of the human position and measuring the angles between subsequent po-
sitions to obtain âH. We construct the likelihood model using Bayes’ theorem where we first form
a kernel density estimate of Pϕ(â

R | âH, δH, gR) by sampling from the the planner 250 times and
approximate the conditional probability of âR, âH by integrating the KDE around a small neighbor-
hood of the ground-truth joint action trajectory. The conditional probability of âH is approximated
by marginalizing over the space of possible aR. Leveraging the approximate probabilities, we com-

5

pute an estimate of the counterfactual probability for any âR:

Pϕ(â
R | âH, δH, gR) =

∑
z Pβ(â

R, âH | z)Pα(z | δH, gR)∫
āR

∑
z Pβ(âH, āR, | z)Pα(z | δH, gR)

.

This is a particular instantiation of Pϕ where the planner and predictor both share parameters (i.e.,
ϕ ≡ θ) given by α and β. We repeat this process to evaluate the maximum probability action trajec-
tory2, giving us both terms necessary for our generalized regret computation Regt(·) in Equation 3.

6 Experimental Results: Detecting System-Level Prediction Failures

6.1 How does Regret Compare to Other Prediction Failure Metrics?

Figure 4: Qualitative compari-
son between scenarios uniquely
identified by each metric.

We first quantitatively and qualitatively compare scenarios ex-
tracted by our generalized regret metric (GRM) against three al-
ternatives: average displacement error (ADE), a component-level
metric that measures the L2 error between the true and predicted
trajectory, the system-level metric of Farid et al. [37] (TRFD),
and the canonical variant of our system-level regret metric (RM).
We apply each metric to the initial closed-loop simulated driv-
ing deployment data as described in Section 5. For GRM, ADE,
and RM, we construct the failure dataset as the top 20-quantile
scenes3 (i.e., 20 scenarios with 20-second long interactions) as
scored by the metric, yielding DGRM

F ,DADE
F and DRM

F . TRFD
is unique in that it only assigns binary labels if the scenario is
a system-level failure. The pairwise overlap between DF from
each metric is visualized in Figure 4.

ADE is a component-level metric and has only 35% overlap with
scenes identified by the two regret metrics (GRM, RM). Qual-
itatively, the scenarios with high displacement error tended to
have many agents or a single agent that the baseline Agentformer
model largely mispredicts. An example of a scenario with high ADE but not flagged by our two
regret metrics is shown in Figure 4. The ADE in this scenario is dominated by the robot consistently
mispredicting a faraway vehicle to change lanes. This indicates that component-level ADE may
attend to irrelevant prediction failures instead of system-level failures.

TRFD is a system-level metric that flags an interaction as a failure if the incurred robot reward is in
the bottom p-quantile of the robot’s reward distribution predicted during planning. Since this met-
ric relies on a predicted reward distribution, it is fundamentally linked to the quality of the robot’s
predictions of other agents’ behavior. We find that TRFD assigns every scenario as being anoma-
lous (Figure 4). We hypothesize the distribution shift between the nuScenes data (that the baseline
Agentformer model was trained on) and the simulated human behavior of the BITS agents causes
the predicted reward distribution to be extremely misaligned with the realized reward, causing all
interactions to be flagged as failures. Instead of comparing the realized outcomes with the predicted
reward distribution, GRM and RM compares against counterfactual ground-truth information, mak-
ing them agnostic to the base predictor quality.

RM is our absolute-reward variant of likelihood-based regret metric, GRM. Because they are both
grounded in the idea of regret, RM has 95% overlap with GRM. The scenario uniquely identified
by each metric is shown in Figure 4. Notably, GRM identifies an additional scenario where the
ego vehicle drives through stopped traffic (top, Figure 4), whereas RM identifies an instance of the
robot driving near unmoving vehicles and showing slightly conservative behavior (middle, Figure 4).
Although downstream rewards are a common evaluation criteria for task-aware trajectory forecasting
[37, 38], these results show that reward alone suffers from calibration challenges and may overlook
pertinent system-level failures.

6.2 Can We Detect System-Level Failures for Reward-Free Generative Planners?

2We find this maximizing aR by searching over a prespecified set of action trajectories.
3The choice of p is a design decision. We chose p = 20 due to the small size of the deployment dataset.

6

ADE / FDE (↓)
Fine-tuning Data nuScenes High-Regret Low-Regret

None (Base model) 0.371 / 1.919 0.639 / 2.999 0.610 / 2.375

Low-regret-FT 0.353 / 1.554 0.386 / 2.333 0.386 / 1.783

Random-FT 0.315 / 1.435 0.366 / 2.100 0.382 / 1.738

High-regret-FT 0.327 / 1.520 0.333 / 2.014 0.366 / 1.713
All-FT 0.297 / 1.381 0.326 / 1.973 0.340 / 1.665

Table 1: Fine-tuned Open-loop Prediction Perfor-
mance. Average ADE / FDE of the base Pθ and
the fine-tuned predictors on log-replay data. Columns
are different log-replay validation data splits: orig-
inal nuScenes data, closed-loop simulation data that
does exhibit system-level failures (i.e. high-regret)
and doesn’t (i.e., low-regret). Lowest error denoted in
italics-bold, and second lowest in bold. Each baseline
was trained with three random seeds and the reported
numbers are from best-performing model.

The qualitative results of our GRM approach
in the real-world generative planning setting
are shown in Figure 3. Importantly, no other
system-level metrics (TRFD, RM) generalize
to generative planners because they require ex-
plicit reward functions. We find that our ap-
proach only rates interactions as high-regret
(0.307 on a scale from 0 to 1) when mispredic-
tions lead to unexpectedly close proximity in-
teractions between the robot and human (right,
Figure 3). In both nominal interactions (left,
Figure 3) and interactions where mispredic-
tions are irrelevant for robot performance (mid-
dle, Figure 3), the deployment regret is close
to zero (0.078 and 0.053). Overall, our new
regret metric captures our motivating intuition
on system-level prediction failures without the need for manually specifying an evaluative reward-
function for either the high-level or low-level robot and human behaviors.

7 Case Study: Mitigating Prediction Failures via High-Regret Fine-Tuning

We demonstrate one potential use for system-level failure data by fine-tuning the Agentformer model
on high-regret interactions. We first hold out 20 (comprised of 17 low-regret and 3 high-regret
scenarios) of the 96 deployment scenarios for evaluation and leave the rest (76) as potential data
for fine-tuning. We compare the closed-loop simulation (Table 2) and open-loop prediction (Table
1) performance of Agentformer fine-tuned on four different data subsets. Low-regret-FT uses the
20 scenarios with the lowest regret, Random-FT uses 20 random scenarios from the 76 scenarios
available for fine-tuning, High-regret-FT uses the 20 scenarios with the highest regret, and All-FT
is a privileged baseline with access to all 76 scenarios. During fine-tuning we unfreeze only the final
1.5M parameters of the 17.7M parameter Agentformer model, and we examine the results from
fine-tuning the model on each dataset for 3 random seeds. Details and ablations in Appendix 10.

Takeaway 1: High-Regret-FT improves log-replay prediction accuracy in high-regret scenarios,
without degrading performance on low-regret scenarios and the original nuScenes validation set.

We first evaluate the predictors “open-loop” on log-replay data from three different validation
datasets: the original nuScenes validation data, the 3 high-regret scenes in the deployment vali-
dation dataset, and the 17 low-regret scenes in the deployment validation dataset. We report the
Average Displacement Error (ADE) and Final Displacement Error (FDE) for each baseline’s best
performing seed in Table 1. The base predictor doubles its ADE and FDE on the simulated de-
ployment data due to a distribution shift in the driving behavior between nuScenes and simulation.
Intuitively, High-Regret-FT has the most ADE and FDE improvement on high-regret validation
data. We hypothesize that the improved open-loop prediction accuracy on low-regret scenes is be-
cause the high-regret validation data leaks enough information about the general distribution shift
between the nuScenes and the BITS simulation to enable improvements on nominal interaction data
as well. While All-FT achieves the best prediction accuracy across the board, it is important to note
that this is an information-advantaged baseline: it has the ability to learn from both system-level
and non-system-level failures the deployment data. However, High-Regret-FT is much more data
efficient to train, rivaling the performance of All-FT despite using 77% less data. As the deployment
dataset D grows and training time and costs increase along with it, this can be a promising avenue
to alleviate these challenges while still achieving high predictive performance. Finally, the least
improvement over the base model is exhibited by Low-Regret-FT and followed by Random-FT
which demonstrates the quantitative value of learning from high-regret data.

Takeaway 2: Including high-regret data during fine-tuning improves closed-loop performance.

Our first evaluation metric for measuring closed-loop re-deployment performance differences is To-
tal Collision Cost, which is the total cost the ego incurred from collisions. Second, to disentan-
gle severe but infrequent collisions from frequent clipping / grazing we measure Collision Sever-
ity= Total Collision Cost

#Frames in Collision . Finally, we measure average Regret as defined in Section 4. We report average
closed-loop performance for each method across three seeds of fine-tuning in Table 2.

7

High-Regret Scenarios Low-Regret Scenarios
Fine-tuning Data Col Cost (↓) Col Severity (↓) Regret (↓) Col Cost (↓) Col Severity (↓) Regret (↓)

Base Model 10.829 0.848 0.034 0.411 0.051 0.006
Low-regret-FT 7.489 (± 0.408) 0.794 (± 0.059) 0.019 (± 0.002) 0.670 (± 0.206) 0.354 (± 0.493) 0.009 (± 0.000)
Random-FT 7.209 (± 0.883) 0.743 (± 0.064) 0.016 (± 0.003) 0.495 (± 0.213) 0.076 (± 0.054) 0.006 (± 0.000)
High-regret-FT 3.763 (± 0.965) 0.588 (± 0.101) 0.016 (± 0.003) 0.397 (± 0.814) 0.062 (± 0.031) 0.006 (± 0.001)
All-FT 1.176 (± 0.775) 0.377 (± 0.067) 0.013 (± 0.002) 0.486 (± 0.131) 0.060 (± 0.030) 0.007 (± 0.001)

Table 2: Closed-Loop Re-Deployment Performance. Average robot performance metrics for each
fine-tuned predictor (standard deviation over three seeds of fine-tuning in parentheses). Two main
columns are evaluations on high-regret and low-regret held-out validation scenes. Italics-bold indi-
cates best, and bold indicates second best. Across all metrics and settings, High-regret-FT consis-
tently improves robot performance, and is competitive with the privileged All-FT approach.

Figure 5: As Pθ is fine-tuned
on more high-regret interac-
tions, closed-loop performance
improves.

We find that High-Regret-FT decreases collision cost, sever-
ity, and average regret compared to the base model across both
high- and low-regret scenes. As hypothesized, most closed-
loop performance gains are observed in the high-regret scenes,
reducing robot regret by −53% and collision cost by −65%
(shown in Table 2). By being able to see all the deployment
data, All-FT observes the highest performance gains in high-
regret scenes but shows slight (but not statistically significant)
performance degradation in low-regret scenes. For each base-
line, the degradations from the base model are within 1 stan-
dard deviation (except for Low-Regret-FT). In contrast, the
improvement of High-Regret-FT is more than one standard
deviation better than the performance of Low-Regret-FT and
Random-FT with respect to the collision-based metrics. The
closed-loop performance gains resulting from fine-tuning on
high-regret data is shown qualitatively in Figure 5.

Takeaway 3: Closed-loop and open-loop performance are
only correlated on high-regret scenes.

We find that in the high-regret scenes, the open-loop perfor-
mance (Table 1) is positively correlated with the closed-loop
planner performance (Table 2). We hypothesize that this is be-
cause these scenes are much more challenging (e.g., highly
interactive), encode more nuanced human behavior, and af-
fect the planner the most; thus, the prediction improvements
in such scenarios indicate that Pθ has learned to predict chal-
lenging interactions better, naturally improving the closed-loop planning performance.

8 Limitations & Future Work

One limitation of our system-level failure detection method is the need for a designer to set p when
detecting scenarios with the top p-quantile regret. Poorly tuning this p could result in classifying
benign scenarios as anomalous or overlooking true system-level failures. In the generative planner
setting, extremely out-of-distribution interaction data (e.g., not in the support of the training dis-
tribution) could lead to poor regret estimates. To remedy this, we hypothesize that our approach
can be complemented by an anomaly detector that can detect highly out-of-distribution data during
deployment. Furthermore, our hardware experiments underscored how the logged data collected
by the robot during deployment (e.g., states of agents) must be sufficiently high quality to compute
accurate regret. Failures in detection/tracking from perception modules in real-world deployments
could corrupt the data used to calculate regret and misidentify system-level failures.

While we instantiated our approach in simulated and hardware robot navigation interactions, collab-
orative manipulation [4]) is an exciting future direction. Finally, future work should also investigate
alternative uses for the datasets constructed with our regret metric, e.g., to inform runtime monitors
that can anticipate system-level prediction failures online.

8

References

[1] E. Schmerling, K. Leung, W. Vollprecht, and M. Pavone. Multimodal probabilistic model-
based planning for human-robot interaction. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 3399–3406. IEEE, 2018.

[2] N. Rhinehart, R. McAllister, K. Kitani, and S. Levine. Precog: Prediction conditioned on goals
in visual multi-agent settings. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2821–2830, 2019.

[3] S. Shi, L. Jiang, D. Dai, and B. Schiele. Motion transformer with global intention localization
and local movement refinement. Advances in Neural Information Processing Systems, 2022.

[4] K. Kedia, A. Bhardwaj, P. Dan, and S. Choudhury. Interact: Transformer models for human
intent prediction conditioned on robot actions. International Conference on Robotics and Au-
tomation, 2024.

[5] K. Kedia, P. Dan, A. Bhardwaj, and S. Choudhury. Manicast: Collaborative manipulation with
cost-aware human forecasting. Conference on Robot Learning, 2023.

[6] S. W. Abeyruwan, L. Graesser, D. B. D’Ambrosio, A. Singh, A. Shankar, A. Bewley, D. Jain,
K. M. Choromanski, and P. R. Sanketi. i-sim2real: Reinforcement learning of robotic policies
in tight human-robot interaction loops. In Conference on Robot Learning. PMLR, 2023.

[7] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon, B. Lakshminarayanan,
and J. Snoek. Can you trust your model’s uncertainty? evaluating predictive uncertainty under
dataset shift. Advances in neural information processing systems, 32, 2019.

[8] A. Filos, P. Tigkas, R. McAllister, N. Rhinehart, S. Levine, and Y. Gal. Can autonomous
vehicles identify, recover from, and adapt to distribution shifts? In International Conference
on Machine Learning, pages 3145–3153. PMLR, 2020.

[9] P. De Haan, D. Jayaraman, and S. Levine. Causal confusion in imitation learning. Advances
in neural information processing systems, 32, 2019.

[10] M. Itkina and M. Kochenderfer. Interpretable self-aware neural networks for robust trajectory
prediction. In Conference on Robot Learning. PMLR, 2023.

[11] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. Advances in neural information processing systems, 30,
2017.

[12] L. Sun, X. Jia, and A. D. Dragan. On complementing end-to-end human behavior predictors
with planning. Robotics: Science and Systems, 2021.

[13] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh, P. Fieguth,
X. Cao, A. Khosravi, U. R. Acharya, et al. A review of uncertainty quantification in deep
learning: Techniques, applications and challenges. Information fusion, 76:243–297, 2021.

[14] R. Sinha, A. Sharma, S. Banerjee, T. Lew, R. Luo, S. M. Richards, Y. Sun, E. Schmerling,
and M. Pavone. A system-level view on out-of-distribution data in robotics. arXiv preprint
arXiv:2212.14020, 2022.

[15] A. Cui, S. Casas, A. Sadat, R. Liao, and R. Urtasun. Lookout: Diverse multi-future prediction
and planning for self-driving. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 16107–16116, 2021.

[16] E. Tolstaya, R. Mahjourian, C. Downey, B. Vadarajan, B. Sapp, and D. Anguelov. Identifying
driver interactions via conditional behavior prediction. In 2021 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2021.

[17] Y. Chen, S. Veer, P. Karkus, and M. Pavone. Interactive joint planning for autonomous vehicles.
IEEE Robotics and Automation Letters, 2023.

9

[18] A. Seff, B. Cera, D. Chen, M. Ng, A. Zhou, N. Nayakanti, K. S. Refaat, R. Al-Rfou, and
B. Sapp. Motionlm: Multi-agent motion forecasting as language modeling. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2023.

[19] X. Weng, B. Ivanovic, Y. Wang, Y. Wang, and M. Pavone. Para-drive: Parallelized architecture
for real-time autonomous driving. 2024.

[20] Q. Sun, S. Zhang, D. Ma, J. Shi, D. Li, S. Luo, Y. Wang, N. Xu, G. Cao, and H. Zhao. Large tra-
jectory models are scalable motion predictors and planners. arXiv preprint arXiv:2310.19620,
2023.

[21] J. Mao, Y. Qian, H. Zhao, and Y. Wang. Gpt-driver: Learning to drive with gpt. arXiv preprint
arXiv:2310.01415, 2023.

[22] J. Mao, J. Ye, Y. Qian, M. Pavone, and Y. Wang. A language agent for autonomous driving.
arXiv preprint arXiv:2311.10813, 2023.

[23] S. Wang, Z. Yu, X. Jiang, S. Lan, M. Shi, N. Chang, J. Kautz, Y. Li, and J. M. Alvarez. Om-
nidrive: A holistic llm-agent framework for autonomous driving with 3d perception, reasoning
and planning. arXiv preprint arXiv:2405.01533, 2024.

[24] W. Wang, J. Xie, C. Hu, H. Zou, J. Fan, W. Tong, Y. Wen, S. Wu, H. Deng, Z. Li, et al.
Drivemlm: Aligning multi-modal large language models with behavioral planning states for
autonomous driving. arXiv preprint arXiv:2312.09245, 2023.

[25] C. Tang, W. Zhan, and M. Tomizuka. Interventional behavior prediction: Avoiding overly
confident anticipation in interactive prediction. In 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2022.

[26] M. Basseville. Detecting changes in signals and systems—a survey. Automatica, 24(3):309–
326, 1988.

[27] Q. M. Rahman, P. Corke, and F. Dayoub. Run-time monitoring of machine learning for robotic
perception: A survey of emerging trends. IEEE Access, 9, 2021. ISSN 2169-3536.

[28] H. Liu, Y. Zhang, V. Betala, E. Zhang, J. Liu, C. Ding, and Y. Zhu. Multi-task interactive robot
fleet learning with visual world models. In 8th Annual Conference on Robot Learning, 2024.
URL https://openreview.net/forum?id=DDIoRSh8ID.

[29] D. Fridovich-Keil, A. Bajcsy, J. F. Fisac, S. L. Herbert, S. Wang, A. D. Dragan, and C. J. Tom-
lin. Confidence-aware motion prediction for real-time collision avoidance. The International
Journal of Robotics Research, 2020.

[30] K. Nakamura and S. Bansal. Online update of safety assurances using confidence-based pre-
dictions. In 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023.

[31] J. Wiederer, A. Bouazizi, M. Troina, U. Kressel, and V. Belagiannis. Anomaly detection in
multi-agent trajectories for automated driving. In Conference on Robot Learning, pages 1223–
1233. PMLR, 2022.

[32] C.-M. Hung, L. Sun, Y. Wu, I. Havoutis, and I. Posner. Introspective visuomotor control:
Exploiting uncertainty in deep visuomotor control for failure recovery. In 2021 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 6293–6299, 2021. doi:
10.1109/ICRA48506.2021.9561749.

[33] A. Dixit, L. Lindemann, S. X. Wei, M. Cleaveland, G. J. Pappas, and J. W. Burdick. Adaptive
conformal prediction for motion planning among dynamic agents. In Learning for Dynamics
and Control Conference, pages 300–314. PMLR, 2023.

[34] P. Antonante, S. Veer, K. Leung, X. Weng, L. Carlone, and M. Pavone. Task-aware risk es-
timation of perception failures for autonomous vehicles. arXiv preprint arXiv:2305.01870,
2023.

10

https://openreview.net/forum?id=DDIoRSh8ID
http://dx.doi.org/10.1109/ICRA48506.2021.9561749
http://dx.doi.org/10.1109/ICRA48506.2021.9561749

[35] J. Philion, A. Kar, and S. Fidler. Learning to evaluate perception models using planner-centric
metrics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 14055–14064, 2020.

[36] K. Chakraborty and S. Bansal. Discovering closed-loop failures of vision-based controllers via
reachability analysis. IEEE Robotics and Automation Letters, 2023.

[37] A. Farid, S. Veer, B. Ivanovic, K. Leung, and M. Pavone. Task-relevant failure detection for
trajectory predictors in autonomous vehicles. In Conference on Robot Learning. PMLR, 2023.

[38] B. Ivanovic and M. Pavone. Injecting planning-awareness into prediction and detection evalu-
ation. In 2022 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2022.

[39] X. Huang, G. Rosman, A. Jasour, S. G. McGill, J. J. Leonard, and B. C. Williams. Tip:
Task-informed motion prediction for intelligent vehicles. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 11432–11439. IEEE, 2022.

[40] H. Nishimura, J. Mercat, B. Wulfe, R. T. McAllister, and A. Gaidon. Rap: Risk-aware predic-
tion for robust planning. In Conference on Robot Learning, pages 381–392. PMLR, 2023.

[41] B. Stoler, I. Navarro, M. Jana, S. Hwang, J. Francis, and J. Oh. Safeshift: Safety-informed
distribution shifts for robust trajectory prediction in autonomous driving. arXiv preprint
arXiv:2309.08889, 2023.

[42] K.-C. Hsu, K. Leung, Y. Chen, J. F. Fisac, and M. Pavone. Interpretable trajectory prediction
for autonomous vehicles viacounterfactual responsibility. In IEEE/RSJ Int. Conf. on Intelligent
Robots & Systems, 2023.

[43] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th international conference on machine learning (icml-03), 2003.

[44] R. D. Luce. Individual choice behavior: A theoretical analysis. Courier Corporation, 2005.

[45] Y. Yuan, X. Weng, Y. Ou, and K. Kitani. Agentformer: Agent-aware transformers for socio-
temporal multi-agent forecasting. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2021.

[46] Y. Chen, P. Karkus, B. Ivanovic, X. Weng, and M. Pavone. Tree-structured policy planning with
learned behavior models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), 2023.

[47] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,
and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, 2020.

[48] D. Xu, Y. Chen, B. Ivanovic, and M. Pavone. Bits: Bi-level imitation for traffic simulation. In
2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023.

[49] Specifications - interbotix x-series locobot documentation. URL https://docs.
trossenrobotics.com/interbotix_xslocobots_docs/specifications.
html.

[50] L. E. Dubins. On curves of minimal length with a constraint on average curvature, and with pre-
scribed initial and terminal positions and tangents. American Journal of Mathematics, 79(3):
497–516, 1957. ISSN 00029327, 10806377. URL http://www.jstor.org/stable/
2372560.

[51] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin. Hamilton-jacobi reachability: A brief
overview and recent advances. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC). IEEE, 2017.

[52] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In 2nd International Con-
ference on Learning Representations, ICLR 2014, 2014.

[53] B. Ivanovic and M. Pavone. The trajectron: Probabilistic multi-agent trajectory modeling with
dynamic spatiotemporal graphs. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019.

11

https://docs.trossenrobotics.com/interbotix_xslocobots_docs/specifications.html
https://docs.trossenrobotics.com/interbotix_xslocobots_docs/specifications.html
https://docs.trossenrobotics.com/interbotix_xslocobots_docs/specifications.html
http://www.jstor.org/stable/2372560
http://www.jstor.org/stable/2372560

9 Experiment Implementation Details

9.1 Reward-based Planner & Generative Predictor

Robot Policy: Tree Policy Planning (TPP). Our MPC planner πϕ is a tree-structured contingency
planner developed by Chen et al. [46]. This reward-based planner is compatible with state-of-the-
art conditional behavior prediction models to account for the influence of the robot’s actions when
planning. The planner first generates a tree of randomly sampled multi-stage dynamically feasi-
ble trajectories, after which each branch is fed into an ego-conditioned predictor Pθ to generate a
scenario tree comprised of multimodal predictions. The optimal robot trajectory is obtained by max-
imizing a reward function which in our experiments consisted of a linear combination of collision
costs, lanekeeping costs, control costs, and distance-traveled reward (full details can be found in
the original paper [46]). This reward function is fixed throughout the entire robot deployment and
human predictor fine-tuning process.

Base Human Predictor. The training loss for our ego-conditioned Agentformer model is a weighted
sum of three terms: 1) prediction loss that penalizes incorrect predictions from the ground truth, 2)
ego-conditioned collision (EC) loss that penalizes collisions between the predictions and condi-
tioned ego-action. 3) other regularization losses such as diversity and KL divergence loss. Our base
prediction model is trained on the Nuscenes dataset [47], consisting of 1,000 20-second driving logs
collected in Boston and Singapore. During the initial training of the predictor we used a learning
rate of 1e-4.

Dataset Construction. Our deployment dataset D, consisted of N = 96 total closed-loop deploy-
ment scenarios each of length 20 seconds. We ranked the ego agent’s average regret and chose the
top p = 20-quantile of scenarios to be our set of scenes that suffered from system-level prediction
failures, yielding a total of 20 high-regret scenarios in DF . The rest of the 76 scenarios were deemed
sufficiently low-regret. We hold out 20% of both high-regret DF and low-regret D \ DF scenes (3
and 17 respectively). The remainder of the deployment data is used for fine-tuning the model.

9.2 Generative VQ-VAE Planner

Dataset Generation. We constructed a dataset of |Dtrain| = 10, 000 human-robot trajectories
based on a small set of simple rules in order to train our generative planner. The positions of the two
goal locations and the robot and human’s start locations were fixed in all training examples (shown in
Figure 3), but the choice of goal g and initial human behavior cue δH were uniformly distributed. The
synthetic human trajectory generation abides by the following rule: aH = PC(left) if δH + ϵ <
1/3, PC(right) if δH+ϵ > 2/3, PC(straight) otherwise. Here, PC(·) denotes a proportional
controller noisily executing a 6-timestep action trajectory that guides the human to the prespecified
goal points to the left, right, or straight-ahead from the human’s initial position, and ϵ is zero-mean
noise.

The synthetic robot trajectory generation follows a similar process, but conditions on the desired goal
gR and the synthetic human behavior aH. The robot’s action aR is a noisily executed 6-timestep
action trajectory given by a proportional controller that guides the robot to gR, unless this brings the
robot in close proximity to the human trajectory aH in which case the robot’s proportional controller
guides it to the other goal with 80% probability. This dataset synthesis leads to six different high-
level outcomes of the interaction depending on which directions the human and robot travel. Figure
3 shows three of these joint human-robot interaction outcomes.

Generative Planner Architecture. The robot’s generative planner πϕ used an encoder-decoder
architecture based on the VQ-VAE, which is a variant of the traditional VAE that uses vector quanti-
zation to discretize the latent representation into K latent embedding vectors {zk}Kk=1. The encoder
Pα(z | δH, g) with learnable parameters α takes δH and gR as inputs to encode the input and pro-
duce a categorical distribution over latent embedding through vector quantization. We further inject
a small amount of zero-mean Gaussian noise into quantized embedding z ∈ {zk}Kk=1 to encour-
age diverse outputs during the joint trajectory decoding phase. This decoder Pβ(a

R,aH | z) with
learnable parameters β takes a sampled latent vector z as input (sampled from Pα(z | δH, g) with
additional noise injection) to approximate the joint distribution over actions aR,aH. In our setting,

12

we set K = 6 and initialized the latent embeddings with K-means clustering to encourage each of
the K embedding vectors to correspond to one of the six joint human-robot action trajectories.

9.3 Hardware Experiments

The hardware experiments were conducted on an Interbotix LoCoBot [49] equipped with an Intel
RealSense D435 RGB-D camera and RPLIDAR A2 360 degree LIDAR. Offline, the robot generated
a occupancy map of the environment with SLAM from RGB-D observations. This SLAM map was
used to generate a global coordinate frame for the human and robot. The human’s position with
2-D LIDAR scan data and filtering out LIDAR measurements from static objects such as walls. The
remaining LIDAR sensor measurements were then averaged to generate a noisy (x, y) points of
the human’s position relative to the robot that were measured at 12 Hz. These positions were then
translated to the global coordinate frame obtained by transforming from the robot’s local coordinate
frame to the global coordinate frame.

We modeled the human as a single integrator with constant velocity where the control action was a
heading direction. These were extracted by taking a simple moving average of the position measure-
ments to obtain a position measurements with reduced noise at a rate of 2 Hz. The actions at each
time step were taken to be the angle between the current and previous human position measurement
in the global coordinate frame.

10 Fine-tuning Details & Ablations

High-Regret Scenarios Low-Regret Scenarios
Fine-tuning Data Col Cost Col Severity Regret Col Cost Col Severity Regret

Base Model 10.829 0.848 0.034 0.411 0.051 0.006
AvgReg 4.286 (-60.4%) 0.690 (-18.7%) 0.014 (-58.7%) 0.347 (-15.5%) 0.039 (-24.9%) 0.005 (-11.1%)
WstReg 4.713 (-56.6%) 0.520 (-38.7%) 0.020 (-43.3%) 0.565 (+37.4%) 0.093 (+80.9%) 0.006 (+2.02%)
AvgReg (+col, +div) 14.505 (+34.0 %) 0.960 (+13.2 %) 0.048 (+39.4 %) 0.437 (+6.4 %) 0.082 (+60.3 %) 0.006 (+9.1 %)
AvgReg (+div) 7.477 (-30.9 %) 0.654 (-23.0 %) 0.014 (-60.6 %) 0.366 (-10.83 %) 0.0578 (+12.4 %) 0.005 (-6.06 %)

Table 3: Finetuning when ranking with average regret (2nd row, also reported in Table 2 as High-
regret-FT) vs worst single-timestep regret (3rd row). We also ablated the choice of loss function on
closed-loop performance by using all of the original loss functions (4th row) and only removing the
ego-conditioned collision loss (5th row).

Fine-tuning the Predictor. For fine-tuning, we unfreeze only the last 1.5M parameters of the 17.7M
parameter Agentformer model. This corresponds to the last half of the future decoder module [45].
Across all our baselines, we fine-tune the predictor to see the data for 25 epochs at a reduced learning
rate of 5e-5 held constant throughout the 25 epochs. Furthermore, when fine-tuning we eliminate
the diversity loss and EC collision loss, focusing the model’s efforts to only accurately predict the
ground-truth deployment data. We ablate this choice in 3 on one seed. Due to the large size of the
Nuscenes data, we trained on two Nvidia A6000 GPUS with a batchsize of 14 (effective batch size
28) and gradient accumulation of 5 steps.

Regret Formulation and Mitigation Methods. In our formalism from Section 4, we defined the
regret on a per-timestep basis. For the experiments, we ranked the scenarios by the average regret in-
curred over the 20-second interaction horizon T̂ . However, inspired by the safety analysis literature
that considers only the worst safety violation incurred over the time horizon [51], we also experi-
mented with ranking scenarios by the worst single-timestep regret incurred over T̂ . The closed-loop
simulation results are shown in the second row of Table 3.

Furthermore, during predictor fine-tuning described in Section 5, we chose to remove the ego-
conditioned collision loss and diversity loss during the fine-tuning. We found that when fine-tuning
with the ego-conditioned (EC) collision loss, the predictor was unable to learn from the high-regret
data. This is because much of the high-regret data was induced by ego collisions with other agents.
Thus, the EC collision loss directly conflicts with learning from this new data. The results of fine-
tuning with EC collision loss and diversity loss are shown in the third row of Table 3. We also
observed that training without diversity loss leads to slightly better closed-loop performance. The
baseline fine-tuning without EC collision loss but with diversity loss is shown in the fourth row of
Table 3.

13

11 Case Study: System-level Perception Failure Detection via Regret

We demonstrate a toy setting where our regret metric is able to identify task-relevant detection
failures when using a Conditional Variational Autoencoder (CVAE)-based robot navigation planner.

Problem Setup. A robot is deployed to reach a goal point g1 (top flag in Figure 6). It has dynamics
ẋ = [ẋ, ẏ, θ̇]⊤ = [cos θ, sin θ, u]⊤, where u is the control input. It is also equipped with a sensor
Psense(C) that returns 1 if it detects an obstacle O, and 0 otherwise. In the absence of an obstacle,
it should always try to reach g1. However, if an obstacle is blocking the robot’s path to g1, it should
instead navigate to an alternate goal location g2 (right flag in Figure 6).

To train our robot planner, we generated a dataset of |Dtrain| = 10000 trajectories. For simplicity,
the robot’s starting state and the locations of g1, g2, and O (if present) were the same across the
entire training dataset. In each scene, the demonstrated trajectories were obtained by applying a
small amount of Gaussian noise to a proportional controller guiding the robot to its goal location.

Figure 6: Generative Planner: Perception Failure. The robot’s training data demonstrated that
the robot should aim for the top flag in the absence of an obstacle, but move toward the rightmost
flag if an obstacle is detected. The green flag denotes the robot’s perception-conditioned planned
goal. Orange obstacle denotes that there was actually an obstacle present, and grey obstacle denotes
that the robot falsely detected an obstacle. Our regret metric correctly flags detection failures and
measured nominal scenarios as having low regret.

Inducing Generative Planner Failures. We wanted to identify which robot behaviors (if any) were
assigned high regret by our regret metric. To do this, we deployed the robot four times. In two of
the scenarios, there was the obstacle O (top right, and bottom left of Figure 6). However, in one of
those two scenarios, we injected a perception failure (i.e., manually setting the sensor observation
to be incorrect) that prevented the robot from detecting O. We similarly deployed the robot in a
setting with no obstacle two times but injected a perception failure that falsely detected O in one of
the deployments (bottom right in Figure 6).

Trajectory Probabilities. To simulate the robot, we sampled 500 trajectories conditioning on
Psense(C) = 1 and 500 on Psense(C) = 0. For each condition, we took the average of the 500
respective trajectories as an exemplar for deployment. However, despite the ease of sampling from
the CVAE, finding the probability of a particular sample from a generative model is known to be
a difficult problem [52]. To approximate each exemplar trajectory’s probability under the ground
truth presence/absence of the obstacle, we formed a per-timestep kernel density estimate (KDE) of
the conditional likelihood using the 1000 previously sampled trajectories (For more details, see Fig-

14

ure 5 of [53]). To compute the trajectory probability, we integrated the KDE for ±δ around the most
likely and executed action for δ = 0.1 at each timestep. The trajectory’s regret was computed via
our metric as in Equation 3 by averaging over the per-timestep regret.

Results. As seen in Figure 6, the robot incurs very low regret whenever its sensor was accurate.
However, in both settings where the sensor failed, the robot incurs a much higher regret. We high-
light that nowhere in this formulation (demonstrations nor generative planner) was there a reward
function that determined the robot’s behavior. Furthermore, this toy example demonstrates that our
general calibrated regret metric may have use beyond the human-robot interaction setting; for exam-
ple, for detecting and mitigating failures in other autonomy modules beyond agent prediction (e.g.,
perception module) in a task-aware manner [34].

15

	Introduction
	Related Work
	Problem Formulation
	A Regret Metric for Detecting System-level Trajectory Prediction Failures
	black Simulation & Hardware Experimental Setup
	Experimental Results: Detecting System-Level Prediction Failures
	How does Regret Compare to Other Prediction Failure Metrics?
	Can We Detect System-Level Failures for Reward-Free Generative Planners?

	Case Study: Mitigating Prediction Failures via High-Regret Fine-Tuning
	Limitations & Future Work
	Experiment Implementation Details
	Reward-based Planner & Generative Predictor
	Generative VQ-VAE Planner
	Hardware Experiments

	Fine-tuning Details & Ablations
	Case Study: System-level Perception Failure Detection via Regret

