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ABSTRACT

Disentangled representation learning aims to uncover latent variables underlying
the observed data, and generally speaking, rather strong assumptions are needed
to ensure identifiability. Some approaches rely on sufficient changes on the distri-
bution of latent variables indicated by auxiliary variables such as domain indices,
but acquiring enough domains is often challenging. Alternative approaches exploit
structural sparsity assumptions on the mixing procedure, but such constraints are
usually (partially) violated in practice. Interestingly, we find that these two seem-
ingly unrelated assumptions can actually complement each other to achieve identi-
fiability. Specifically, when conditioned on auxiliary variables, the sparse mixing
procedure assumption provides structural constraints on the mapping from esti-
mated to true latent variables and hence compensates for potentially insufficient
distribution changes. Building on this insight, we propose an identifiability theory
with less restrictive constraints regarding distribution changes and the sparse mix-
ing procedure, enhancing applicability to real-world scenarios. Additionally, we
develop an estimation framework incorporating a domain encoding network and
a sparse mixing constraint and provide two implementations, based on variational
autoencoders and generative adversarial networks, respectively. Experiment re-
sults on synthetic and real-world datasets support our theoretical results. The code
is available at https://github.com/jozerozero/Synergy Disentanglement.

1 INTRODUCTION

Disentangled representation learning (Schölkopf et al., 2021) is a learning paradigm that seeks to
learn meaningful and explanatory representation from observed data. Mathematically, suppose that
observed variables x are generated from latent variables z through an unknown mixing function f ,
i.e., x = f(z). The primary goal of disentangled representation learning is to recover the latent
variables with certain identifiability guarantees, i.e., to estimate them up to particular indetermina-
cies such as component-wise transformations. A theoretical foundation in this field is related to
independent component analysis (ICA) (Hyvärinen et al., 2001; 2023). Earlier methods (Hyvärinen
& Oja, 2000; Tichavsky et al., 2006) achieved identifiability with the linear mixing assumption. To
address more complex real-world tasks, nonlinear ICA (Hyvarinen & Morioka, 2016) allows the
mixing function f to be an unknown nonlinear function. However, the identifiability of nonlinear
ICA remains a significant challenge, primarily because without additional assumptions, there can be
infinitely many solutions with independent variables which are mixtures of the true latent variables
(Hyvärinen & Pajunen, 1999).

To overcome these challenges, several assumptions have been proposed, such as distribution suffi-
cient changes (see, e.g., Hyvarinen & Morioka (2016)) and mixing procedure restrictions (see, e.g.,
Zheng & Zhang (2023)). For example, the methods based on sufficient changes exploit the auxiliary
valuables u and assume that the latent variables have changing distributions across different values
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of u but are conditionally independent given u (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019;
Khemakhem et al., 2020a). Under this assumption, many works use domain indices or the observed
class labels as u(Kong et al., 2022; Li et al., 2023). Additionally, other works harness the clustering-
based methods (Willetts & Paige, 2021) or temporal dependency (Yao et al., 2021; 2022; Chen et al.,
2024; Li et al., 2024) for the identifiability of nonlinear ICA. Alternatively, one can impose suitable
restrictions on the mixing function (Gresele et al., 2021; Moran et al., 2021; Locatello et al., 2019b)
to achieve identifiability. Specifically, Hyvärinen & Pajunen (1999); Buchholz et al. (2022) show
that conformal maps are identifiable up to specific indeterminacies. Recently, Morioka & Hyvärinen
(2023) achieved identifiability by assuming that the observational mixing exhibits a suitable group-
ing of the observations. Zheng et al. (2022); Zheng & Zhang (2023) proposed the structural sparsity
assumption, making it a fully unsupervised manner for the identifiability of nonlinear ICA. Specifi-
cally, this assumption restricts the connective structure from sources to observations, i.e., the support
of the Jacobian matrix of the mixing function. One may refer to Appendix C for further discussion
of related works, including the disentangled representation learning, identifiability of nonlinear ICA,
and multi-domain image generation.

Despite advances in the identifiability of disentangled representation, these methods impose strin-
gent conditions on the number of auxiliary variables or the mixing function, each of which might
be violated in practice. On the one hand, the methods based on auxiliary variables Khemakhem
et al. (2020a); Kong et al. (2022) often require a large number of values of the auxiliary variables u.
Specifically, in domain adaptation, achieving theoretical guarantees of component-wise identifiabil-
ity of the latent variables typically requires at least 2n + 1 domains, where the dimension of latent
variables is n. On the other hand, to achieve full identifiability, methods with a constrained mixing
procedure have to enforce strong constraints on the mixing function. For example, the structural
sparsity assumptions (Zheng et al., 2022; Zheng & Zhang, 2023)say that for each latent source zi,
there exists a set of observations such that the intersection of their parents is zi, which excludes
scenarios where any latent variable is densely connected to observed variables. Although each of
the two types of constraints discussed above is generally strong, both of them may be partly true
in practice, given a particular problem. Therefore, it is natural to ask this question: Is it possi-
ble to leverage both types of constraints in a complementary, principled way to learn disentangled
representations with identifiability guarantees?

The answer is yes–a unified framework is proposed in this paper to address it. Intuitively, the sparse
mixing procedure assumption implies independence between certain latent variables and a particular
subset of the observed variables. For example, zi ⊥⊥ xj |u, if zi is not adjacent to xj (i.e., zi does
not contribute to xj). This condition can then be used to constrain the mapping from the estimated
latent variables ẑ to the true latent variables z. In such cases, the sparsity in the mixing procedure
compensates for a potential lack of sufficient domains. Additionally, even when the structural spar-
sity assumption is partially violated, the sufficient changes introduced by the auxiliary variables u
can still benefit the identifiability of latent variables. Therefore, the sparse mixing procedure and
sufficient changes assumptions nicely complement each other—when one assumption is (partially)
violated, the other can compensate, allowing for the identifiability of disentangled representations
with milder assumptions.

Based on this intuition, we establish a principled identifiability framework leveraging both types of
constraints. Moreover, we develop a general generative model framework with domain encoding
networks and a sparse mixing constraint for disentangled representation learning benefiting from
both constraints. Specifically, the domain encoding network is used to impose the assumption of
sufficient changes by modeling the distribution of latent variables given auxiliary variables, and the
sparse mixing constraint is used to enforce the sparsity of the estimated mixing procedure. Our
method is validated through a simulation and several widely used multi-domain image generation
datasets. The performance demonstrates the effectiveness of the proposed framework.

2 PRELIMINARIES

We start by giving a brief background on nonlinear independence component analysis (ICA) and
identifiability. In a typical nonlinear ICA setting, the data generation process is shown as follows:

p(z) =

n∏
i=1

p(zi), x = g(z), (1)
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Table 1: Notation Descriptions.
Symbol Description
z Scalar variable
x Random vector
xk k-th component of the random vector x
x(i) i-th instance or realization of the random vector x
xk,(i) i-th instance of the k-th component of the random vector x
x\k Random vector x excluding the k-th component

where x = (x1, . . . , xn) and z = (z1, . . . , zn) denote the observed variables and the independent
latent variables with the dimension of n, respectively, function g : z → x denotes a nonlinear
mixing procedure. As mentioned in Hyvärinen & Pajunen (1999), without any further assumptions,
there is an infinite number of possible solutions and these have no trivial relation with each other.
Therefore, previous works introduce the auxiliary variables u and assume that the latent variables
are conditionally independent given u., i.e., z = fu(ϵ) and p(z|u) =

∏n
i=1 p(zi|u), where ϵ is the

independent exogenous noise variables. The goal of nonlinear ICA is to learn an estimated unmixing
function ĝ−1 : x → ẑ, such that ẑ = (ẑ1, . . . , ẑn) consists of independent estimated sources.

To better understand our theoretical results, we provide the description of notation as shown in Table
1 as well as the definition of subspace-wise identifiability and component-wise identifiability.
Definition 1 (Subspace-wise Identifiability of Latent Variables (Li et al., 2023)). The subspace-
wise identifiability of z ∈ Rnd means that for ground-truth z, there exists ẑ and an invertible function
h : Rnd → Rnd , such that z = h(ẑ).
Definition 2 (Component-wise Identifiability of Latent Variables (Hyvarinen & Morioka, 2016)).
The component-wise identifiability of z is that for each zi, i ∈ [n], there exists a corresponding
estimated component ẑj , j ∈ [n] and an invertible function hi : R → R, such that zi = h(ẑj).

3 IDENTIFIABILITY WITH COMPLEMENTARY GAINS FROM SUFFICIENT
CHANGES AND SPARSE MIXING PROCEDURE

In this section, we illustrate the identifiability results by leveraging the complementary gains from
sufficient changes and sparse mixing procedures. Specifically, we first present the subspace identifi-
cation result (Theorem 1), where certain latent variables are subspace-wise identification. Based on
the aforementioned result, we further establish the component-wise identification result (Theorem
2), which uses conditional independence induced by sparse mixing procedure to constraint the solu-
tion space of a full-rank linear system. Additionally, we also show that the existing component-wise
identification results (Khemakhem et al., 2020a; Kong et al., 2022) with 2n + 1 auxiliary variables
are special cases of our approach (Corollary 1) when the mixing procedure from latent sources to
observations are fully-connected.

3.1 SUBSPACE IDENTIFIABILITY WITH COMPLEMENTARY GAINS

Theorem 1. (Subspace Identification with Complementary Gains) Following the data generation
process in Equation (1), we further make the following assumption.

• A1 (Smooth and Positive Density): The probability density function of latent variables is smooth
and positive, i.e., pz|u > 0 over Z and U .

• A2 (Conditional Independence): Conditioned on u, each zi is independent of any other zj for
i, j ∈ {1, . . . , n}, i ̸= j, i.e., log pz|u(z|u) =

∑n
i=1 log pzi|u(zi|u).

• A3 (Generalized Sufficient Changes for Subspace Identification) Let xk be a subset of x, x\k be
the left variables, and xk,(1),xk,(0) be two different instance of xk. And vectors w(k,u)−w(k, 0)
with u = 1, . . . , |Pa(xk)| are linearly independent, where vector w(k,u) is defined as:

w(k,u) = (
∂ log p(xk,(1),x\k|u)

∂z1
,−

∂ log p(xk,(0),x\k|u)
∂z1

, . . . ,

∂ log p(xk,(1),x\k|u)
∂zPa(xk)

,−
∂ log p(xk,(0),x\k|u)

∂zPa(xk)

).

(2)
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Suppose that we learn ĝ to achieve Equation (1) with the minimal number of edges of the mixing
process. Then, for every pair of ẑj and xk in which xk does not contribute to ẑj , i.e., ∂ẑj

∂xk
≡ 0,

zPa(xk) is not the function of ẑj , i.e.,
∂zPa(xk)

∂ẑj
≡ 0, where zPa(xk) is the parents of xk

Intuition of the Theoretical Results. A proof of Theorem 1 can be found in Appendix A.1.
For a better understanding of the proposed theory, we provide an intuitive example shown as
Figure 1, which includes the ground truth and estimated data generation processes with aux-
iliary variables u. The solid lines denote the true mixing edges. In the ground-truth gen-
eration process, because za is not adjacent to xk, ∂xk

∂za
≡ 0. Since the powerful neu-

ral networks may choose to use the fully connected mixing procedure during training, lead-
ing to the redundant estimated mixing edges, i.e., the red dashed line. We will show how
to remove these redundant estimated mixing edges via sparse mixing constraints in Section 4.
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(a) Ground-truth data 

generation process.
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generation process.

Figure 1: Example for Theorem 1 with
ground-truth and estimated data generation
processes. The red dashed lines denote the re-
dundant estimated mixing edges.

As shown in Figure 1 (a), we let xk and zk be a
subset of observed variables and its corresponding
parents. Since za do not connect to xk, we have
xk ⊥⊥ za|u. Sequentially, suppose that we have
two different values of xk, i.e., xk,(0) and xk,(1),
then we have:
∂ log p(xa,xb,xk,(1)|u)

∂za
−
∂ log p(xa,xb,xk,(0)|u)

∂za
= 0.

(3)
Similarly, by constraining the sparsity of the esti-
mated mixing procedure, we can also achieve con-
ditional independence ẑa ⊥⊥ x̂k|u. Therefore, we
can construct a full-rank linear system as shown in
Equation (4) by leveraging auxiliary variables.∑

zi∈zk

(∂ log p(xa,xb,xk,(1)|u)
∂zi

· ∂zi
∂ẑj

∣∣∣
xk=xk,(1)

−
∂ log p(xa,xb,xk,(0)|u)

∂zi
· ∂zi
∂ẑj

∣∣∣
xk=xk,(0)

)
= 0. (4)

Therefore, with a sufficient number of values of the auxiliary variables u, the only solution of ∂zi

∂ẑj
,

for zi ∈ zk and ẑj ∈ {ẑa, ẑb}, is zero. This implies that {za, zb} is only the function of {ẑa, ẑb},
i.e., {za, zb} is subspace-wise identifiable.

Discussion of Assumptions. We also provide detailed discussions of the assumptions and how
they relate to real-world scenarios. The first two assumptions are standard in the componentwise
identification of existing nonlinear ICA (Li et al., 2023; Kong et al., 2022; Khemakhem et al., 2020a).
The smooth and positive density assumption means that the latent variables change continuously. For
example, zi can be considered as the light directions of images, which are changing continuously.
The conditional independence assumption implies that there are no causal relationships among z.
For instance, considering gender as an auxiliary variable, the light direction and the image resolution
are conditionally independent. Finally, the sufficient changes assumption reflects that the conditional
distributions are first-order differentiable. And the linear independence is the condition of a unique
solution of the linear full-rank system.

Although existing works like domain adaptation (Li et al., 2023), and disentangled representation
learning (Zheng & Zhang, 2023) also adopt the linear independence of first-order to achieve sub-
space identification, the assumption in our work is more general and easier to meet in practice.
First, the aforementioned methods achieve subspace identifiability by assuming that the auxiliary
variables do not have influence on all the latent variables, e.g., partition the latent variables into
domain-invariant and domain-specific variables. However, our result does not need this assump-
tion. Moreover, the aforementioned methods only use an adequate number of values of the auxiliary
variables to meet the linear independence assumption, which might be hard to satisfy in practice.
Meanwhile, our method further harnesses the independence between observed and latent variables,
which constraints the solution space of the full-rank linear system and hence decreases the require-
ment for the number of auxiliary variables.
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3.2 COMPONENT-WISE IDENTIFIABILITY WITH COMPLEMENTARY GAINS

Theorem 2. (Component-wise Identification with Complementary Gains) Let the observations be
sampled from the data generating process in Equation (1). Suppose that Assumptions from Theorem
1 hold and also that we learn ĝ, pẑ|u to match the marginal distribution between x and x̂ with the
minimal number of edges of the mixing process. We further make the following assumption:
• A4 (Sufficient Changes for Component-wise Identification.): Suppose xk and xa be a subset of
x and xk∩xa = ∅. We let the za be the set of latent variables that connect to xa but not connect to
xk, such that for all different values of xa such as xa,0,xa,(1), the vectors V(a, k,us)−V(a, k, 0)
with s = 1, . . . , 2|za| are linearly independent. And the vector V(a, k,us) is defined as follows:

V(a, k,um) =
(∂2 log p(za,(1), zb, zk|um)

(∂zi)2
,−

∂2 log p(za,(0), zb, zk|um)

(∂zi)2
, . . . ,

∂ log p(za,(1), zb, zk|um)

∂zi
,−

∂ log p(za,(0), zb, zk|um)

∂zi

)
zi∈za

.

(5)

Suppose that we learn ĝ to achieve Equation (1) with the minimal number of edges of the mixing
process. Then za is component-wise identifiable.

Intuition of the Theoretical Results. A proof can be found in Appendix A.2. For a better un-
derstanding, we also provide an example as shown in Figure 1. Besides assuming that xk is not
connected to za and zb, we further assume that there exists another subset of observed variables
xa that is connected to za but not zb. Therefore, we have zb ⊥⊥ xa|u. Similar to the derivation
process in Theorem 1, suppose that we have different values of observed variables xa, by further
conducting second-order partial derivatives w.r.t. zl, l ∈ [n] based on Equation (4), we can achieve
component-wise identifiability by reducing the solution space of the full-rank linear system.

Intuitively, Theory 2 tells us about the degree to which each latent variable can be identified in the
case of partial identifiability. For example, if we only have M number of auxiliary variables, then
when we try to determine a subset of latent variables za corresponding to two selected subsets of
observed variables xk and xa, if M ≥ 2|za| + 1 (we let |za| be the dimension of za), then each
zi ∈ za is component-wise identifiable; otherwise, they are subspace identifiable. Moreover, if for
any xk and xa, the corresponding za with the largest dimension satisfies M ≥ 2|za| + 1, then
the number of auxiliary variables is sufficient to achieve component-wise identifiability for all the
latent variables. Since |za| ≤ n, we can use fewer values of the auxiliary variables to achieve
component-wise identifiability. Please refer to Appendix D for further discussion of the theories.

Compared with existing works for component-wise identification Kong et al. (2022), our result is
also more general. First, our method does not require any assumptions about the distribution of latent
variables, while Khemakhem et al. (2020a); Hyvarinen et al. (2019); Hyvarinen & Morioka (2016)
assume that the latent variables follow the exponential family distributions. Second, we exploit the
conditional independence brought by the sparse mixing procedure to constrain the solution space of
the linear full-rank system, so fewer values of auxiliary variables are required.

3.3 SPECIAL CASE WITH FULLY-CONNECTED MIXING PROCEDURE

When the mixing procedure is fully connected, we show that the existing identification results with
auxiliary variables are special cases of our theory, as shown in Corollary 1.
Corollary 1. (General Case for Component-wise Identification with Full-connected Mixing pro-
cedure) We follow the data generation process in Equation (1) and make assumptions A1, A2, and
A3. In addition, we make the following assumptions:

• A5 (Fully Connected Mixing procedure): Each latent variable zi is connected to each
observed variable xj , where i, j ∈ [n].

Suppose that we learn ĝ to achieve Equation (1), zi is component-wise identifiable with 2n + 1
different values of auxiliary variables u.

Intuition of the Theoretical Results. Please refer to Appendix A.3 for a proof. We provide the
intuition behind the theoretical results as follows. Because the mixing procedure is fully connected,
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Figure 2: Illustrations of CG-VAE and CG-GAN, respectively. ϵ̂ and ϵ are the estimated and ground-
truth noise variables, respectively. Fu denotes the domain-encoding neural networks. Note that in
the CG-GAN, we partition the latent variables into the domain-invariant content variables zc and
domain-specific style zs. The Lm denotes the mask restriction for automatically optimal dimension
determination. And Y and Ŷ denote the ground-truth and predicted labels of real and fake samples.

there are no pairs of latent variables and observed variables that are independent conditioned on u,
so we cannot constrain the solution space of the linear equations obtained by the second-order partial
derivatives. As a result, for n-dimension latent variables, 2n + 1 auxiliary variables are needed to
obtain compoenent-wise identifiability.

4 GENERAL GENERATIVE MODEL FRAMEWORK FOR DISENTANGLED
REPRESENTATION LEARNING

To levarage the developed theory for disentanglement, we propose a generative model framework
for disentangled representation learning, which includes the domain-encoding neural networks and
the sparse mixing constraint. Additionally, we provide two practical implementations based on vari-
ational autoencoder (VAE) (Kingma, 2013) and generative adversarial network (GAN) (Goodfellow
et al., 2020), respectively. For clarity, we name these implementations based on complementary
gains as CG-VAE and CG-GAN, respectively. Moreover, We employ CG-VAE and CG-GAN for
synthetic experiments and multi-domain image generation, respectively. Moreover, for a fair com-
parison, we follow the backbone architecture of (Xie et al., 2023), which also leverage nonlinear
ICA and minimal change assumption to achieve identifiability of disentangled representation. The
model architecture of the CG-VAE and CG-GAN are shown in Figure 2(a) and (b), respectively.

4.1 IMPLEMENTATION OF CG-VAE

We begin with the derivation of the evidence lower bound (ELBO) in Equation (6):

log p(x|u) =
∫

log p(x|z)p(z|u)dz =

∫
log

p(x|z)p(z|u)q(z|x)
q(z|x) dz

≥Eq(z|x) log p(x|z) + Eq(z|x) log p(u|z)−KL(q(z|x)||p(z|u)),
(6)

where KL denotes the Kullback–Leibler divergence. Since the reconstruction of u is not the opti-
mization goal, we remove the reconstruction of u. q(z|x) implemented as an encoder neural archi-
tecture, which outputs the mean and variance of the posterior distribution and p(x|z) is parameter-
ized as the decoder that takes latent variables z for reconstruct observed variables.

Domain-encoding Neural network. Similar to Kong et al. (2022); Zhang et al. (2024), to model
how auxiliary variables u influence the latent variables z, we employ the normalizing flow-based
architecture (Dinh et al., 2016; Huang et al., 2018; Durkan et al., 2019) that takes the estimated
latent variables ẑ and auxiliary variables to turn it into ϵ̂. Specifically, we have:

ϵ̂, log det = Fu(ẑ), (7)

where Fu is the normalizing flow and log det is the log determinant of the conditional flow transfor-
mation on ẑ. Therefore, by assuming that the noise term ϵ̂ follows a standard isotropic Gaussian, we
can use the change of variable formula to compute the prior distribution of the latent variables:

log p(ẑ|u) = log p(ϵ̂) + log det. (8)

6
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Sparse Mixing Constraint. To enforce the conditional independence between the estimated latent
variables and the observed variables, we further devise the sparse mixing constraint on the partial
derivative of x̂ with respect to ẑ, which are shown as follows:

Ls =
∑

i,j∈[n]

∣∣∣∂x̂i

∂ẑj

∣∣∣. (9)

Finally, the total loss of the VAE-based implementation is shown as follows:

Lvae = Eq(z|x) log p(x|z) + αLs − βKL(q(z|x)||p(z|u)) = Lr + αLs − βLKL, (10)

where α and β are the hyper-parameters.

4.2 IMPLEMENTATION OF CG-GAN

We further provide the implementation of CG-GAN as shown in Figure 2 (b) since it is suitable for
the multi-domain image translation task. In this case, we consider a more practical data generation
process in Xie et al. (2023), where the latent variables are partitioned into the domain-invariant
variable zc and the domain-specific variables zs for content and style, respectively.

Domain-encoding neural networks Similar to CG-VAE, we also use the domain-specific flow
function Fu to embed the domain information. Following Xie et al. (2023), we use a learnable mask
M as shown in the gray block in Figure 2 (b) to adaptively determine the dimension and location of
zs within the latent variable z.

ẑ = ϵ+M⊙Fu(ϵ) (11)

where mask M is a vector with the same shape as ϵ. An entry of 0 in M indicates that the corre-
sponding component belongs to zc and will not be affected by domain changes. If the entry is not 0,
it corresponds to zs, which will vary according to domain changes.

Sparse Mixing Constraint For enforcing the sparsity of the mixing procedure, we penalize the
l1-norm of the Jacobian vector of x with respect to each zs, which is similar to our VAE-based
architecture. Specifically, we use forward finite differences (Kim & Hong, 2021) to approximate the
Jacobian vector in real-world experiments because the large dimensions of the image tensor make
calculating the Jacobian computationally expensive.

Ls =

∥∥∥∥∥
ns∑
i=1

G(z + ϵi)−G(z)

∥ϵi∥

∥∥∥∥∥
1

Here, ϵi is the perturbation vector, with only the i-th entry being non-zero. Finally, the total GAN-
based model loss are shown as follows:

Lgan = Ld + γLm + αLs (12)

where γ and α are hyperparameters. Ld is the traditional discriminator loss, Lm is l1-norm of the
mask matrix, which is introduced by Xie et al. (2023), and the Ls is the sparse mixing constraint.

5 EXPERIMENTS

5.1 SYNTHETIC EXPERIMENTS

5.1.1 EXPERIMENT SETUP

Data Generation. We generate the synthetic data with multiple distributions. Specifically, we de-
vise three datasets (Dataset A, B, and C) with 8, 9, and 11 numbers of domains, respectively. Please
refer to Figure 6 for causal graphs of these data generation processes. The noise variables ϵ are sam-
pled from a factorized Gaussian distribution for all datasets. We let the data generation process from
latent variables to observed variables be MLPs with the LeaklyReLU activation function. Moreover,
the dataset is randomly split into 90% for training and 10% for testing.

Evaluation Metrics. For evaluation, We use the mean correlation coefficient (MCC) (Hyvarinen &
Morioka, 2016) between the true latent variables z and the estimated ones ẑ. A higher MCC denotes
the better identification performance the model can achieve. We also consider other metrics for
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Figure 3: Experiments results on synthetic datasets. The horizontal axis represents the number of
auxiliary variables, and the vertical axis represents the values of MCC.

Table 2: Mean correlation coefficient results on dataset A of different methods.
Number of

Domain CG-VAE CG-GAN iMSDA iVAE FactorVAE Slow-VAE β-VAE

2 0.953 (0.007) 0.935 (0.016) 0.869 (0.002) 0.756 (0.105) 0.728 (0.038) 0.856 (0.053) 0.810 (0.056)
4 0.952 (0.017) 0.927 (0.005) 0.881 (0.043) 0.807 (0.060) 0.804 (0.031) 0.798 (0.054) 0.706 (0.083)
6 0.956 (0.016) 0.955 (0.007) 0.936 (0.025) 0.815 (0.029) 0.755 (0.006) 0.913 (0.031) 0.795 (0.041)
8 0.971 (0.009) 0.944 (0.010) 0.959 (0.017) 0.920 (0.003) 0.805 (0.004) 0.921 (0.026) 0.881 (0.045)

disentanglement (Eastwood & Williams, 2018) like Completeness, Disentangle Score, Informative-
ness, R2, and MSE. Appendix F provides the introduction of these metrics. Note that the higher the
values of completeness, disentangle score, and R2, the better the performance of disentanglement,
and the lower the values of informativeness, the better the performance of disentanglement. We
repeat each experiment over 3 random seeds for each experiment and report the mean and standard
deviation. Please refer to Appendix B for the implementation of the synthetic experiments.

Baselines: To evaluate the effectiveness of our method, we consider the following baselines. We
first consider the standard β-VAE (Higgins et al., 2017), FactorVAE (Kim & Mnih, 2018), and
SlowVAE (Klindt et al., 2020). We further consider other nonlinear ICA-based methods like iVAE
(Khemakhem et al., 2020a) and iMSDA (Kong et al., 2022), which use auxiliary variables.

5.1.2 RESULTS AND DISCUSSION

The experimental results of the synthetic datasets are shown in Figure 3. To evaluate the effec-
tiveness of the proposed sparsity constraint, we remove Ls from CG-VAE and name it CG-VAE-S.
According to the experiment results, we can obtain the following conclusions: 1) when the num-
ber of auxiliary variables is sufficient, both CG-VAE and CG-VAE-S achieve relatively high MCC
(around 0.95), demonstrating that sufficient changes brought by auxiliary variables benefit disentan-
gled representation learning. 2) as the number of auxiliary variables decreases, CG-VAE-S shows a
noticeable decline in performance across the three datasets, while CG-VAE remains stable. In par-
ticular, for Dataset A, CG-VAE performs well even with just two domains, emphasizing the impor-
tance of sparse mixing constraints for achieving identifiable disentangled representation. 3) When
the number of domains is reduced to just one, both CG-VAE and CG-VAE-S perform poorly, indi-
cating that sufficient variation is essential for disentangled representation. At the same time, we find
that even with only a single domain, CG-VAE still performs better than CG-VAE-S, this is because
the mapping from the ground truth to estimated latent variables is constrained by sparse mixing pro-
cedure, making certain latent variable subspaces identifiable. We also compare the proposed method
with different baselines to evaluate the performance of disentanglement. Experiment results with the
MCC, completeness, and disentanglement (Eastwood & Williams, 2018) are shown in Tables 2,3,
and 4, respectively. Compared with the baselines, we can find that the proposed method achieves
the best disentanglement performance in different metrics even the the domain number is limited,
which verifies our theoretical results. Please refer to Appendix E for more experiment results.

Table 5: Results of two domain image generation on CelebA and MNIST datasets.

Dataset Metrics TGAN StyleGAN2-ADA i-StyleGAN CG-VAE CG-GAN-M CG-GAN

CelebA FID ↓ 4.89 3.57 2.65 3.02 2.60 2.57
DIPD ↓ 1.11 1.00 0.95 0.93 0.93 0.93

MNIST FID ↓ 67.45 117.64 16.6 18.18 31.74 8.74
Joint-FID ↓ 155.21 386.19 107.39 111.76 81.53 67.04
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Table 3: Completeness results on dataset A of different methods.
Number of

Domain CG-VAE CG-GAN iMSDA iVAE FactorVAE Slow-VAE β-VAE

2 0.608 (0.115) 0.533 (0.074) 0.405 (0.063) 0.348 (0.035) 0.349 (0.057) 0.343 (0.072) 0.319 (0.008)
4 0.632 (0.054) 0.659 (0.132) 0.477 (0.028) 0.358 (0.148) 0.453 (0.069) 0.356 (0.083) 0.427 (0.095)
6 0.626 (0.138) 0.681 (0.062) 0.663 (0.066) 0.368 (0.029) 0.529 (0.064) 0.596 (0.107) 0.525 (0.008)
8 0.729 (0.064) 0.809 (0.017) 0.758 (0.042) 0.435 (0.008) 0.506 (0.057) 0.687 (0.039) 0.644 (0.113)

Table 4: Disentanglement score results on dataset A of different methods.
Number of

Domain CG-VAE CG-GAN iMSDA iVAE FactorVAE Slow-VAE β-VAE

2 0.586 (0.118) 0.529 (0.066) 0.306 (0.032) 0.347 (0.089) 0.320 (0.091) 0.347 (0.068) 0.320 (0.009)
4 0.589 (0.076) 0.666 (0.127) 0.498 (0.033) 0.315 (0.002) 0.380 (0.061) 0.338 (0.080) 0.403 (0.094)
6 0.611 (0.125) 0.672 (0.048) 0.514 (0.045) 0.548 (0.042) 0.537 (0.078) 0.620 (0.089) 0.522 (0.036)
8 0.697 (0.019) 0.719 (0.013) 0.710 (0.026) 0.564 (0.076) 0.626 (0.011) 0.655 (0.073) 0.692 (0.084)

5.2 REAL-WORLD EXPERIMENTS

5.2.1 EXPERIMENT SETUP

Datasets. We use the CelebA ((Liu et al., 2015)) and the MNIST dataset ((LeCun et al., 1998))
for multi-domain image generation. To further evaluate the effectiveness of our theoretical results
in real-world applications, we choose two domains for all the datasets. Specifically, in CelebA, we
create two domains based on the presence or absence of eyeglasses, subsampling the no-eyeglasses
domain to balance the sample sizes between the two. For MNIST, we use the training portion of the
dataset and generate two domains consisting of red and green digits.

Evaluation Metrics. We evaluate our method using the Frechet Inception Distance (FID), a widely
used metric for measuring the distribution divergence between generated and real images, where
lower FID scores indicate better performance. Since the CelebA datasets lack paired data, we use
Domain-Invariant Perceptual Distance (DIPD) to assess semantic correspondence (Liu et al., 2019).
DIPD calculates the distance between instance-normalized Conv5 features of the VGG network. As
for the MNIST dataset with ground truth tuples, we first compute the inception features of images
in each tuple, and concatenate the features. Sequentially, we compute the Frechet distance between
the features of the ground truth and generated tuples, referring to this as Joint-FID, as it measures
the divergence between joint distributions. More addition, we remove the restriction of mask M
and name this model variant as CG-GAN-M.

Implementation and Baselines. For a fair comparison, we build our method based on the offi-
cial PyTorch implementation of i-StyleGAN (Xie et al., 2023), which also follows the backbone
networks of StyleGAN2-ADA (Karras et al., 2020). Moreover, to verify the effectiveness of our
introduced modules, we employ the default hyper-parameters of i-StyleGAN and only change the
values of α. As for the normalizing flow-based domain-encoding neural networks, we employ the
deep sigmoid flow (DSF), which is designed to be component-wise strictly increasing. Since our
method is built on StyleGAN2-ADA (Karras et al., 2020) and i-StyleGAN (Xie et al., 2023), we
consider TGAN (Shahbazi et al. (2022)) as the compared method to evaluate the effectiveness of
the sparse mixing constraint. Moreover, we further consider the CG-VAE, which uses the same de-
coder architecture as the generator of the i-StyleGAN. In practice, we train the Stylegan2-ADA and
i-Stylegan for 25000k images, which is the default setting of Stylegan. For our method, to save the
training time, we load the checkpoint of i-Stylegan at 20000k images, and train for 5000k images.

5.2.2 RESULTS AND ANALYSIS

Comparison with Baselines. Experimental results on the CelebaA and MNIST datasets with only
two domains are shown in Table 5. We also provide some generated samples in Figure 4. According
to the experiment results, we can find that the proposed method outperforms all other baselines on
all the image generation tasks even though there are only two domains. Specifically, our method out-
performs StyleGAN2-ADA with a clear margin, which reflects the importance of sufficient changes
and the spare mixing restriction for disentangled representation learning. Moreover, compared with
i-StyleGAN, we can find that our method also achieves a better result. We also find that the perfor-
mance of CG-VAE is the worst, this is because the VAE-based models usually employ the Gaussian
prior assumption (Bredell et al., 2023). The qualitative results shown in Figure 5 are clear. For ex-
ample, in the adding glasses image generation task, we find that the images from i-StyleGAN change
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Stylegan2-ADA i-StyleganTGAN CG-GANCG-VAE

Figure 4: Samples of multi-domain image generation on the CelebA and MNIST datasets. i-
StyleGAN, CG-VAE, and CG-GAN share the same noise input ϵ. We find that when the number
domain is insufficient, iStyleGAN will produce unnecessary changes.

(a) CG-GAN (b) i-StyleGAN (c) StyleGAN2

Generated Domain2 DigitGenerated Domain1 Digit Real Domain1 Digit Real Domain2 Digit

Figure 5: The t-SNE visualization of different methods. Blue and red points represent features from
generated images, while green and yellow points correspond to features from real images. A greater
overlap between generated and real points within the same domain reflects improved performance.

the glasses and gender simultaneously. Meanwhile, the image generated from our method is stable,
showing that our method can achieve better disentanglement under weak assumptions. Finally, we
can find that the performance of CG-GAN-M is lower than that of standard CG-GAN, showing the
necessity of the learnable mask for image generation. Similar to the several results of the VAE-based
methods (Higgins et al., 2017; Pandey et al., 2021), the images generated by CG-VAE are less clear
than those generated by CG-GAN due to their Gaussianity assumption.

Visualization. We also provide the t-SNE visualization, as shown in Figure 5. According to the
experimental results, within the same domain, the data generated by our method shows the highest
overlap with the corresponding ground truth.

6 CONCLUSION

This paper introduces a disentangled representation learning framework with identifiability guaran-
tees by harnessing the complementary nature of sufficient changes and sparse mixing procedures,
boosting its applicability to real-world scenarios. Specifically, the conditional independence in-
duced by the sparse mixing procedure simplifies the mapping from estimated to ground truth latent
variables, ensuring subspace identifiability. Meanwhile, sufficient changes promote component-
wise identifiability of latent variables. Theoretical findings are validated through both synthetic and
real-world experiments. Future work aims to extend these results to related tasks, such as transfer
learning and causal representation learning. The empirical study in the paper preliminarily focuses
on visual disentanglement–applications to more complex real-world scenarios are to be given.
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Schölkopf, and Olivier Bachem. A commentary on the unsupervised learning of disentangled
representations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 13681–13684, 2020a.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard
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Frederik Träuble, Elliot Creager, Niki Kilbertus, Francesco Locatello, Andrea Dittadi, Anirudh
Goyal, Bernhard Schölkopf, and Stefan Bauer. On disentangled representations learned from
correlated data. In International conference on machine learning, pp. 10401–10412. PMLR, 2021.

Xin Wang, Hong Chen, Si’ao Tang, Zihao Wu, and Wenwu Zhu. Disentangled representation learn-
ing. arXiv preprint arXiv:2211.11695, 2022.

Matthew Willetts and Brooks Paige. I don’t need u: Identifiable non-linear ica without side infor-
mation. arXiv preprint arXiv:2106.05238, 2021.

Shaoan Xie, Lingjing Kong, Mingming Gong, and Kun Zhang. Multi-domain image generation and
translation with identifiability guarantees. In The Eleventh International Conference on Learning
Representations, 2023.

Weiran Yao, Yuewen Sun, Alex Ho, Changyin Sun, and Kun Zhang. Learning temporally causal
latent processes from general temporal data. arXiv preprint arXiv:2110.05428, 2021.

Weiran Yao, Guangyi Chen, and Kun Zhang. Temporally disentangled representation learning.
Advances in Neural Information Processing Systems, 35:26492–26503, 2022.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative
adversarial networks. In International conference on machine learning, pp. 7354–7363. PMLR,
2019.

Kun Zhang, Shaoan Xie, Ignavier Ng, and Yujia Zheng. Causal representation learning from multi-
ple distributions: A general setting. arXiv preprint arXiv:2402.05052, 2024.

Yujia Zheng and Kun Zhang. Generalizing nonlinear ica beyond structural sparsity. Advances in
Neural Information Processing Systems, 36:13326–13355, 2023.

Yujia Zheng, Ignavier Ng, and Kun Zhang. On the identifiability of nonlinear ica: Sparsity and
beyond. Advances in neural information processing systems, 35:16411–16422, 2022.

15



Published as a conference paper at ICLR 2025

Supplement to
“Synergy Between Sufficient Changes and Sparse Mixing Proce-
dure for Disentangled Representation Learning”
Appendix organization:

A Proof 17

A.1 Subspace Identification via Generalized Sufficient Changes . . . . . . . . . . . . . 17

A.2 Component-wise Identification via Sufficient Changes of Multiple Distributions . . 18

A.3 General Case for Component-wise Identification with Full-connected Mixing Process 20

B Synthetic Experiments 21

B.1 Simulation Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B.2 Mean Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

C Related Works 21

C.1 Disentangled Representation Learning . . . . . . . . . . . . . . . . . . . . . . . . 21

C.2 Nonlinear Independent component analysis . . . . . . . . . . . . . . . . . . . . . 22

C.3 Multi-Domain Image Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D Discussion of the Theoretical Results 22

D.1 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D.2 Intuition of Subspace-wise and Component-wise Identification . . . . . . . . . . . 23

D.3 Discussion of Assumptions of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . 23

E More Experiment Results 23

E.1 Scalability of Different VAE Variants . . . . . . . . . . . . . . . . . . . . . . . . . 23

E.2 Other Constraint on Mixing Procedure . . . . . . . . . . . . . . . . . . . . . . . . 23

E.3 Experiment Results on Other Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 24

F Metrics Introduction 24

16



Published as a conference paper at ICLR 2025

A PROOF

A.1 SUBSPACE IDENTIFICATION VIA GENERALIZED SUFFICIENT CHANGES

Theorem 1 (Subspace Identification with Complementary Gains). Following the data genera-
tion process in Equation (1), we further make the following assumption.

• A1 (Smooth and Positive Density): The probability density function of latent variables is smooth
and positive, i.e., pz|u > 0 over Z and U .

• A2 (Conditional Independence): Conditioned on u, each zi is independent of any other zj for
i, j ∈ {1, · · · , n}, i ̸= j, i.e., log pz|u(z|u) =

∑n
i=1 log pzi|u(zi|u).

• A3 (Generalized Sufficient Changes for Subspace Identification) Let xk be a subset of x
and xk,(1),xk,(0) be two different instance of xk. And vectors w(k,u) − w(k, 0) with u =
1, . . . , |Pa(xk)| are linearly independent, where vector w(k,u) is defined as:

w(k,u) = (
∂ log p(xk,(1),x\k|u)

∂z1
,−

∂ log p(xk,(0),x\k|u)
∂z1

, · · · ,

∂ log p(xk,(1),x\k|u)
∂zPa(xk)

,−
∂ log p(xk,(0),x\k|u)

∂zPa(xk)
),

(13)

Suppose that we learn ĝ to achieve Equation (1) with the minimal number of edges of the mixing
process. Then, for every pair of ẑj and xk that are not adjacent in the mixing process, we have
zPa(xk) is not the function of ẑj , i.e.,

∂zPa(xk)

∂ẑj
= 0, where zPa(xk) is the parents of xk

Proof. We start from the matched marginal distribution condition to develop the relation between z
and ẑ as follows: ∀u ∈ U

px̂|u = px|u ⇐⇒ pĝ(ẑ)|u = pg(z)|u ⇐⇒ pg−1◦ĝ(ĝ)|u|Jg−1 | = pz|u|J |
⇐⇒ ph(ẑ)|u = pz|u ⇐⇒ log pẑ|u − log |J | = log p(z|u),

(14)

where ĝ : Z → Z denotes the estimated invertible generating function, and h := g−1 ◦ ĝ is the
transformation between the true latent variable and the estimated one. |Jg−1 | stands for the absolute
value of Jacobian matrix determinant of g−1. Note that as both ĝ−1 and g are invertible, |Jg−1 | ≠ 0
and h is invertible.

By matching the marginal distribution between x̂ and x, we further take the first order derivative
with ẑj and have:

∂ log p(x|u)
∂ẑj

=

n∑
i=1

∂ log p(x|u)
∂zi

· ∂zi
∂ẑj

. (15)

Suppose there exists a group of observations xk that are independent of ẑj given u, so there exists
different values of xk, i.e., xk,(1) and xk,(0), making ∂ log p(xk,x\k|u)

∂ẑj
does not vary with different

values of xk. Sequentially, we further let the other observed variables be x\k Then we subtract
Equation (15) corresponding to xk,(1) with that corresponding to xk,(0) and have:

0 =

n∑
i=1

(∂ log p(xk,(1),x\k|u)
∂zi

· ∂zi
∂ẑj

∣∣∣
xk=xk,(1)

−
∂ log p(xk,(0),x\k|u)

∂zi
· ∂zi
∂ẑj

∣∣∣
xk=xk,(0)

)
=

∑
o/∈Pa(xk)

(∂ log p(xk,(1),x\k|u)
∂zi

· ∂zi
∂ẑj

∣∣∣
xk=xk,(1)

−
∂ log p(xk,(0),x\k|u)

∂zi
· ∂zi
∂ẑj

∣∣∣
xk=xk,(0)

)
+

∑
i∈Pa(xk)

(∂ log p(xk,(1),x\k|u)
∂zi

· ∂zi
∂ẑj

∣∣∣
xk=xk,(1)

−
∂ log p(xk,(0),x\k|u)

∂zi
· ∂zi
∂ẑj

∣∣∣
xk=xk,(0)

)
=

∑
i∈Pa(xk)

(∂ log p(xk,(1),x\k|u)
∂zi

· ∂zi
∂ẑj

∣∣∣
xk=xk,(1)

−
∂ log p(xk,(0),x\k|u)

∂zi
· ∂zi
∂ẑj

∣∣∣
xk=xk,(0)

)
,

(16)
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where Pa(xk) denotes the indices set of the parents of xk. Similarly, we further have:

0 =
∑

i∈Pa(xk)

(∂ log p(xk,(2),x\k|u)
∂zi

· ∂zi
∂ẑj

∣∣∣
xk=xk,(2)

−
∂ log p(xk,(0),x\k|u)

∂zi
· ∂zi
∂ẑj

∣∣∣
xk=xk,(0)

)
0 =

∑
i∈Pa(xk)

(∂ log p(xk,(2),x\k|u)
∂zi

· ∂zi
∂ẑj

∣∣∣
xk=xk,(2)

−
∂ log p(xk,(1),x\k|u)

∂zi
· ∂zi
∂ẑj

∣∣∣
xk=xk,(1)

)
(17)

Suppose that we let u = u0, · · · ,u|Pa(xk)|, then by combining Equation (16) and (17) and further
leveraging the sufficient changes assumption (A3), the linear system is a 3|Pa(xk)| × 3|Pa(xk)|
full-rank system. Therefore, the only solution is ∂zi

∂ẑj

∣∣∣
xk=xk,(0)

= 0, ∂zi
∂ẑj

∣∣∣
xk=xk,(1)

= 0, and

∂zi
∂ẑj

∣∣∣
xk=xk,(2)

= 0, i ∈ Pa(xk), implying that ∂zi
∂ẑj

= 0, i ∈ Pa(xk).

As h(·) is smooth Z , its Jacobian can written as

Jh =

[
∂zo

∂ẑo
̸= 0 ∂zo

∂ẑs
∂zs

∂ẑo
= 0 ∂zs

∂ẑs

]
. (18)

Therefore, ∂zo

∂ẑo
̸= 0 and zo is subspace identifiable.

A.2 COMPONENT-WISE IDENTIFICATION VIA SUFFICIENT CHANGES OF MULTIPLE
DISTRIBUTIONS

Theorem 2. (Component-wise Identification with Complementary Gains) Let the observations be
sampled from the data generating process in Equation (1). Suppose that Assumptions from Theorem
1 hold and also that we learn ĝ, pẑ|u to match the marginal distribution between x and x̂ with the
minimal number of edges of the mixing process. We further make the following assumption:

• A4 (Sufficient Changes for Component-wise Identification.): Suppose xk and xa be a subset of
x and xk∩xa = ∅. We let the za be the set of latent variables that connect to xa but not connect to
xk, such that for all different values of xa such as xa,0,xa,(1), the vectors V(a, k,us)−V(a, k, 0)
with s = 1, . . . , 2|za| are linearly independent. And the vector V(a, k,us) is defined as follows:

V(a, k,um) =
(∂2 log p(za,(1), zb, zk|um)

(∂zi)2
,−

∂2 log p(za,(0), zb, zk|um)

(∂zi)2
, . . . ,

∂ log p(za,(1), zb, zk|um)

∂zi
,−

∂ log p(za,(0), zb, zk|um)

∂zi

)
zi∈za

.

(19)

Suppose that we learn ĝ to achieve Equation (1) with the minimal number of edges of the mixing
process. Then za is component-wise identifiable.

Proof. Based on Theorem 1, given different values of zk and |Pa(xk)| different domains, Equation
(15) can be further derived as follows:

∂ log p(x|u)
∂ẑj

=

n∑
i=1

∂ log p(x|u)
∂zi

· ∂zi
∂ẑj

=
∑
zi /∈zk

∂ log p(x|u)
∂zi

· ∂zi
∂ẑj

. (20)

Sequentially, if there exists xa,xa ∩ xk = ∅, that connects to ẑj and za but does not connect to zb.
Similar to Theorem 1, given two different values of xa,(1) and xa,(0), we subtract Equation (20) that
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corresponding to xa,(1) with that corresponding to xa,(0) and then we have:

∂ log p(xa,(1),xb, zk|u)
∂ẑj

−
∂ log p(xa,(0),xb, zk|u)

∂ẑj

=
∑
zi /∈zk

(∂ log p(xa,(1),xb, zk|u)
∂zi

· ∂zi
∂ẑj

∣∣∣
xa=xa,(1)

−
∂ log p(xa,(0),xb, zk|u)

∂zi
· ∂zi
∂ẑj

∣∣∣
xa=xa,(0)

)
=

∑
zi /∈zkandzi∈za

(∂ log p(xa,(1),xb, zk|u)
∂zi

· ∂zi
∂ẑj

∣∣∣
xa=xa,(1)

−
∂ log p(xa,(0),xb, zk|u)

∂zi
· ∂zi
∂ẑj

∣∣∣
xa=xa,(0)

)
(21)

By combining Equation (14) and (21), we have:

∂ log p(ẑa,(1), ẑb, ẑk|u)
∂ẑj

−
∂ log p(ẑa,(0), ẑb, ẑk|u)

∂ẑj
− ∂ log |Jh|

∂ẑj

∣∣∣
xa=xa,(1)

+
∂ log |Jh|

∂ẑj

∣∣∣
xa=xa,(0)

=
∑

zi /∈zk

(∂ log p(ẑa,(1), ẑb, ẑk|u)
∂zi

· ∂zi
∂ẑj

∣∣∣
xa=xa,(1)

−
∂ log p(ẑa,(0), ẑb, ẑk|u)

∂zi
· ∂zi
∂ẑj

∣∣∣
xa=xa,(0)

)
=

∑
zi /∈{zk}andzi∈za

(∂ log p(ẑa,(1), ẑb, ẑk|u)
∂zi

· ∂zi
∂ẑj

∣∣∣
xa=xa,(1)

−
∂ log p(ẑa,(0), ẑb, ẑk|u)

∂zi
· ∂zi
∂ẑj

∣∣∣
xa=xa,(0)

)
=

∑
zi∈za

(∂ log p(ẑa,(1), ẑb, ẑk|u)
∂zi

· ∂zi
∂ẑj

∣∣∣
xa=xa,(1)

−
∂ log p(ẑa,(0), ẑb, ẑk|u)

∂zi
· ∂zi
∂ẑj

∣∣∣
xa=xa,(0)

)
,

(22)

where Jh0
and Jh1

denote the the Jacobian with the values of xa,(1) and xa,(0), respectively.

And then we further take the second-order derivative w.r.t ẑl, where l ̸= j and have:

0− ∂ log |Jh|
∂ẑj∂ẑl

∣∣∣
xa=xa,(1)

+
∂ log |Jh|
∂ẑj∂ẑl

∣∣∣
xa=xa,(0)

=
∑
zi∈za

(∂2 log p(z|u)
(∂zi)2

· ∂zi
∂ẑj

· ∂zi
∂ẑl

∣∣∣
xa=xa,(1)

− ∂2 log p(z|u)
(∂zi)2

· ∂zi
∂ẑj

· ∂zi
∂ẑl

∣∣∣
xa=xa,(0)

)
+

+
∑
zi∈za

(∂ log p(z|u)
∂zi

· ∂2zi
∂ẑj∂ẑl

∣∣∣
xa=xa,(1)

− ∂ log p(z|u)
∂zi

· ∂2zi
∂ẑj∂ẑl

∣∣∣
xa=xa,(0)

)
=

∑
zi∈za

(
v(a, k, i,u) · ∂zi

∂ẑj
· ∂zi
∂ẑl

∣∣∣
xa=xa,(1)

− v(a, k, i,u) · ∂zi
∂ẑj

· ∂zi
∂ẑl

∣∣∣
xa=xa,(0)

+ v(a, k, i,u) · ∂2zi
∂ẑj∂ẑl

∣∣∣
xa=xa,(1)

− v(a, k, i,u) · ∂2zi
∂ẑj∂ẑl

∣∣∣
xa=xa,(0)

)

(23)

Then we consider u = u0, · · · ,u|za|, and let Equation (23) corresponding to us subtract with that
corresponding to u0, and have:

0 =
∑
zi∈za

(
v(a, k, i,us) ·

∂zi
∂ẑj

· ∂zi
∂ẑl

∣∣∣
xa=xa,(1)

− v(a, k, i,us) ·
∂zi
∂ẑj

· ∂zi
∂ẑl

∣∣∣
xa=xa,(0)

+ v(a, k, i,us) ·
∂2zi
∂ẑj∂ẑl

∣∣∣
xa=xa,(1)

− v(a, k, i,us) ·
∂2zi
∂ẑj∂ẑl

∣∣∣
xa=xa,(0)

)
−∑

zi∈za

(
v(a, k, i,u0) ·

∂zi
∂ẑj

· ∂zi
∂ẑl

∣∣∣
xa=xa,(1)

− v(a, k, i,u0) ·
∂zi
∂ẑj

· ∂zi
∂ẑl

∣∣∣
xa=xa,(0)

+ v(a, k, i,u0) ·
∂2zi
∂ẑj∂ẑl

∣∣∣
xa=xa,(1)

− v(a, k, i,u0) ·
∂2zi
∂ẑj∂ẑl

∣∣∣
xa=xa,(0)

)
(24)

Under the generalized sufficient changes assumptions and further let three different values of xa,
i.e., xa,(0),xa,(1) and xa,(2), so the linear system is a 6|za| × 6|za| full-rank system. Therefore, the
only solution is ∂zi

∂ẑj
· ∂zi
∂ẑl

= 0 and ∂2zi
∂ẑj∂ẑl

= 0.
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Note that ∂zi
∂ẑj

· ∂zi
∂ẑl

= 0 implies that for each zi ∈ za, ∂zi
∂ẑj

̸= 0 for at most one element k ∈ [n].
Therefore, there is only at most one non-zero entry in each row indexed by zi ∈ za in the Jacobian
Jh. As a result, za is component-wise identifiable with nk,a different domains, where nk,a =
max(|Pa(xk)|, 2 × |za| + 1). Therefore, for each latent variable zi, i ∈ [n], the necessary domain
number for the component-wise identifiability is max(nk,a).

A.3 GENERAL CASE FOR COMPONENT-WISE IDENTIFICATION WITH FULL-CONNECTED
MIXING PROCESS

Corollary 1. (General Case for Component-wise Identification with Full-connected Mixing Pro-
cess) We follow the data generation process in Equation (1) and make assumptions A1, A2, and A3.
In addition, we make the following assumptions:

• A6 (Fully Connected Mixing Process): Each latent variable zi is connected to each ob-
served variable xj , where i, j ∈ [n].

Suppose that we learn ĝ to achieve Equation (1), zi is component-wise identifiable with 2n + 1
different values of auxiliary variables u.

Proof. We conduct second-order derivation of Equation (14) w.r.t ẑj and ẑl and have:

0 =
∂ log p(ẑ|u)

∂ẑj∂ẑl
=

n∑
i=1

(∂2 log p(zi|u)
(∂zi)2

· ∂zi
∂ẑj

· ∂zi
∂ẑl

+
∂ log p(zi|u)

∂zi
· (∂zi)

2

∂ẑj∂ẑl

)
+

∂ log |Jh|
∂ẑj∂ẑl

. (25)

Suppose we have 2n + 1 different values of u, i.e., u = u0,u1, · · · ,u2n, let Equation (25 corre-
sponding to us subtract with that corresponding to u0, and have:

0 =

n∑
i=1

(
(
∂2 log p(zi|us)

(∂zi)2
−∂2 log p(zi|u0)

(∂zi)2
)· ∂zi
∂ẑj

·∂zi
∂ẑl

+(
∂ log p(zi|us)

∂zi
−∂ log p(zi|u0)

∂zi
)· (∂zi)

2

∂ẑj∂ẑl

)
.

(26)
With assumption A4, the linear system is 2n × 2n full-rank system, and the unique solution is
∂zi
∂ẑj

· ∂zi
∂ẑl

= 0 and (∂zi)
2

∂ẑj∂ẑl
= 0. Since Jh is invertible and full-rank, for each row of Jh, there is only

one non-zero element, implying that latent variables z are component-wise identifiable.
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(a) Dataset A (a) Dataset B (a) Dataset C

Figure 6: Data generation process of the three datasets for synthetic data.

B SYNTHETIC EXPERIMENTS

B.1 SIMULATION DATASETS

The synthetic datasets are constructed in accordance with the causal graphs as shown in Figure 6.
Specifically, the mixing functions are synthesized using multilayer perceptrons (MLPs) initialized
with random weights. The mixing functions incorporate the LeakyReLU activation function to en-
sure invertibility. For each domain, we set different noises to ensure that z has different distributions.

B.2 MEAN CORRELATION COEFFICIENT

Mean Correlation Coefficient, a widely used metric in ICA research, evaluates how well latent fac-
tors are recovered. It works by calculating the absolute correlation coefficients between each ground
truth factor and the estimated latent variables. If the recovered factors involve component-wise in-
vertible nonlinearities, either Pearson’s or Spearman’s rank correlation coefficients are used accord-
ingly. The best matching between ground truth and estimated factors is found by solving a linear
sum assignment problem on the correlation matrix, which is efficiently solvable in polynomial time.

B.3 IMPLEMENTATION DETAILS

Both the encoder and decoder in the proposed CG-VAE are composed of a 5-layer multilayer per-
ception (MLP) with the LeakyReLU activate function. 2. We trained the VAE network using the
AdamW optimizer with a learning rate of 3e− 3 and a mini-batch size of 64, the s. The coefficients
for α and β are 5e− 2 and 1e− 3, respectively.

C RELATED WORKS

C.1 DISENTANGLED REPRESENTATION LEARNING

Disentangled representation learning plays an important role in unsupervised learning (Li et al.;
Locatello et al., 2020b; Peters et al., 2017). The key intuition (Bengio et al., 2013) is that the
disentangled representations should separate the distinct, independent, and informative generative
factors of variation in the data. And each latent variable is sensitive to changes in single underlying
generative factors while being relatively invariant to changes in other factors. Based on this intu-
ition, researchers further extend this concept to groups of factors (Bouchacourt et al., 2018; Suter
et al., 2018; Cai et al., 2019; Higgins et al.). Several methods (Wang et al., 2022) are proposed to
learn disentangled representations. For example, some researchers employ the variational autoen-
coders Kingma (2013); Burgess et al. (2018); Kumar et al. (2017); Kim & Mnih (2018) to learn
disentangled representation. Other works employ the GAN-based structures to learn disentangled
representations. For instance, InfoGAN Chen et al. (2016) achieves disentanglement by leveraging
an extra variational regularization of mutual information. Recent works (Locatello et al., 2019a;
2020a;b) propose that unsupervised learning of disentangled representations is impossible, without
any inductive biases on both the models and the data. Therefore, Locatello et al. (2020c) leverages
pairs of observations to learn disentangled representation in a weakly-supervised. And Träuble et al.
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(2021) learns disentangled representation from correlations data. Recently, Fumero et al. (2023)
obtains disentangled representation in multi-task models by considering that the features activate
sparsely with respect to tasks and are maximally shared across tasks.

C.2 NONLINEAR INDEPENDENT COMPONENT ANALYSIS

Independent component analysis (ICA) provides the theoretical foundation for disentangled repre-
sentation (Hyvärinen et al., 2023) and identifiability is an important challenge. Previously, several
works achieve identifiability by assuming the mixing processes are linear (Comon, 1994; Hyvärinen
& Pajunen, 1999; Hyvärinen, 2013). However, the nonlinear ICA is a challenging task since the la-
tent variables are not identifiable without any extra assumptions on the distribution of latent variables
or the generation process (Hyvärinen et al., 2024; Khemakhem et al., 2020b; Zheng et al., 2022).
To solve this problem, some works leverage the auxiliary variables e.g. domain indexes, time in-
dexes, and class labels to achieve sufficient changes for identification (Hyvarinen & Morioka, 2016;
Khemakhem et al., 2020a; Kong et al., 2022; Li et al., 2023; Hälvä & Hyvarinen, 2020; Hälvä et al.,
2021; Hyvarinen & Morioka, 2017). Recently, other works achieve identifiability by using the sparse
causal model. Specifically, Lachapelle et al. (2022; 2024); Zhang et al. (2024); Li et al. (2024) em-
ploy sparse interactions between latent variables to achieve identifiability. And Moran et al. (2021);
Zheng & Zhang (2023); Zheng et al. (2022) achieve identifiability by using structural sparsity as-
sumption. However, either the sufficient changes or the structural sparsity assumptions are hard to
meet in real-world scenarios. Fortunately, we find the complementary benefits between the sufficient
changes and sparse mixing procedure, so we can mitigate these assumptions.

C.3 MULTI-DOMAIN IMAGE GENERATION

Multi-domain image generation focuses on learning the joint distribution of multi-domain image
data, even without paired data (Liu & Tuzel, 2016; Pu et al., 2018; Xie et al., 2023). CoGAN Liu &
Tuzel (2016) uses different generators for each domain while sharing high-level weights to transfer
domain-invariant information across domains. JointGAN Pu et al. (2018) factorizes the joint distri-
bution into marginal and conditional distributions to learn. i-StyleGAN Xie et al. (2023) connects
multi-domain generation with identifiability by dividing the latent input z into zc and zs, where zc
captures domain-invariant information, and zs captures domain-specific information. Unlike condi-
tional GANs (Gong et al., 2019; Brock, 2018; Miyato & Koyama, 2018; Odena et al., 2017; Kang
& Park, 2020; Kang et al., 2021; Zhang et al., 2019), which aim to generate images that conform to
provided label information and enhance diversity to approximate the marginal distribution of each
domain, multi-domain image generation seeks to model the relationships between different domains
within a unified framework. This approach not only captures the individual domain distributions
but also the shared and domain-specific characteristics across domains. When transitioning between
domains, the objective is to make minimal adjustments necessary to adapt to the new domain while
preserving as much domain-invariant information as possible.

D DISCUSSION OF THE THEORETICAL RESULTS

D.1 IMPLICATIONS

Based on the aforementioned theoretical results, we can relax the assumptions required for dis-
entangled representation learning, which holds practical significance in real-world scenarios. For
example, in the task of multi-domain image generation, using previous methods, it is challenging to
obtain the necessary number of domains to identify all latent variables. Although existing work in-
troduces the assumption of minimal change to alleviate this issue to some extent, due to the unknown
dimensions of the latent variables, the required number of domains still does not meet theoretical
needs, resulting in unsatisfactory practical outcomes.

Meanwhile, our method has two advantages in solving such problems. First, the conditional inde-
pendence caused by the sparse mixing procedure constrains the solution space of the linear full-rank
system, thus decreasing the requirement on the auxiliary variables. Second, even with an insuffi-
cient number of values of the auxiliary variables, we can still disentangle the latent variables that are
of interest and relevant to downstream tasks (e.g., zo1 in Figure ??), even if other unrelated latent
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Table 6: Experiment results of different model variants of CG-VAE.
MCC Completeness

Number of
Domain CG-VAE CG-FactorVAE CG-TCVAE CG-HFVAE CG-VAE CG-FactorVAE CG-TCVAE CG-HFVAE

2 0.953 0.882 0.946 0.944 0.608 0.814 0.553 0.633
4 0.952 0.876 0.900 0.932 0.632 0.732 0.661 0.497
6 0.956 0.837 0.918 0.907 0.620 0.626 0.600 0.612
8 0.971 0.869 0.934 0.956 0.729 0.590 0.793 0.719

variables are not identifiable. For instance, in multi-domain image generation (such as controlled
image generation with or without glasses), it is sufficient to identify the latent variable related to a
particular feature, such as glasses, with a small number of domains. Therefore, our method is more
likely to meet practical needs.

D.2 INTUITION OF SUBSPACE-WISE AND COMPONENT-WISE IDENTIFICATION

Subspace identification is weaker than component-wise identification, and hence naturally requires
less information in the data generation process and distributions. Let us start with the subspace
identifiability, suppose we have two sets of latent variables with changing distributions denoted by zs
and zc, respectively. And ẑs and ẑc are the corresponding estimated variables. Moreover, we let the
i- and j- component of zs and zc be zis and zjc , respectively. In order to see whether zs is identifiable
up to a subspace, we just need to show whether ∂zi

s

∂ẑj
c
= 0. To this end, only the first-order derivative

of the logarithmic density distribution is needed. However, for the propose of component-wise
identifiability, we have to make additional conditions, such as conditional independence between
zis and zjs given the all the remaining components. These conditions impose stronger constraints
compared to subspace identifiability. Mathematically, this conditional independence implies that
the second-order cross derivative of the logarithmic density distribution with respect to ẑi and ẑj is
zero, which involves second-order derivatives.

D.3 DISCUSSION OF ASSUMPTIONS OF THEOREM 2

In contrast to subspace identification, here we assume that the conditional distributions are second-
order differentiable, and linear independence is necessary for a unique solution to the full-rank linear
system. Additionally, while the conditional independence between zo2 and xr implies a sparse
mixing procedure, our assumption on the sparsity is weaker than structural sparsity (Zheng et al.,
2022; Zheng & Zhang, 2023). For example, the case shown in Figure 2 achieves component-wise
identifiability but violates the structural sparsity assumption. How to further analyze the relationship
between structural sparsity and the sparse procedure proposed in this paper is an interesting future
direction. We also note that sparse mixing procedures are common in real-world tasks. In multi-
domain image generation, for instance, when transforming an image of a man into a woman, the
latent variable representing gender affects only certain observed features, such as facial hair and
hairstyle, while leaving the background and other facial features unchanged.

E MORE EXPERIMENT RESULTS

E.1 SCALABILITY OF DIFFERENT VAE VARIANTS

We also extend our method to other VAE variants like TC-VAE Chen et al. (2018), FactorVAE Kim
& Mnih (2018), and HFVAE Esmaeili et al. (2018). We named them CG-TCVAE, CG-FactorVAE,
and CG-HFVAE, respectively. experiment on synthetic are shown in Table 6. According to the ex-
periment, we can find that the all the model variants achieve the ideal disentanglement performance
even the number of domains is 2, which verify our theoretical results.

E.2 OTHER CONSTRAINT ON MIXING PROCEDURE

In this paper, we choose L1-norm to enforce sparsity of mixing procedure since the L1 penalty
induces a ”sharp” constraint, encouraging the penalized quantities (like the coefficients in linear re-
gression or the partial derivatives in our formulation) to become exactly zero during optimization.
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Table 7: MCC results of the CG-VAE and CG-VAE-L2.
Number of Domains CGVAE-L1 CGVAE-L2

2 0.953 (0.007) 0.887 (0.071)
4 0.952 (0.017) 0.924 (0.011)
6 0.956 (0.016) 0.892 (0.025)
8 0.971 (0.009) 0.911 (0.035)

Table 8: Informativeness results on dataset A of different methods.
Number of

Domain CG-VAE CG-GAN iMSDA iVAE FactorVAE Slow-VAE beta-VAE

2 0.265 (0.018) 0.291 (0.028) 0.317 (0.028) 0.402 (0.164) 0.525 (0.013) 0.350 (0.046) 0.343 (0.045)
4 0.256 (0.045) 0.351 (0.032) 0.361 (0.045) 0.288 (0.007) 0.532 (0.040) 0.399 (0.014) 0.428 (0.036)
6 0.212 (0.016) 0.259 (0.019) 0.282 (0.001) 0.251 (0.090) 0.480 (0.017) 0.288 (0.051) 0.318 (0.037)
8 0.206 (0.016) 0.265 (0.038) 0.225 (0.013) 0.216 (0.018) 0.471 (0.012) 0.322 (0.037) 0.278 (0.051)

This characteristic is particularly desirable in scenarios where we aim to simplify the model or iden-
tify the most relevant components in the mixing process. In the meanwhile, the L2 norm (squared
sum) tends to stabilize training by uniformly penalizing the magnitude of all coefficients, it does not
promote sparsity as effectively. Instead, it typically results in coefficients with small but non-zero
values, which may not align with our objective in this context. Therefore, the L1-norm can be used
to induce sparsity of the estimated mixing procedure, which aligns with the goal of our theoretical
results. We replaced L2-norm with L1-norm, and conducted experiments on the synthetic datasets,
which are shown in Table 7. According to the experiment, we can find that disentanglement perfor-
mance of the model with L2-norm lower than that of L1, evaluating our statement.

E.3 EXPERIMENT RESULTS ON OTHER METRICS

Experiment results on the Dataset A of informativeness, R2, and MSE are shown in Tables 8, 9, and
10, respectively.

F METRICS INTRODUCTION

To quantitatively analyze the disentanglement performance of different methods and settings, we
employ six metrics: MCC, Completeness, Disentanglement, Informativeness, MSE, and R-squared.

MCC (Mean Correlation Coefficient) evaluates the correspondence between the latent variables
and generative factors. It calculates the correlation matrix between the latent representations and the
generative factors and uses the Hungarian algorithm to maximize the absolute values of the diagonal
elements after sorting. The final MCC score is the mean of the absolute values of the diagonal
elements.

Completeness (Eastwood & Williams, 2018): This metric measures the degree to which each
generative factor is captured by a single latent variable. It requires a training regressor to predict
generative factors from latent variables and computes the entropy of the importance weights of
latent variables for each factor.

Disentanglement (Eastwood & Williams, 2018): This metric assesses whether each latent variable
is primarily associated with a single generative factor. It is computed by training regressors to predict
latent variables from generative factors and calculating the entropy of their importance distribution.

Informativeness (Eastwood & Williams, 2018): his metric quantifies the total amount of informa-
tion about the generative factors contained in the latent variables. It is computed as the root mean
squared error (RMSE) between the predicted generative factors and the ground truth z.

Mean Squared Error (MSE) (Li et al., 2023): By using LASSO as the regressor to predict z from
the latent representation ẑ, we use MSE between he predicted generative factors and the ground
truth values on the test set to evaluate the disentanglement performance.

R2: The coefficient of determination, which is also a common metric for the regression task.
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Table 9: R2 results on dataset A of different methods.
Number of

Domain CG-VAE CG-GAN iMSDA iVAE FactorVAE Slow-VAE β-VAE

2 0.931 (0.002) 0.916 (0.014) 0.854 (0.019) 0.843 (0.090) 0.656 (0.012) 0.854 (0.015) 0.848 (0.003)
4 0.930 (0.023) 0.876 (0.014) 0.883 (0.015) 0.904 (0.008) 0.728 (0.063) 0.834 (0.014) 0.799 (0.085)
6 0.950 (0.006) 0.937 (0.009) 0.925 (0.002) 0.940 (0.004) 0.766 (0.016) 0.900 (0.049) 0.908 (0.013)
8 0.955 (0.002) 0.938 (0.034) 0.946 (0.016) 0.941 (0.006) 0.790 (0.005) 0.897 (0.038) 0.912 (0.021)

Table 10: MSE results on dataset A of different methods.
Number of

Domain CG-VAE CG-GAN iMSDA iVAE FactorVAE Slow-VAE β-VAE

2 0.072 (0.009) 0.084 (0.017) 0.105 (0.009) 0.122 (0.020) 0.325 (0.009) 0.141 (0.030) 0.158 (0.013)
4 0.074 (0.031) 0.154 (0.032) 0.120 (0.005) 0.064 (0.006) 0.311 (0.037) 0.158 (0.003) 0.215 (0.010)
6 0.055 (0.005) 0.072 (0.015) 0.080 (0.000) 0.067 (0.009) 0.233 (0.003) 0.118 (0.044) 0.137 (0.020)
8 0.048 (0.005) 0.086 (0.001) 0.052 (0.007) 0.052 (0.002) 0.234 (0.010) 0.118 (0.040) 0.081 (0.028)
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