
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FINE-TUNING DISCRETE DIFFUSION MODELS VIA RE-
WARD OPTIMIZATION WITH APPLICATIONS TO DNA
AND PROTEIN DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies have demonstrated the strong empirical performance of diffusion
models on discrete sequences (i.e., discrete diffusion models) across domains from
natural language to biological sequence generation. For example, in the protein
inverse folding task, where the goal is to generate a protein sequence from a given
backbone structure, conditional diffusion models have achieved impressive re-
sults in generating natural-like sequences that fold back into the original structure.
However, practical design tasks often require not only modeling a conditional
distribution but also optimizing specific task objectives. For instance, in the inverse
folding task, we may prefer protein sequences with high stability. To address
this, we consider the scenario where we have pre-trained discrete diffusion mod-
els that can generate natural-like sequences, as well as reward models that map
sequences to task objectives. We then formulate the reward maximization problem
within discrete diffusion models, analogous to reinforcement learning (RL), while
minimizing the KL divergence against pretrained diffusion models to preserve
naturalness. To solve this RL problem, we propose a novel algorithm, DRAKES,
that enables direct backpropagation of rewards through entire trajectories gener-
ated by diffusion models, by making the originally non-differentiable trajectories
differentiable using the Gumbel-Softmax trick. Our theoretical analysis indicates
that our approach can generate sequences that are both natural-like (i.e., have a
high probability under a pretrained model) and yield high rewards. While similar
tasks have been recently explored in diffusion models for continuous domains, our
work addresses unique algorithmic and theoretical challenges specific to discrete
diffusion models, which arise from their foundation in continuous-time Markov
chains rather than Brownian motion. Finally, we demonstrate the effectiveness of
our algorithm in generating DNA and protein sequences that optimize enhancer
activity and protein stability, respectively, important tasks for gene therapies and
protein-based therapeutics.

1 INTRODUCTION

Diffusion models have gained widespread recognition as effective generative models in continuous
spaces, such as image and video generation (Song et al., 2020; Ho et al., 2022). Inspired by seminal
works (e.g., Austin et al. (2021); Campbell et al. (2022); Sun et al. (2022)), recent studies (Lou
et al., 2023; Shi et al., 2024; Sahoo et al., 2024) have shown that diffusion models are also highly
effective in discrete spaces, including natural language and biological sequence generation (DNA,
RNA, proteins). Unlike autoregressive models commonly used in language modeling, diffusion
models are particularly well-suited for biological sequences, where long-range interactions are crucial
for the physical behavior of molecules arising from those sequences (e.g., the 3D folded structure of
RNA or proteins).

While discrete diffusion models effectively capture conditional distributions (e.g., the distribution of
sequences given a specific backbone structure in an inverse protein folding design problem (Dauparas
et al., 2022; Campbell et al., 2024)), in many applications, especially for therapeutic discovery, we
often aim to generate sequences that are both natural-like and optimize a downstream performance

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: DRAKES. We maximize the reward with a penalty term relative to pre-trained discrete
diffusion models using the Gumbel-Softmax trick.

objective. For instance, in the inverse folding problem, we may prefer stable protein sequences
(i.e., sequences that fold back into stable protein conformations (Widatalla et al., 2024)); for mRNA
vaccine production we desire 5’ UTRs that drive high translational efficiency (Castillo-Hair and
Seelig, 2021); for gene and cell therapies, we desire regulatory DNA elements, such as promoters
and enhancers, that drive high gene expression only in specific cell types (Taskiran et al., 2024); and
for natural language we optimize to minimize harmfulness (Touvron et al., 2023).

To address these challenges, our work introduces a fine-tuning approach for well-pretrained discrete
diffusion models that maximizes downstream reward functions. Specifically, we aim to optimize
these reward functions while ensuring that the generated sequences maintain a high probability
under the original conditional distribution (e.g., the distribution of sequences that fold into a given
backbone structure). To achieve this, we formulate the problem as a reward maximization task,
analogous to reinforcement learning (RL), where the objective function integrates both the reward
terms and the KL divergence with respect to the pre-trained discrete diffusion model, which ensures
that the generated sequences remain close to the pre-trained model, preserving their naturalness after
fine-tuning. To solve this RL problem, we propose a novel algorithm, DRAKES, that enables direct
backpropagation of rewards through entire trajectories by making the originally non-differentiable
trajectories differentiable using the Gumbel-Softmax trick (Jang et al., 2016; Maddison et al., 2016).

Our main contribution is an RL-based fine-tuning algorithm, Direct Reward bAcKpropagation with
gumbEl Softmax trick (DRAKES), that enables reward-maximizing finetuning for discrete diffusion
models (Figure 1). We derive a theoretical guarantee that demonstrates its ability to generate natural
and high-reward designs, and demonstrate its performance empirically on DNA and protein design
tasks. While similar algorithms exist for continuous spaces (Fan et al., 2023; Black et al., 2023;
Uehara et al., 2024; Venkatraman et al., 2024; Yuan et al., 2023; Guo et al., 2024), our work is the first,
to the best of our knowledge, to address these aspects in (continuous-time) discrete diffusion models.
This requires addressing unique challenges, as discrete diffusion models are formulated as continuous-
time Markov chains (CTMC), which differ from Brownian motion, and the induced trajectories from
CTMC are no longer differentiable, unlike in continuous spaces. Our novel theoretical guarantee
also establishes a connection with recent advancements in classifier guidance for discrete diffusion
models (Nisonoff et al., 2024).

2 RELATED WORKS

Discrete diffusion models and their application in biology. Building on the seminal works of
Austin et al. (2021); Campbell et al. (2022), recent studies on masked diffusion models (Lou et al.,
2023; Shi et al., 2024; Sahoo et al., 2024) have demonstrated strong performance in natural language
generation. Recent advances in masked discrete diffusion models have been successfully applied to
biological sequence generation, including DNA and protein sequences (Sarkar et al., 2024; Campbell
et al., 2024). Compared to autoregressive models, diffusion models may be particularly well-suited
for biological sequences, which typically yield molecules that fold into complex three-dimensional
(3D) structures.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In contrast to these works, our study focuses on fine-tuning diffusion models to optimize downstream
reward functions. One application of our approach is the fine-tuning of protein inverse folding
generative models to optimize stability, as discussed in Widatalla et al. (2024). However, unlike this
prior work, we employ discrete diffusion models as the generative model.

Controlled generation in diffusion models. There are three primary approaches:

• Guidance: Techniques such as classifier guidance (Song et al., 2020; Dhariwal and Nichol,
2021) and its variants (e.g., Bansal et al. (2023); Chung et al. (2022); Ho et al. (2022)) introduce
gradients from proxy models during inference. However, since gradients are not formally well-
defined for discrete states in diffusion, a recent study (Nisonoff et al., 2024) proposed a method
specifically designed for discrete diffusion models. Alternative approaches directly applicable to
discrete diffusion models include sequential Monte Carlo (SMC)-based methods (Wu et al., 2024;
Trippe et al., 2022; Dou and Song, 2024; Cardoso et al., 2023; Phillips et al., 2024). While these
guidance-based inference techniques have their own advantages, they generally lead to longer
inference times compared to fine-tuned models. We compare our methods against these in terms
of generation quality in Section 6.

• RL-based fine-tuning: To maximize reward functions for pretrained diffusion models, numerous
recent studies have explored RL-based fine-tuning in continuous diffusion models (i.e., diffusion
models for continuous objectives) (Fan et al., 2023; Black et al., 2023; Clark et al., 2023;
Prabhudesai et al., 2023). Our work, in contrast, focuses on discrete diffusion models.

• Classifier-free fine-tuning (Ho and Salimans, 2022): This approach constructs conditional
generative models, applicable in our setting by conditioning on high reward values. Although not
originally designed as a fine-tuning method, it can also be adapted for fine-tuning (Zhang et al.,
2023) by adding further controls to optimize. However, in the context of continuous diffusion
models, compared to RL-based fine-tuning, several works (Uehara et al., 2024) have shown that
conditioning on high reward values is suboptimal, because such high-reward samples are rare.
We will likewise compare this approach to ours in Section 6. Lastly, when pretrained models
are conditional diffusion models (i.e., p(x|c)) and the offline dataset size consisting of triplets
(c, x, r(x)) is limited, it is challenging to achieve success. Indeed, for this reason, most current
RL-based fine-tuning papers (e.g., Fan et al. (2023); Black et al. (2023); Clark et al. (2023)) do
not empirically compare their algorithms with classifier-free guidance.

3 PRELIMINARY

3.1 DIFFUSION MODELS ON DISCRETE SPACES

In diffusion models, our goal is to model the data distribution pdata ∈ ∆(X) using the training
data, where X represents the domain. We focus on the case where X = {1, 2, · · · , N}. The
fundamental principle is (1) introducing a known forward model that maps the data distribution to a
noise distribution, and (2) learning the time reversal that maps the noise distribution back to the data
distribution (detailed in Lou et al. (2023); Sahoo et al. (2024); Shi et al. (2024)).

First, we consider the family of distributions jt ∈ RN (a vector summing to 1) that evolves from
t = 0 to t = T according to a continuous-time Markov chain (CTMC):

djt
dt = Q(t)jt, p0 ∼ pdata, (1)

where Q(t) ∈ RN×N is the generator. Generally, jt is designed so that pt approaches a simple limiting
distribution at t = T . A common approach is to add Mask into X and gradually mask a sequence so
that the limiting distribution becomes completely masked (Shi et al., 2024; Sahoo et al., 2024).

Next, we consider the time-reversal CTMC (Sun et al., 2022) that preserves the marginal distribution.
This can be expressed as follows:

djT−t

dt = Q̄(T − t)jT−t, Q̄x,y(t) =

{
jt(y)
jt(x)

Qy,x(t) (y ̸= x)

−
∑

y ̸=x Q̄x,y(t) (y = x),
(2)

where Qx,y(t) is a (x, y)-entry of a generator Q(t), representing the transition rate matrix from state
x to state y. This implies that if we can learn the marginal density ratio pt(y)/pt(x), we can sample

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

from the data distribution at t = T by following the above CTMC controlled by Q̄(T − t). Existing
works (e.g., Lou et al. (2023)) demonstrate how to train this ratio from the training data. Especially
when we use masked diffusion models (Sahoo et al., 2024; Shi et al., 2024), we get

Q̄x,y(t) =

γE[x0 = y|xt = Mask] (y ̸= Mask, xt = Mask),

−
∑

z ̸=Mask γE[x0 = z|xt = Mask] (y = Mask, xt = Mask)

0 (xt ̸= Mask)

, (3)

for a certain constant γ, where the expectation is taken with respect to (w.r.t.) the distribution induced
by the forward CTMC. Notably, the above formulation suggests that masked diffusion models could
be viewed as a hierarchical extension of BERT (Devlin, 2018).

Remark 1 (Sequence of multiple tokens). When dealing with sequences of length M , x =
[x⟨1⟩, · · · , x⟨M⟩], we simply consider the factorized rate matrix, i.e., Q̄x,y =

∑
i Q̄x,y⟨i⟩ (Campbell

et al., 2022), thereby avoiding exponential blowup.

Remark 2 (Conditioning). We can easily construct a conditional generative model for any c ∈ C by
allowing the generator to be a function of c ∈ C.

3.2 GOAL: GENERATING NATURAL SAMPLES WHILE OPTIMIZING REWARD FUNCTIONS

In our work, we consider a scenario with a pretrained masked discrete diffusion model ppre(x|c) ∈
[C → ∆(X)] trained on an extensive dataset and a downstream reward function r : X → R. The
pretrained diffusion model captures the naturalness or validity of samples. For example, in protein
design, ppre(·|·) could be a protein inverse-folding model that generates amino acid sequences that
fold back into the given backbone structure (similar to Campbell et al. (2024)), and r could be
a function that evaluates stability. Our objective is to fine-tune a generative model to generate
natural-like samples (high log ppre(·|·)) with desirable properties (high r(·)).
Notation. We introduce a discrete diffusion model parameterized by θ from t = 0 to t = T 1:

dpt

dt = Qθ(t)pt, p0 = plim. (4)

The parameter θ from the pretrained model is denoted by θpre and plim denotes the initial distribution.
The distribution at time T is denoted as ppre(·), which approximates the training data distribution
pdata. We denote an element of the generated trajectory from t = 0 to t = T by x0:T . For simplicity,
we assume the initial distribution is a Dirac delta distribution (completely masked state), and we
often treat the original pretrained diffusion model as an unconditional model for a single token for
notational convenience. In this paper, all of the proofs are in Appendix C.

4 ALGORITHM

In this section, we present our proposed method, DRAKES, for fine-tuning diffusion models to
optimize downstream reward functions. We begin by discussing the motivation behind our algorithm.

4.1 KEY FORMULATION

Perhaps the most obvious starting point for fine-tuning diffusion models to maximize a reward
function r(xT) is to simply maximize the expected value of the reward under the model’s distribution,
i.e., Ex0∼P θ [r(xT)], where the expectation is taken over the distribution P θ(x0:T) induced by (4)
(i.e., the generator Qθ). However, using only this objective could lead to over-optimization, where
the model produces unrealistic or unnatural samples that technically achieve a high reward, but are
impossible to generate in reality. Such samples typically exploit flaws in the reward function, for
example, by being outside the training distribution of a learned reward or violating the physical
assumptions of a hand-engineered physics-based reward (Levine et al., 2020; Clark et al., 2023;
Uehara et al., 2024). We address this challenge by constraining the optimized model to remain close
to a pretrained diffusion model, which captures the distribution over natural or realistic samples.
More specifically, we introduce a penalization term by incorporating the KL divergence between the
fine-tuned model P θ(x0:T) and the pretrained diffusion model P θpre(x0:T) in CTMC.

1Starting from Section 3.2, to simply the notation, we go from t = 0 to t = T to represent noise to data.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Accordingly, our goal during fine-tuning is to solve the following reinforcement learning (RL)
problem:

θ⋆ = argmax
θ∈Θ

Ex0:T∼P θ [r(xT)]︸ ︷︷ ︸
Reward term

(5)

− αEx0:T∼P θ

∫ T

t=0

∑
y ̸=xt

{
Qθpre

xt,y(t)−Qθ
xt,y(t) +Qθ

xt,y(t) log
Qθ

xt,y(t)

Q
θpre
xt,y(t)

}
dt

︸ ︷︷ ︸

KL term

.

The first term is designed to generate samples with desired properties, while the second term represents
the KL divergence. The parameter α controls the strength of this regularization term.

Finally, after fine-tuning, by using the following CTMC from t = 0 to t = T :
dpt

dt = Qθ⋆

(t)pt, p0 = plim. (6)
we generate samples at time T . Interestingly, we can show the following.
Theorem 1 (Fine-Tuned Distribution). When {Qθ

·,· : θ ∈ Θ} is fully nonparametric (i.e., realizability
holds), the generated distribution at time T by (6) is proportional to

exp(r(·)/α)ppre(·). (7)

This theorem offers valuable insights. The first term, exp(r(x)), represents high rewards. Addition-
ally, the second term, ppre(·), can be seen as prior information that characterizes the natural sequence.
For example, in the context of inverse protein folding, this refers to the ability to fold back into the
target backbone structure.
Remark 3. A similar theorem has been derived for continuous diffusion models (Uehara et al.,
2024, Theorem 1). However, our formulation (5) differs significantly as our framework is based on a
CTMC, whereas those works are centered around the Brownian motion. Furthermore, while the use
of a similar distribution is common in the literature on (autoregressive) large language models (e.g.,
Ziegler et al. (2019)), its application in discrete diffusion models is novel, considering that ppre(·)
cannot be explicitly obtained in our context, unlike autoregressive models.

4.2 DIRECT REWARD BACKPROPAGATION WITH GUMBEL SOFTMAX TRICK (DRAKES)

Based on the key formulation presented in Section 4.1, we introduce our proposed method (Algo-
rithm 1 and Figure 1), which is designed to solve the RL problem (5). The core approach involves
iteratively (a) sampling from x0:T ∼ P θ and (b) updating θ by approximating the objective func-
tion (5) with its empirical counterpart and adding its gradient with respect to θ into the current θ.
Importantly, for step (b) to be valid, step (a) must retain the gradients from θ. After explaining the
representation of xt, we will provide details on each step.

Representation. To represent x ∈ {1, · · · , N}, we often use the N -dimensional one-hot encoding
representation within RN interchangeably. From this perspective, while the original generator
corresponds to a map X × X → R, we can also regard it as an extended mapping: RN × RN → R.
We will use this extended mapping when we consider our algorithm later.

Stage 1: Data collection (Step 2-9) We aim to sample from the distribution induced by the
generator Qθ. In the standard discretization of CTMC, for (y, x) ∈ X × X , at time t, we use

p(xt+∆t = y|xt = x) = I(x = y) +Qθ
x,y(t)(∆t). (8)

Thus, by defining πt = [Qθ
x,1(t)(∆t), · · · , (1+Qθ

x,x(t))∆t · · · , Qθ
x,N (t)(∆t)], we sample xt+∆t ∼

Cat(πt), where Cat(·) denotes the categorical distribution.

However, this procedure is not differentiable with respect to θ, which limits its applicability for
optimization. To address this, we first recognize that sampling from the categorical distribution can be
reduced to a Gumbel-max operation. Although this operation itself remains non-differentiable, we can
modify it by replacing the max operation with a softmax, as shown in Line 7, which is also utilized in
discrete VAE (Jang et al., 2016). This modification results in a new variable, x̄t ∼ [0, 1]N , which
maintains differentiability with respect to θ. As the temperature τ approaches zero, x̄t converges to a
sample from the exact categorical distribution Cat(πt), effectively becoming xt. Thus, we typically
set the temperature to a low value to closely approximate the true distribution.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 DRAKES (Direct Reward bAcKpropagation with gumbEl Softmax trick)

1: Require: Pretrained diffusion models Qθpre : RN × RN → R, reward r : X → R, learning rate
β, Batch size B, Iteration S, Time-step ∆t, Temperature τ , Regularization parameter α

2: for s ∈ [1, · · · , S] do
3: for i ∈ [1, · · · , B] do
4: for t ∈ [0,∆t, · · · , T] do

5: Set [π(t)1, · · · , π(t)N] ∈ ∆(X) where π(t)y =

{
[x̄

(i)
t−1]y +∆t

∑
x∈X [x̄

(i)
t−1]xQ

θs
y,x (t > 0)

plim(y) (t = 0)

6: Sample k ∈ [1, · · · , N];Gk ∼ Gumbel(0, 1)
7: Set a differentiable counterpart of the sample at time t:

x̄
(i)
t ←

[
exp((π(t)1 +G1)/τ)∑
y exp((π(t)y +Gy)/τ)

, · · · , exp((π(t)N +GN)/τ)∑
y exp(π(t)y +Gy)/τ)

]
8: end for
9: end for

10: Set the loss:

g(θs) =
1

B

B∑
i=1

r(x̄(i)
T)− α

T

T∑
t=1

∑
x∈X

[x̄
(i)
t−1]x

∑
y∈X
y ̸=x

{
−Qθs

x,y(t) +Q
θpre
x,y (t) +Qθs

x,y(t) log
Qθs

x,y(t)

Q
θpre
x,y (t)

}
11: Update a parameter: θs+1 ← θs + β∇θg(θ)|θ=θs
12: end for
13: Output: θS+1

Stage 2: Optimization (Step 10-11) After approximately sampling from the distribution induced
by P θs , we update the parameter θs by maximizing the empirical objective. Although xt itself may
not have a valid gradient, x̄t retains the gradient with respect to θ. Therefore, we use the empirical
approximation based on x̄t. We offer several remarks below, with details in Appendix E:

• Validity of x̄t: While x̄t does not strictly belong to X , this is practically acceptable since the
generator Qθ(t) is parameterized as a map RN × RN → R.

• SGD Variants: Although Line 11 uses the standard SGD update, any off-the-shelf SGD algorithm,
such as Adam (Kingma, 2014), can be applied in practice.

• Soft Calculation with x̄t: Transition probability π(t)y and the KL divergence term in g(θ) are
modified to their soft counterparts by using x̄t in place of xt.

• Straight-Through Gumbel Softmax: Non-relaxed computations can be used in the forward
pass (in Line 10). This is commonly known as straight-through Gumbel softmax estimator.

• Truncated Backpropagration: In practice, it is often more effective to backpropagate from
intermediate time steps rather than starting from t = 0. In practice, we adopted this truncation
approach, as in Clark et al. (2023).

• Optimization Objective g(θ): For the masked diffusion models (3) that we utilized, g(θ) can be
further simplified to reduce computational complexity, as detailed in Appendix E.2.

5 THEORY OF DRAKES
In this section, we provide an overview of the proof for Theorem 1. Based on the insights gained from
this proof, we reinterpret state-of-the-art classifier guidance for discrete diffusion models (Nisonoff
et al., 2024) from a new perspective.

5.1 PROOF SKETCH OF THEOREM 1
We define the optimal value function Vt : X → R as follows:

Ext:T∼P θ⋆

r(xT)− α

∫ T

s=t

∑
y ̸=xs

{
Qθ⋆

xs,y(s)−Qθpre
xs,y(s) +Qθ⋆

xs,y(s) log
Qθ⋆

xs,y(s)

Q
θpre
xs,y(s)

}
ds | xt = x

 .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

This is the expected return starting from state x at time t following the optimal policy. Once the
optimal value function is defined, the optimal generator can be expressed in terms of this value
function using the Hamilton-Jacobi-Bellman (HJB) equation in CTMC, as shown below.
Theorem 2 (Optimal generator). For x ̸= y (x, y ∈ X), we have

Qθ⋆

x,y(t) = Q
θpre
x,y (t) exp({Vt(y)− Vt(x)}/α). (9)

Next, consider an alternative expression for the soft value function, derived using the Kolmogorov
backward equations in CTMC. This expression is particularly useful for learning value functions.
Theorem 3 (Feynman–Kac Formula in CTMC).

exp(Vt(x)/α) = Ext:T∼Pθpre [exp(r(xT)/α)|xt = x] (10)

With this preparation, we can prove our main theorem, which reduces to Theorem 1 when t = T .
Theorem 4 (Marginal distribution induced by the optimal generator Qθ⋆

(t)). The marginal distribu-
tion at time t by (6), p⋆t ∈ ∆(X), is proportional to

exp(Vt(·)/α)ppret (·). (11)

where ppret ∈ ∆(X) is a marginal distribution induced by pretrained model at t.

This is proved by showing the Kolmogorov forward equation in CTMC: dp⋆t /dt = Qθ⋆

(t)p⋆t .

5.2 RELATION TO CLASSIFIER GUIDANCE FOR DISCRETE DIFFUSION MODELS

Now, we derive an alternative fine-tuning-free algorithm by leveraging observations in Section 5.1
for reward maximization. If we can directly obtain the optimal generator Qθ⋆

, we can achieve our
objective. Theorem 2 suggests that the optimal generator Qθ⋆

is a product of the generator from the
pretrained model and the value functions. Although we don’t know the exact value functions, they
can be learned through regression using Theorem 3 based on

exp(Vt(·)/α) = argmin
g:X→R

ExT∼Pθpre (xT |xt)
[{exp(r(xT)/α)− g(xt)}2]. (12)

In practice, while we can’t calculate the exact expectation, we can still replace it with its empirical
analog. Alternatively, we can approximate it by using a map from xt to x0 in pretrained models
following DPS (Chung et al., 2022) or reconstruction guidance (Ho et al., 2022).

Interestingly, a similar algorithm was previously proposed by Nisonoff et al. (2024). While Nisonoff
et al. (2024) originally focused on conditional generation, their approach can also be applied to
reward maximization or vice versa. In their framework for conditional generation, they define
r(x) = log p(z|x) (e.g., the log-likelihood from a classifier) and set α = 1. By adapting Theorem 2
and 3 to their setting, we obtain:

Qθ⋆

x,y(t) = Q
θpre
x,y (t)× pt(z|y)/pt(z|x), pt(z|xt) := Ext:T∼Pθpre [p(z|xT) | xt]. (13)

Thus, we can rederive the formula in Nisonoff et al. (2024). Here, we also note that this type of result
is commonly referred to as the Doob transform in the literature on stochastic processes (Levin and
Peres, 2017, Section 17).

While this argument suggests that classifier guidance and RL-based fine-tuning approaches theo-
retically achieve the same goal in an ideal setting (without function approximation, sampling, or
optimization errors), their practical behavior can differ significantly, as we demonstrate in Section 6.
At a high level, the advantage of classifier guidance is that it requires no fine-tuning, but the inference
time may be significantly longer due to the need to recalculate the generator during inference. Indeed,
this classifier guidance requires O(NM) computations of value functions at each step to calculate
the normalizing constant. While this can be mitigated using a Taylor approximation, there is no
theoretical guarantee for this heuristic in discrete diffusion models. Lastly, learning value functions
in classifier guidance can often be practically challenging.

6 EXPERIMENTS

Our experiments focus on the design of regulatory DNA sequences for enhancer activity and protein
sequences for stability. Our results include comprehensive evaluations, highlighting the ability of
DRAKES to produce natural-like sequences while effectively optimizing the desired properties.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6.1 BASELINES

We compare DRAKES against several baseline methods discussed in Section 2, which we summarize
below with further details in Appendix F.1.

• Guidance-based Methods (CG, SMC, TDS). We compare our approach with representative
guidance-based methods, including state-of-the-art classifier guidance (CG) tailored to discrete
diffusion models (Nisonoff et al., 2024), SMC-based guidance methods (e.g., Wu et al. (2024)):
SMC, where the proposal is a pretrained model and TDS, where the proposal is CG.

• Classifier-free Guidance (CFG) (Ho and Salimans, 2022). CFG is trained on labeled datasets
with the measured attributes we aim to optimize.

• Pretrained. We generated sequences using pretrained models without fine-tuning.

• DRAKES w/o KL. This ablation of DRAKES omits the KL regularization term, evaluating how
well this term mitigates over-optimization (discussed in Section 4.1).

6.2 REGULATORY DNA SEQUENCE DESIGN

Here we aim to optimize the activity of regulatory DNA sequences such that they drive gene expression
in specific cell types, a critical task for cell and gene therapy (Taskiran et al., 2024).

Dataset and settings. We experiment on a publicly available large-scale enhancer dataset (Gosai
et al., 2023), which measures the enhancer activity of ∼700k DNA sequences (200-bp length) in
human cell lines using massively parallel reporter assays (MPRAs), where the expression driven by
each sequence is measured. We pretrain the masked discrete diffusion model (Sahoo et al., 2024)
on all the sequences. We then split the dataset and train two reward oracles (one for finetuning and
one for evaluation) on each subset, using the Enformer (Avsec et al., 2021) architecture to predict
the activity level in the HepG2 cell line. These datasets and reward models are widely used in the
literature on computational enhancer design (Lal et al., 2024; Uehara et al., 2024; Sarkar et al., 2024).
Detailed information about the pretrained model and reward oracles is in Appendix F.2.

Evaluations. To comprehensively evaluate each model’s performance in enhancer generation, we
use the following metrics:

• Predicted activity based on the evaluation reward oracle (Pred-Activity). We predict the enhancer
activity level in the HepG2 cell line using the reward oracle trained on the evaluation subset. Note
that the diffusion models are fine-tuned (or guided) with the oracle trained on a different subset of
the data, splitting based on chromosome following conventions (but in the same cell lines) (Lal
et al., 2024).

• Binary classification on chromatin accessibility (ATAC-Acc). We use an independent binary
classification model trained on chromatin accessibility data in the HepG2 cell line (Consortium
et al., 2012) (active enhancers should have accessible chromatin). While this is not used for
fine-tuning, we use it for evaluation to further validate the predicted activity of the synthetic
sequences, following Lal et al. (2024).

• 3-mer Pearson correlation (3-mer Corr). We calculate the 3-mer Pearson correlation between the
synthetic sequences and the sequences in the dataset (Gosai et al., 2023) with top 0.1% HepG2
activity level. Models that generate sequences that are more natural-like and in-distribution have
a higher correlation.

• JASPAR motif analysis (JASPAR Corr). We scan the generated sequences of each model with
JASPAR transcription factor binding profiles Castro-Mondragon et al. (2022), which identify
potential transcription factor binding motifs in the enhancer sequences (which are expected to
drive enhancer activity). We then count the occurrence frequency of each motif and calculate
the Spearman correlation of motif frequency between the synthetic sequences generated by each
model and the top 0.1% HepG2 activity sequences in the dataset.

• Approximated log-likelihood of sequences (App-Log-Lik). We calculate the log-likelihood of the
generated sequences with respect to the pretrained model to measure how likely the sequences
are to be natural-like. Models that over-optimize the reward oracle generate out-of-distribution
sequences and would have a low likelihood to the pretrained model. The likelihood is calculated
using the ELBO of the discrete diffusion model in Sahoo et al. (2024).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Results. DRAKES generates sequences with high predicted activity in the HepG2 cell line, as
robustly measured by Pred-Activity and ATAC-Acc (Table 1). The generated sequences closely
resemble natural enhancers, as indicated by high 3-mer and JASPAR motif correlations, and a similar
likelihood to the pretrained model. These highlight DRAKES’s effectiveness in generating plausible
high-activity enhancer sequences. Notably, while DRAKES, without KL regularization achieves
higher Pred-Activity, this can be attributed to over-optimization. Despite splitting the data for fine-
tuning and evaluation, the sequences remain highly similar due to many analogous regions within each
chromosome. However, when evaluated with an independent activity oracle, ATAC-Acc, DRAKES
demonstrates superior performance while maintaining higher correlations and log likelihood.

Table 1: Model performance on regulatory DNA sequence design. DRAKES generates sequences
with high activity in the HepG2 cell line, measured by Pred-Activity and ATAC-Acc, while being
natural-like by high 3-mer and JASPAR motif correlations and likelihood. We report the mean across
3 random seeds, with standard deviations in parentheses.

Method Pred-Activity (median) ↑ ATAC-Acc ↑ (%) 3-mer Corr ↑ JASPAR Corr ↑ App-Log-Lik (median) ↑

Pretrained 0.17(0.04) 1.5(0.2) -0.061(0.034) 0.249(0.015) -261(0.6)
CG 3.30(0.00) 0.0(0.0) -0.065(0.001) 0.212(0.035) -266(0.6)
SMC 4.15(0.33) 39.9(8.7) 0.840(0.045) 0.756(0.068) -259(2.5)
TDS 4.64(0.21) 45.3(16.4) 0.848(0.008) 0.846(0.044) -257(1.5)
CFG 5.04(0.06) 92.1(0.9) 0.746(0.001) 0.864(0.011) -265(0.6)

DRAKES w/o KL 6.44(0.04) 82.5(2.8) 0.307(0.001) 0.557(0.015) -281(0.6)
DRAKES 5.61(0.07) 92.5(0.6) 0.887(0.002) 0.911(0.002) -264(0.6)

6.3 PROTEIN SEQUENCE DESIGN: OPTIMIZING STABILITY IN INVERSE FOLDING MODEL

In this task, given a pretrained inverse folding model that generates sequences conditioned on the
backbone’s conformation (3D structure), our goal is to optimize the stability of these generated
sequences, following Widatalla et al. (2024).

Dataset and settings. First, we pretrained an inverse folding model based on the diffusion model
(Campbell et al., 2024) and the ProteinMPNN (Dauparas et al., 2022) architecture, using the PDB
training set from Dauparas et al. (2022). Next, we trained the reward oracles using a different
large-scale protein stability dataset, Megascale (Tsuboyama et al., 2023), which includes stability
measurements (i.e., the Gibbs free energy change) for ∼1.8M sequence variants from 983 natural
and designed domains. Following dataset curation and a train-validation-test splitting procedure
from Widatalla et al. (2024) (which leads to ∼0.5M sequences on 333 domains) and using the
ProteinMPNN architecture, we constructed two reward oracles – one for fine-tuning and one for
evaluation, that predict stability from the protein sequence and wild-type conformation. Detailed
information on the pretrained model and reward oracles is in Appendix F.3.

Evaluations. We use the following metrics to evaluate the stability of the generated sequences and
their ability to fold into the desired structure. During evaluation, we always condition on protein
backbone conformations from the test data that are not used during fine-tuning.

• Predicted stability on the evaluation reward oracle (Pred-ddG). The evaluation oracle is trained
with the full Megascale dataset (train+val+test) to predict protein stability. Conversely, the fine-
tuning oracle is trained only with data from the Megascale training set. Thus, during fine-tuning,
the algorithms do not encounter any proteins used for evaluation.

• Self-consistency RMSD of structures (scRMSD). To assess how well a generated sequence folds
into the desired structure, we use ESMFold (Lin et al., 2023) to predict the structures of the
generated sequences and calculate their RMSD relative to the wild-type structure (i.e., the original
backbone structure we are conditioning on). This is a widely used metric (Campbell et al., 2024;
Trippe et al., 2022; Chu et al., 2024).

Following prior works (Campbell et al., 2024; Nisonoff et al., 2024), we calculate the success rate of
inverse folding as the ratio of generated sequences with Pred-ddG> 0 and scRMSD< 2.

Results. For inverse protein folding, DRAKES generates high-stability protein sequences capable of
folding into the conditioned structure (Table 2). It achieves the highest Pred-ddG among all methods,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Model performance on inverse protein folding. DRAKES generates protein sequences that
have high stability and fold to the desired structure, outperforming baselines in the overall success
rate. We report the mean across 3 random seeds, with standard deviations in parentheses.

Method Pred-ddG (median) ↑ %(ddG> 0) (%) ↑ scRMSD (median) ↓ %(scRMSD< 2)(%) ↑ Success Rate (%) ↑

Pretrained -0.544(0.037) 36.6(1.0) 0.849(0.013) 90.9(0.6) 34.4(0.5)
CG -0.561(0.045) 36.9(1.1) 0.839(0.012) 90.9(0.6) 34.7(0.9)
SMC 0.659(0.044) 68.5(3.1) 0.841(0.006) 93.8(0.4) 63.6(4.0)
TDS 0.674(0.086) 68.2(2.4) 0.834(0.001) 94.4(1.2) 62.9(2.8)
CFG -1.186(0.035) 11.0(0.4) 3.146(0.062) 29.4(1.0) 1.3(0.4)

DRAKES w/o KL 1.108(0.004) 100.0(0.0) 7.307(0.054) 34.1(0.2) 34.1(0.2)
DRAKES 1.095(0.026) 86.4(0.2) 0.918(0.006) 91.8(0.5) 78.6(0.7)

(a) Conditioning on the backbone structure of 7JJK. (b) Conditioning on the backbone structure of 2KRU.

Figure 2: Examples of generated proteins. Red: Wild-type backbone structure (the one we condition
on), Yellow: Structure predicted by ESMFold from the wild-type (true) sequence, Green: Structure
predicted by ESMFold from the sequence generated by DRAKES. The structures for sequences
generated by DRAKES show good alignment with the original structure (the scRMSDs are 0.768 for
7JJK and 0.492 for 2KRU). Histograms: Gibbs free energy for each generated sequence, calculated
using physics-based simulations. In these two cases, the sequences generated by DRAKES appear to
be more stable than the baselines.

while maintaining a similar success rate of inverse folding (measured by %(scRMSD< 2), the
percentage of scRMSD smaller than 2) as the pretrained model. Considering both factors, DRAKES
significantly outperforms all baseline methods in terms of overall success rate. Note that CFG does
not work well for protein sequence design due to limited labeled data, as Megascale includes only a
few hundred backbones, making generalization difficult. This is expected, as we mention in Section 2.
Further details are provided in Appendix F.1.

Moreover, the results highlight the importance of the KL term, as DRAKES without KL regularization
tends to suffer from over-optimization, with high scRMSD (i.e., failing to fold back to the target
backbone structure), even though Pred-ddG may remain high.

In silico validation. For validation purposes, we calculate the stability (i.e., Gibbs free energy) of
the generated sequences using physics-based simulations (PyRosetta (Chaudhury et al., 2010)) for
wild-type protein backbone structures in Figure 2, following (Widatalla et al., 2024). Although all
models are conditioned on the same set of protein backbones, different sets of sequences generated by
generative methods can lead to significant differences in side chain interactions, which affect folding
energies. The results demonstrate that sequences generated by our algorithms are more stable in this
in silico validation compared to other baseline methods. For additional results, refer to Figure 6 in
Appendix F.3.

7 CONCLUSIONS

We propose a novel algorithm that incorporates reward maximization into discrete diffusion models,
leveraging the Gumbel-Softmax trick to enable differentiable reward backpropagation, and demon-
strate its effectiveness in generating DNA and protein sequences optimized for task-specific objectives.
For future work, we plan to conduct more extensive in silico validation and pursue wet-lab validation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

For the theoretical results presented in the paper, we provide explanations of assumptions and
complete proofs in Appendix C. For the proposed algorithm and experimental results, we provide
detailed explanations of the algorithm implementations and experimental setup in Section 4.2,
Section 6, Appendix E, and Appendix F, and the code and data can be found in the anonymous link
https://anonymous.4open.science/r/DRAKES-code-5B62/. For the datasets used
in the experiments, we utilize publicly available datasets and elaborate the data processing procedures
in Section 6 and Appendix F.

11

https://anonymous.4open.science/r/DRAKES-code-5B62/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Austin, J., D. D. Johnson, J. Ho, D. Tarlow, and R. Van Den Berg (2021). Structured denoising
diffusion models in discrete state-spaces. Advances in Neural Information Processing Systems 34,
17981–17993.

Avdeyev, P., C. Shi, Y. Tan, K. Dudnyk, and J. Zhou (2023). Dirichlet diffusion score model for
biological sequence generation. arXiv preprint arXiv:2305.10699.

Avsec, Ž., V. Agarwal, D. Visentin, J. R. Ledsam, A. Grabska-Barwinska, K. R. Taylor, Y. Assael,
J. Jumper, P. Kohli, and D. R. Kelley (2021). Effective gene expression prediction from sequence
by integrating long-range interactions. Nature methods 18(10), 1196–1203.

Bansal, A., H.-M. Chu, A. Schwarzschild, S. Sengupta, M. Goldblum, J. Geiping, and T. Goldstein
(2023). Universal guidance for diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 843–852.

Black, K., M. Janner, Y. Du, I. Kostrikov, and S. Levine (2023). Training diffusion models with
reinforcement learning. arXiv preprint arXiv:2305.13301.

Campbell, A., J. Benton, V. De Bortoli, T. Rainforth, G. Deligiannidis, and A. Doucet (2022).
A continuous time framework for discrete denoising models. Advances in Neural Information
Processing Systems 35, 28266–28279.

Campbell, A., J. Yim, R. Barzilay, T. Rainforth, and T. Jaakkola (2024). Generative flows on discrete
state-spaces: Enabling multimodal flows with applications to protein co-design. arXiv preprint
arXiv:2402.04997.

Cardoso, G., Y. J. E. Idrissi, S. L. Corff, and E. Moulines (2023). Monte carlo guided diffusion for
bayesian linear inverse problems. arXiv preprint arXiv:2308.07983.

Castillo-Hair, S. M. and G. Seelig (2021). Machine learning for designing next-generation mrna
therapeutics. Accounts of Chemical Research 55(1), 24–34.

Castro-Mondragon, J. A., R. Riudavets-Puig, I. Rauluseviciute, R. Berhanu Lemma, L. Turchi,
R. Blanc-Mathieu, J. Lucas, P. Boddie, A. Khan, N. Manosalva Pérez, et al. (2022). Jaspar 2022:
the 9th release of the open-access database of transcription factor binding profiles. Nucleic acids
research 50(D1), D165–D173.

Chaudhury, S., S. Lyskov, and J. J. Gray (2010). Pyrosetta: a script-based interface for implementing
molecular modeling algorithms using rosetta. Bioinformatics 26(5), 689–691.

Chu, A. E., J. Kim, L. Cheng, G. El Nesr, M. Xu, R. W. Shuai, and P.-S. Huang (2024). An all-atom
protein generative model. Proceedings of the National Academy of Sciences 121(27), e2311500121.

Chung, H., J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye (2022). Diffusion posterior sampling
for general noisy inverse problems. arXiv preprint arXiv:2209.14687.

Chung, H., B. Sim, D. Ryu, and J. C. Ye (2022). Improving diffusion models for inverse problems
using manifold constraints. Advances in Neural Information Processing Systems 35, 25683–25696.

Clark, K., P. Vicol, K. Swersky, and D. J. Fleet (2023). Directly fine-tuning diffusion models on
differentiable rewards. arXiv preprint arXiv:2309.17400.

Consortium, E. P. et al. (2012). An integrated encyclopedia of dna elements in the human genome.
Nature 489(7414), 57.

Dauparas, J., I. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte, L. F. Milles, B. I. Wicky, A. Courbet,
R. J. de Haas, N. Bethel, et al. (2022). Robust deep learning–based protein sequence design using
proteinmpnn. Science 378(6615), 49–56.

Devlin, J. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dhariwal, P. and A. Nichol (2021). Diffusion models beat gans on image synthesis. Advances in
neural information processing systems 34, 8780–8794.

Domingo-Enrich, C., M. Drozdzal, B. Karrer, and R. T. Chen (2024). Adjoint matching: Fine-tuning
flow and diffusion generative models with memoryless stochastic optimal control. arXiv preprint
arXiv:2409.08861.

Dou, Z. and Y. Song (2024). Diffusion posterior sampling for linear inverse problem solving: A
filtering perspective. In The Twelfth International Conference on Learning Representations.

Fan, Y., O. Watkins, Y. Du, H. Liu, M. Ryu, C. Boutilier, P. Abbeel, M. Ghavamzadeh, K. Lee, and
K. Lee (2023). DPOK: Reinforcement learning for fine-tuning text-to-image diffusion models.
arXiv preprint arXiv:2305.16381.

Gosai, S. J., R. I. Castro, N. Fuentes, J. C. Butts, S. Kales, R. R. Noche, K. Mouri, P. C. Sabeti, S. K.
Reilly, and R. Tewhey (2023). Machine-guided design of synthetic cell type-specific cis-regulatory
elements. bioRxiv.

Guo, Y., H. Yuan, Y. Yang, M. Chen, and M. Wang (2024). Gradient guidance for diffusion models:
An optimization perspective. arXiv preprint arXiv:2404.14743.

Ho, J. and T. Salimans (2022). Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598.

Ho, J., T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet (2022). Video diffusion
models. Advances in Neural Information Processing Systems 35, 8633–8646.

Jang, E., S. Gu, and B. Poole (2016). Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

Kingma, D. P. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Lal, A., D. Garfield, T. Biancalani, and G. Eraslan (2024). reglm: Designing realistic regulatory dna
with autoregressive language models. bioRxiv, 2024–02.

Levin, D. A. and Y. Peres (2017). Markov chains and mixing times, Volume 107. American
Mathematical Soc.

Levine, S., A. Kumar, G. Tucker, and J. Fu (2020). Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643.

Lin, Z., H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, N. Smetanin, R. Verkuil, O. Kabeli, Y. Shmueli, et al.
(2023). Evolutionary-scale prediction of atomic-level protein structure with a language model.
Science 379(6637), 1123–1130.

Lou, A., C. Meng, and S. Ermon (2023). Discrete diffusion language modeling by estimating the
ratios of the data distribution. arXiv preprint arXiv:2310.16834.

Maddison, C. J., A. Mnih, and Y. W. Teh (2016). The concrete distribution: A continuous relaxation
of discrete random variables. arXiv preprint arXiv:1611.00712.

Nisonoff, H., J. Xiong, S. Allenspach, and J. Listgarten (2024). Unlocking guidance for discrete
state-space diffusion and flow models. arXiv preprint arXiv:2406.01572.

Phillips, A., H.-D. Dau, M. J. Hutchinson, V. De Bortoli, G. Deligiannidis, and A. Doucet (2024).
Particle denoising diffusion sampler. arXiv preprint arXiv:2402.06320.

Prabhudesai, M., A. Goyal, D. Pathak, and K. Fragkiadaki (2023). Aligning text-to-image diffusion
models with reward backpropagation. arXiv preprint arXiv:2310.03739.

Sahoo, S. S., M. Arriola, Y. Schiff, A. Gokaslan, E. Marroquin, J. T. Chiu, A. Rush, and V. Kuleshov
(2024). Simple and effective masked diffusion language models. arXiv preprint arXiv:2406.07524.

Sarkar, A., Z. Tang, C. Zhao, and P. Koo (2024). Designing dna with tunable regulatory activity using
discrete diffusion. bioRxiv, 2024–05.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shi, J., K. Han, Z. Wang, A. Doucet, and M. K. Titsias (2024). Simplified and generalized masked
diffusion for discrete data. arXiv preprint arXiv:2406.04329.

Shi, Y., V. De Bortoli, A. Campbell, and A. Doucet (2024). Diffusion schrödinger bridge matching.
Advances in Neural Information Processing Systems 36.

Song, J., C. Meng, and S. Ermon (2020). Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502.

Song, Y., J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole (2020). Score-based
generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456.

Stark, H., B. Jing, C. Wang, G. Corso, B. Berger, R. Barzilay, and T. Jaakkola (2024). Dirichlet flow
matching with applications to dna sequence design. arXiv preprint arXiv:2402.05841.

Sun, H., L. Yu, B. Dai, D. Schuurmans, and H. Dai (2022). Score-based continuous-time discrete
diffusion models. arXiv preprint arXiv:2211.16750.

Taskiran, I. I., K. I. Spanier, H. Dickmänken, N. Kempynck, A. Pančı́ková, E. C. Ekşi, G. Hulselmans,
J. N. Ismail, K. Theunis, R. Vandepoel, et al. (2024). Cell-type-directed design of synthetic
enhancers. Nature 626(7997), 212–220.

Touvron, H., L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. (2023). Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288.

Trippe, B. L., J. Yim, D. Tischer, D. Baker, T. Broderick, R. Barzilay, and T. Jaakkola (2022).
Diffusion probabilistic modeling of protein backbones in 3d for the motif-scaffolding problem.
arXiv preprint arXiv:2206.04119.

Tsuboyama, K., J. Dauparas, J. Chen, E. Laine, Y. Mohseni Behbahani, J. J. Weinstein, N. M. Mangan,
S. Ovchinnikov, and G. J. Rocklin (2023). Mega-scale experimental analysis of protein folding
stability in biology and design. Nature 620(7973), 434–444.

Uehara, M., Y. Zhao, T. Biancalani, and S. Levine (2024). Understanding reinforcement learning-
based fine-tuning of diffusion models: A tutorial and review. arXiv preprint arXiv:2407.13734.

Uehara, M., Y. Zhao, K. Black, E. Hajiramezanali, G. Scalia, N. L. Diamant, A. M. Tseng, T. Bian-
calani, and S. Levine (2024). Fine-tuning of continuous-time diffusion models as entropy-
regularized control. arXiv preprint arXiv:2402.15194.

Uehara, M., Y. Zhao, E. Hajiramezanali, G. Scalia, G. Eraslan, A. Lal, S. Levine, and T. Biancalani
(2024). Bridging model-based optimization and generative modeling via conservative fine-tuning
of diffusion models. arXiv preprint arXiv:2405.19673.

Venkatraman, S., M. Jain, L. Scimeca, M. Kim, M. Sendera, M. Hasan, L. Rowe, S. Mittal, P. Lemos,
E. Bengio, et al. (2024). Amortizing intractable inference in diffusion models for vision, language,
and control. arXiv preprint arXiv:2405.20971.

Widatalla, T., R. Rafailov, and B. Hie (2024). Aligning protein generative models with experimental
fitness via direct preference optimization. bioRxiv, 2024–05.

Wu, L., B. Trippe, C. Naesseth, D. Blei, and J. P. Cunningham (2024). Practical and asymptotically
exact conditional sampling in diffusion models. Advances in Neural Information Processing
Systems 36.

Yin, G. G. and Q. Zhang (2012). Continuous-time Markov chains and applications: a singular
perturbation approach, Volume 37. Springer.

Yuan, H., K. Huang, C. Ni, M. Chen, and M. Wang (2023). Reward-directed conditional diffusion:
Provable distribution estimation and reward improvement. In Thirty-seventh Conference on Neural
Information Processing Systems.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Zhang, L., A. Rao, and M. Agrawala (2023). Adding conditional control to text-to-image diffusion
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
3836–3847.

Zhou, M., T. Chen, Z. Wang, and H. Zheng (2024). Beta diffusion. Advances in Neural Information
Processing Systems 36.

Ziegler, D. M., N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano, and G. Irving
(2019). Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A MORE RELATED WORKS

Dirichlet diffusion models for discrete spaces. Another approach to diffusion models for discrete
spaces has been proposed (Stark et al., 2024; Avdeyev et al., 2023; Zhou et al., 2024). In these
models, each intermediate state is represented as a vector within a simplex. This is in contrast to
masked diffusion models, where each state is a discrete variable.

Relative trajectory balance for posterior inference. Venkatraman et al. (2024) proposed to use
relative trajectory balance to train a diffusion model that sample from a posterior x ∼ ppost(x) ∝
p(x)r(x). When r(x) is defined as the exponential reward, it can be utilized for reward optimization.
However, this approach requires estimation of the normalizing constant term of the unnormalized
density. In contrast, we solve a control problem with direct backpropagation. Besides, Venkatraman
et al. (2024) models continuous diffusion as a Markovian generative process and is not specifically
tailored to discrete diffusion models.

B POTENTIAL LIMITATIONS

We have formulated the RL problem, (5), in the context of CTMC. The proposed algorithm in our
paper to solve this problem requires reward models to be differentiable. Since differentiable models
are necessary when working with experimental offline data, this assumption is not overly restrictive.
Moreover, many state-of-the-art sequence models mapping sequences to functions in biology are
available today, such as enformer borozi. In cases where creating differentiable models is challenging,
we recommend using PPO-based algorithms (Black et al., 2023; Fan et al., 2023) or reward-weighted
MLE (Uehara et al., 2024, Section 6.1).

C PROOF OF THEOREMS

C.1 PREPARATION

We prepare two well-known theorems in CTMC for the pedagogic purpose. For example, refer to Yin
and Zhang (2012) for the more detailed proof. In these theorems, we suppose we have the CTMC:

dpt
dt

= Q(t)pt. (14)

Lemma 1 (Kolmogorov backward equation). We consider g(·, t) = E[r(xT)|xt = ·] where the
expectation is taken w.r.t. (14). Then, this function g : X × [0, T] → R is characterized by the
following ODE:

dg(x, t)

dt
=

∑
y ̸=x

Qx,y(t){g(x, t)− g(y, t)}, g(x, T) = r(xT).

Proof. Here, we prove that the p.d.f. g satisfies the above backward equation. To show the converse,
we technically require regularity conditions to claim the ODE solution is unique, which can often
be proved by the contraction mapping theorem under certain regularity conditions. Since this is a
well-known result, we skip the converse part. If readers are interested in details, we refer to Yin and
Zhang (2012).

When t = T , the statement g(x, T) = r(xT) is obvious. For the rest of the proof, we aim to show a
result when t ̸= T . We have

g(xt, t) =

∫
g(xt+dt, t+ dt)p(xt+dt|xt)dxt+dt.

The above implies

g(x, t) = {1 +Qx,x(t)dt}g(x, t+ dt) +
∑
y ̸=x

{Qx,y(t)dt}g(y, t+ dt).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Now combined with the property of the generator as follows

0 =
∑
y

Qx,y(t+ dt),

With some algebra,

g(x, t) = g(x, t+ dt)−
∑
y ̸=x

{Qx,y(t)dt}g(x, t+ dt) +
∑
y ̸=x

{Qx,y(t)dt}g(y, t+ dt).

Then, we have
g(x, t)− g(x, t+ dt)

dt
=

∑
y ̸=x

Qx,y(t){g(y, t+ dt)− g(x, t+ dt)}

Finally, by setting dt→ 0, we obtain

−dg(x, t)

dt
=

∑
y ̸=x

Qx,y(t){g(y, t)− g(x, t)}.

Lemma 2 (Kolmogorov forward equation). The density pt ∈ ∆(X) is characterized as the following
ODE:

dpt(x)

dt
=

∑
y ̸=x

Qy,x(t)pt(y)−
∑
y ̸=x

Qx,y(t)pt(x), p0 = pini.

Proof. Here, we prove that the p.d.f. pt satisfies the above forward equation. To show the converse,
we technically require regularity conditions to claim the ODE solution is unique, which can often be
proved by the contraction mapping theorem. Here, we skip the converse part.

We first have

pt+dt(x) =

∫
pt+dt(x|xt)pt(xt)dxt

This implies

pt+dt(x) =
∑
y ̸=x

{Qy,x(t)dtpt(y)}+ {1 +Qx,x(t)dt}pt(x)

=
∑
y ̸=x

{Qy,x(t)dtpt(y)}+ {1−
∑
y ̸=x

Qx,y(t)dt}pt(x).

Hence,
pt+dt(x)− pt(x)

dt
=

∑
y ̸=x

Qy,x(t)pt(y)−
∑
y ̸=x

Qx,y(t)pt(x).

By taking dt→ 0, we obtain
dpt(x)

dt
=

∑
y ̸=x

Qy,x(t)pt(y)−
∑
y ̸=x

Qx,y(t)pt(x).

Then, the proof is completed.

C.2 PROOF OF THEOREM 2

We derive the Hamilton-Jacobi-Bellman (HJB) equation in CTMC. For this purpose, we consider the
recursive equation:

V (x, t) = max
θ

∑
y ̸=x

Qθ
x,y(t)−Q

θpre
x,y (t)−Qθ

x,y(t) log
Qθ

x,y(t)

Q
θpre
x,y (t)

 dt

+
∑
y ̸=x

{Qθ
x,y(t)dtV (y, t+ dt)}+ {1 +Qθ

x,x(t)}V (x, t+ dt)}

 .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Using
∑

y∈X Qx,y(t) = 0, this is equal to

V (x, t) = max
θ

∑
y ̸=x

Qθ
x,y(t)−Q

θpre
x,y (t)−Qθ

x,y(t) log
Qθ

x,y(t)

Q
θpre
x,y (t)

 dt

+V (x, t+ dt) +
∑
y ̸=x

Qθ
x,y(t)dt{V (y, t+ dt)− V (x, t+ dt)}

 .

By taking dt to 0, the above is equal to

−dV (x,t)
dt = max

θ∈Θ

∑
y ̸=x

Qθ
x,y(t)−Qθpre

x,y (t)−Qθ
x,y(t) log

Qθ
x,y(t)

Q
θpre
x,y (t)

+
∑
y ̸=x

Qθ
x,y(t){V (y, t)− V (x, t)}

(15)

This is the HJB equation in CTMC.

Finally, with simple algebra (i.e., taking functional derivative under the constraint 0 =∑
y∈X Qθ

x,y(t)), we can show

∀x ̸= y;Qθ⋆

x,y(t) = Qθpre
x,y (t) exp({V (y, t)− V (x, t)}).

C.3 PROOF OF THEOREM 3

This theorem is proved by invoking the Kolmogorov backward equation.

First, by plugging

∀x ̸= y;Qθ⋆

x,y(t) = Qθpre
x,y (t) exp({V (y, t)− V (x, t)}).

into (15), we get

dV (x, t)

dt
=

∑
y ̸=x

Qθpre
x,y (t){1− exp({V (y, t)− V (x, t)})}.

By multiplying exp(V (x, t)) to both sides, it reduces to

d exp(V (x, t))

dt
=

∑
y ̸=x

Qθpre
x,y (t){exp(V (x, t))− exp(V (y, t))}. (16)

Furthermore, clearly, V (x, T) = r(xT). Then, the statement is proved by invoking the Kolmogorov
backward equation.

C.4 PROOF OF THEOREM 4

We define

Ht(x) := exp(V (x, t))pt(x)/C.

We aim to prove that the above satisfies the Kolmogorov forward equation:

dHt(x)

dt︸ ︷︷ ︸
l.h.s.

=
∑
y ̸=x

Qθ⋆

y,x(t)Ht(y)−
∑
y ̸=x

Qθ⋆

x,y(t)Ht(x)︸ ︷︷ ︸
r.h.s.

, pini = H0(·).

Remark 4. Here, note that pini = δ(· = Mask) = H0(·) holds because we have considered a
scenario where the initial is the Dirac delta distribution. When the original initial distribution is
stochastic, we will see in Section D that we still have pini = H0(·).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

First, we calculate the l.h.s. Here, recall
d exp(V (x, t))

dt
=

∑
y ̸=x

Qθpre
x,y (t){exp(V (x, t))− exp(V (y, t))}

using (16), and

dpt(x)

dt
=

∑
y ̸=x

Qθpre
y,x (t)pt(y)−

∑
y ̸=x

Qθpre
x,y (t)pt(x)

holds, using the Kolmogorov forward equation. Then, we obtain

dHt(x)

dt
=

1

C
×
{
d exp(V (x, t))

dt
pt(x) + exp(V (x, t))

dpt(x)

dt

}

=
1

C
×

∑
y ̸=x

Qθpre
x,y (t){exp(V (x, t))− exp(V (y, t))}pt(x)

+

1

C
× exp(V (x, t))

∑
y ̸=x

Qθpre
y,x (t)pt(y)−

∑
y ̸=x

Qθpre
x,y (t)pt(x)

=

1

C
×

∑
y ̸=x

Qθpre
y,x (t) exp(V (x, t))pt(y)−

1

C
×

∑
y ̸=x

Qθpre
x,y (t) exp(V (y, t))pt(x).

On the other hand, the r.h.s. is

1

C
×

∑
y ̸=x

Qθ⋆

y,x(t)Ht(y)−
∑
y ̸=x

Qθ⋆

x,y(t)Ht(x)

=

1

C
×

∑
y ̸=x

Qθpre
y,x (t) exp({V (x, t)− V (y, t)})Ht(y)−

1

C

∑
y ̸=x

Qθpre
x,y (t) exp({V (y, t)− V (x, t)})Ht(x)

=
1

C
×

∑
y ̸=x

Qθpre
y,x (t) exp(V (x, t))pt(y)−

1

C
×

∑
y ̸=x

Qθpre
x,y (t) exp(V (y, t))pt(x).

Here, from the first line to the second line, we use

∀x ̸= y;Qθ⋆

x,y(t) = Qθpre
x,y (t) exp({V (y, t)− V (x, t)}).

Finally, we can see that l.h.s. = r.h.s. Furthermore, recalling we have an assumption that pini
is Dirac delta distribution, we clearly have pini = H0(·). Hence, the statement is proved by the
Kolmogorov forward equation.

D EXTENSION WITH STOCHASTIC INITIAL DISTRIBUTIONS

When initial distributions are stochastic, we need to modify algorithms. Although there are several
strategies to take stochastic initial distributions into account (Uehara et al., 2024; Domingo-Enrich
et al., 2024), we consider the strategy of learning the initial distributions (Uehara et al., 2024).

Hence, we consider the following control problem:

θ⋆ = argmax
θ

Ex0:T∼P θ,x0∼P θ
0
[r(xT)]︸ ︷︷ ︸

Reward term

(17)

− α

Ex0:T∼P θ,x0∼P θ
0

∫ T

t=0

∑
y ̸=xt

{
Qθpre

xt,y(t)−Qθ
xt,y(t) +Qθ

xt,y(t) log
Qθ

xt,y(t)

Q
θpre
xt,y(t)

}
dt

+KL(P θ
0 | plim)

︸ ︷︷ ︸
KL term

.

Compared to the control problem (5), in our new formulation (17), we parameterize not only
generators but also initial distributions. In this case, Theorem 1 still holds.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D.1 PROOF

Recalling the definition of value functions:

V (k, t) = Exk:T∼P θ

r(xT)− α

∫ T

t=k

∑
y ̸=xt

{
Qθpre

xt,y(t)−Qθ
xt,y(t) +Qθ

xt,y(t) log
Qθ

xt,y(t)

Q
θpre
xt,y(t)

}
dt

 ,

the optimal initial distribution needs to satisfy

argmax
θ

Ex0∼P θ
0
[V0(x0)]− αKL(P θ

0 | plim).

This is equal to the distribution proportional to

exp(V0(x0)/α)plim(x0).

The rest of the proof holds as in the proof of Section C.4 without any change, referring to Remark 4.

E DETAILS OF ALGORITHM

E.1 STRAIGHT-THROUGH GUMBEL SOFTMAX

We apply the straight-through Gumbel softmax estimator to the last time step, i.e.

ST(x(i)
T) := x̄

(i)
T + SG(x

(i)
T − x̄

(i)
T)

where x
(i)
T is the corresponding Gumbel-max variable, i.e. x

(i)
T = argmaxx∈X [x̄

(i)
T]x, and SG

denotes stop gradient. Then, ST(x(i)
T) is input into the reward function r(.) instead of x̄(i)

T for forward
and backward propagation.

We observe a boost in fine-tuning performance with the straight-through Gumbel softmax, as convert-
ing the input to r(.) into a one-hot vector makes it better aligned with the reward oracle’s training
distribution.

E.2 SIMPLIFIED FORMULA OF g(θ)

The key objective function in DRAKES, g(θ), can be further simplified for the masked diffusion
models that we utilized in the experiments.

g(θ) =
1

B

B∑
i=1

r(x̄(i)
T)− α

T

T∑
t=1

∑
x∈X

[x̄
(i)
t−1]x

∑
y∈X
y ̸=x

{
−Qθ

x,y(t) +Qθpre
x,y (t) +Qθ

x,y(t) log
Qθ

x,y(t)

Q
θpre
x,y (t)

}
We denote the second term estimating the KL divergence with the i-th sample as ki(θ):

k(i)(θ) =
1

T

T∑
t=1

∑
x∈X

[x̄
(i)
t−1]x

∑
y∈X
y ̸=x

{
−Qθ

x,y(t) +Qθpre
x,y (t) +Qθ

x,y(t) log
Qθ

x,y(t)

Q
θpre
x,y (t)

}

When x = Mask, the value of Qx,y(t) is irrelevant to the parametrization θ, i.e.

Qθ
x,y(t) = Qθpre

x,y (t) =

{
0, y ̸= Mask
−γ, y = Mask

where γ is a constant related to the forward process schedule (Sahoo et al., 2024). In particular, when
applying a linear schedule (as in our experiments), γ = 1/t. Thus, the corresponding KL divergence
component equals 0.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

When x ̸= Mask,

Qθ
x,y(t) =

{
0, y ̸= Mask
γEθ[x0 = x|xt−1 = Mask], y = Mask

Denote Eθ[x0 = x|xt−1 = Mask] as [x̂θ
0]x. The KL divergence term k(i)(θ) can be simplified as

k(i)(θ) =
1

T

T∑
t=1

∑
x∈X

[x̄
(i)
t−1]x

∑
y∈X
y ̸=x

{
−Qθ

x,y(t) +Qθpre
x,y (t) +Qθ

x,y(t) log
Qθ

x,y(t)

Q
θpre
x,y (t)

}

=
1

T

T∑
t=1

∑
x∈X

[x̄
(i)
t−1]x

{
−Qθ

x,Mask(t) +Q
θpre
x,Mask(t) +Qθ

x,Mask(t) log
Qθ

x,Mask(t)

Q
θpre
x,Mask(t)

}

=
γ

T

T∑
t=1

∑
x∈X

x̸=Mask

[x̄
(i)
t−1]x

{
−[x̂θ

0]x + [x̂
θpre
0]x + [x̂θ

0]x log
[x̂θ

0]x

[x̂
θpre
0]x

}

The simplified formula reduces the computational complexity of calculating k(i)(θ) to O(NT).

E.3 SCHEDULE OF GUMBEL SOFTMAX TEMPERATURE

We use a linear schedule for the Gumbel softmax temperature τ , decreasing over time as τ ∼ 1/t.
In early time steps, the temperature is higher, introducing more uncertainty, while later steps have a
lower temperature, approximating the true distribution more closely. This improves the fine-tuning
procedure as the input becomes closer to clean data at later time steps and the uncertainty of model
prediction is reduced.

F EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

In this section, we first provide a more detailed explanation of the baseline. We then discuss additional
results and present more detailed settings for both regulatory DNA sequence design and protein
sequence design.

F.1 BASELINES

In this section, we provide a detailed overview of each baseline method.

• Guidance-based Methods. Guidance-based methods are based on the pretrained model while
adjusting during the sampling process according to the targeted property. This leads to longer
inference time compared to fine-tuning approaches.

– CG (Nisonoff et al., 2024). CG adjusts the transition rate of CTMC by calculating the
predictor guidance:

Qx,y|r(t) =
p(r|y, t)
p(r|x, t)

Qx,y(t)

where r is the target property, and the predictor guidance is further approximated using a
Taylor expansion, i.e.

log
p(r|y, t)
p(r|x, t)

≈ (y − x)T∇x log p(r|x, t)

The predictor p(r|x, t) is estimated using the posterior mean approach (Chung et al., 2022),
where the pretrained model is first utilized to estimate the clean data from the noisy input xt,
and then the reward oracle is applied to the predicted clean sequence. We remark that the
above Taylor approximation doesn’t have formal theoretical guarantees, considering that x
is discrete. This could be a reason why it does not work well in the case of protein-inverse
folding in Section 6.3.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

– SMC (Wu et al., 2024). SMC is a sequential Monte Carlo-based approach that uses the
pretrained model as the proposal distribution. While it was originally designed for condition-
ing rather than reward maximization, it can be adapted for reward maximization by treating
rewards as classifiers. In our experiment, we use this adapted version.

– TDS (Wu et al., 2024). Similar to SMC, TDS also applies sequential Monte Carlo, but utilizes
CG rather than the pretrained model as the proposal.

• Classifier-free Guidance (CFG) (Ho and Salimans, 2022). Unlike guidance-based methods,
CFG trains a conditional generative model from scratch and does not rely on the pretrained
model. To generate sequences x with desired properties r(x), CFG incorporates r(x) as an
additional input to the diffusion model and generates samples conditioning on high r(x) values.
Specifically, binary labels of r(x) are constructed according to the 95% quantile, and sampling is
done conditioned on the label corresponding to high values of r(x).
It is important to note that CFG requires labeled data pairs {x, r(x)} for training, which can limit
its performance in cases with limited labeled data, especially when the pretrained model is already
a conditional diffusion model p(x|c). For example, in the protein inverse folding task, where x is
the protein sequence, c is the protein structure, and r(x) is the protein stability, CFG struggles, as
shown in Table 2. This is due to the small size of the Megascale dataset (containing only a few
hundred different protein structures), which reduces its capability and generalizability2. While
data augmentation can be applied to construct additional training data, it is resource-intensive,
requires significant case-by-case design, and is beyond the scope of this work. For the DNA
sequence design task, since all sequences in the dataset are labeled, there is no such issue.

F.2 REGULATORY DNA SEQUENCE DESIGN

In this section, we first outline the training process for reward oracles and pre-trained models in the
regulatory DNA sequence design experiment. Subsequently, we provide additional explanations on
fine-tuning setups and present further results.

Reward Oracle. We train reward oracles to predict activity levels of enhancers in the HepG2 cell
line using the dataset from Gosai et al. (2023). Following standard practice (Lal et al., 2024), we
split the dataset into two subsets based on chromosomes, with each containing enhancers from half
of the 23 human chromosomes. We train two reward oracles on each subset independently using
the Enformer (Avsec et al., 2021) architecture initialized with its pretrained weights. One oracle is
used for fine-tuning, while the other is reserved for evaluation (i.e. Pred-Activity in Table 1). Denote
the subset used for training the fine-tuning oracle as FT and the subset for training the evaluation
oracle as Eval. Table 3 presents the model performance for both oracles on each subset. Both oracles
perform similarly, achieving a high Pearson correlation (> 0.85) on their respective held-out sets
(Eval for the fine-tuning oracle and FT for the evaluation oracle).

Table 3: Performance of the reward oracles for predicting HepG2 activity of enhancer sequences.

Model Eval Dataset MSE ↓ Pearson Corr ↑

Fine-Tuning Oracle FT 0.149 0.938
Eval 0.360 0.869

Evaluation Oracle FT 0.332 0.852
Eval 0.161 0.941

Pretrained Model. We pretrain the masked discrete diffusion model (Sahoo et al., 2024) on the
full dataset of Gosai et al. (2023), using the same CNN architecture as in Stark et al. (2024) and a
linear noise schedule. Other hyperparameters are kept identical to those in Sahoo et al. (2024). To
assess the model’s ability to generate realistic enhancer sequences, we sample 1280 sequences and
compare them with 1280 randomly selected sequences from the original dataset. Figure 3 presents the
distribution of HepG2 activity predicted by either the fine-tuning (FT) or evaluation (Eval) oracle for
both the generated and original sequences, along with the true observations for the original sequences.

2In contrast, other methods (guidance-based methods and fine-tuning methods) leverage the pretrained model
trained on the much larger PDB dataset (∼ 23, 000 structures) and achieve better performance.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Generated (FT) Generated (Eval) Original (FT) Original (Eval) Original (True)

2

0

2

4

6

H
ep

G
2

A
ct

iv
ity

Distribution of HepG2 Activity for Generated and Original Sequences

2 0 2 4 6
HepG2 Activity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
en

si
ty

Comparison of Distributions
Generated (FT)
Generated (Eval)
Original (FT)
Original (Eval)
Original (True)

Figure 3: Comparison of HepG2 activity distributions between original sequences and those generated
by the pretrained model. The activity distributions match closely with each other.

k-mer Count (Original)

k-
m

er
 C

ou
nt

 (G
en

er
at

ed
)

Pearson Corr: 0.957

Comparison of 3-mer Counts

k-mer Count (Original)

k-
m

er
 C

ou
nt

 (G
en

er
at

ed
)

Pearson Corr: 0.951

Comparison of 4-mer Counts

Figure 4: 3-mer and 4-mer Pearson correlation between the original and generated sequences.

The activity levels of the generated sequences align well with those of the original dataset, indicating
the effectiveness of pretrained model in generating in-distribution enhancer sequences. Furthermore,
Figure 4 shows the 3-mer and 4-mer Pearson correlation between the synthetic and original sequences,
both of which exceed 0.95, further validating the model’s performance.

Fine-tuning Setup. We utilize the pretrained masked discrete diffusion model and the fine-tuning
oracle described above for fine-tuning. During DRAKES’s stage 1 data collection, sequences are
generated from the pretrained model over 128 steps. We set α = 0.001 to govern the strength of
the KL regularization and truncate the backpropagation at step 50. The model is fine-tuned with
128 samples as a batch (32 samples per iteration, with gradient accumulated over 4 iterations) for
1000 steps. For DRAKES w/o KL, we follow the same setup, but set α to zero. For evaluation, we
generate 640 sequences per method (with batch size of 64 over 10 batches) for each random seed.
We report the mean and standard deviation of model performance across 3 random seeds.

Additional Results for Fine-Tuning. Along with the median Pred-Activity values shown in Table 1,
Figure 5 presents the full distribution of Pred-Activity for each method, which shows consistent
patterns as Table 1.

Ablation Study on Gradient Truncation Number. To show the impact of the gradient truncation
module, we conduct an ablation study on the gradient truncation number. As shown in Table 4, when
the truncation number is small, the model cannot effectively update the early stage of the sampling
process, leading to suboptimal performance. Meanwhile, when the truncation number is large, the
memory cost of the model fine-tuning increases, and the optimization is harder due to the gradient
accumulation through the long trajectory. Therefore, an intermediate level of gradient truncation
leads to the best performance.

Ablation Study on Gumbel Softmax Temperature Schedule. We conduct an ablation study with
different temperature schedules of Gumbel Softmax, i.e. a linear schedule and a constant schedule.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Pretrained CG SMC TDS CFG DRAKES w/o KL DRAKES
Methods

0

2

4

6

8

H
ep

G
2

A
ct

iv
ity

Distribution of Predicted HepG2 Activity for Generated Sequences

Figure 5: Distribution of Pred-Activity for the generated sequences of each method.

Table 4: Ablation study on gradient truncation number on regulatory DNA sequence design.

Truncation Number Pred-Activity (median) ↑ ATAC-Acc ↑ (%) 3-mer Corr ↑ JASPAR Corr ↑ App-Log-Lik (median) ↑

25 6.17 95.9 0.569 0.798 -278
50 5.61 92.5 0.887 0.911 -264
75 4.61 52.8 0.238 0.644 -268

As shown in Table 5, both schedules achieve similar performance, indicating the robustness of our
method. In the performance reported in Table 1, we utilize the linear schedule.

Table 5: Ablation study on Gumbel Softmax temperature schedule on regulatory DNA sequence
design.

Temperature Schedule Pred-Activity (median) ↑ ATAC-Acc ↑ (%) 3-mer Corr ↑ JASPAR Corr ↑ App-Log-Lik (median) ↑

Constant 5.89 91.6 0.852 0.914 -258
Linear 5.61 92.5 0.887 0.911 -264

F.3 PROTEIN INVERSE FOLDING

We first discuss the setup of datasets used for training reward models. Next, we present the perfor-
mance of the pre-trained model, followed by an evaluation of the reward models. Finally, we describe
the fine-tuning setup and provide additional results.

Dataset Curation. We utilize the large-scale protein stability dataset, Megascale (Tsuboyama et al.,
2023) for the protein inverse folding experiment, which contains stability measurements for ∼ 1.8M
sequence variants (for example, single mutants and double mutants) from 983 protein domains. We
follow the dataset curation and train-validation-test splitting procedure from Widatalla et al. (2024).
Specifically, the wild-type protein structures are clustered with Foldseek clustering and the data is
split based on clusters. We then drop a few proteins with ambiguous wild type labels, and clip the ∆G
values that are outside the dynamic range of the experiment (> 5 or < 1) to the closest measurable
value (5 or 1) as in Nisonoff et al. (2024). We further exclude proteins where a significant proportion
of the corresponding variants’ ∆G measurements fall outside the experimental range. The final
dataset consists of 438,540 sequence variants from 311 proteins in the training set, 15,182 sequences
from 10 proteins in the validation set, and 23,466 sequences from 12 proteins in the test set.

Pretrained Model. We pretrain an inverse folding model using the discrete flow model loss from
(Campbell et al., 2024) and the ProteinMPNN (Dauparas et al., 2022) architecture to encode both
sequence and structure as model input. The model is trained on the PDB training set used in Dauparas
et al. (2022), containing 23,349 protein structures and their ground truth sequences, which is distinct
from the dataset in Tsuboyama et al. (2023). We first evaluate the effectiveness of the inverse folding
model on the PDB test set in Dauparas et al. (2022), which has 1,539 different proteins. As in

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Nisonoff et al. (2024), we set the temperature during sampling to be 0.1, and randomly sample one
sequence conditioned on each structure for both our pretrained discrete flow model and the de facto
inverse folding method, ProteinMPNN. As shown in Table 6, the pretrained model performs similarly
to ProteinMPNN, achieving comparable sequence recovery rate.

Table 6: Model performance of protein inverse folding on PDB test set.

Method Sequence Recovery Rate (%) ↑

ProteinMPNN 47.9
Discrete Flow Model 48.6

We further evaluate the generalizability of the pretrained model to the proteins in the Megascale
dataset. Results on both Megascale training and test set are shown in Table 7. We calculate the
self-consistency RMSD (scRMSD) to assess how well a generated sequence folds into the desired
structure. Specifically, the generated sequences are folded into 3D structures using ESMFold (Lin
et al., 2023), and scRMSD is calculated as their RMSD relative to the original backbone structure
we are conditioning on. An scRMSD lower than 2Å is typically considered a successful inverse
folding (Nisonoff et al., 2024; Campbell et al., 2024). As shown in Table 7, the pretrained model
achieves a similar sequence recovery rate on Megascale as the PDB test set and low scRMSD, with a
success rate greater than 90%, indicating its effectiveness on the inverse folding task.

Table 7: Model performance of protein inverse folding on Megascale proteins.

Eval Dataset Sequence Recovery Rate (%) ↑ scRMSD (Å) ↓ %(scRMSD< 2)(%) ↑

Megascale-Train 47.0 0.825 95.0
Megascale-Test 44.0 0.849 90.9

Reward Oracle. We train the reward oracles on the Megascale dataset using the ProteinMPNN
architecture. The oracles take both the protein sequence and the corresponding wild-type structure
as input to predict the stability of the sequence, measured by ∆∆G (calculated as the difference in
∆G between the variant and the wild-type from the dataset). Similar to Nisonoff et al. (2024), the
final layer of the ProteinMPNN architecture is mean-pooled and mapped to a single scalar with a
2-layer MLP, and the model weights before the mean-pooling are initialized with the weights from
the pretrained inverse folding model.

Similar to the practice in the enhancer design experiment, we train two oracles – one for fine-tuning
and one for evaluation. The fine-tuning oracle is trained on Megascale training set. We select the best
epoch based on validation set performance, and report the Pearson correlation on both Megascale
training and test set in Table 8. The performance gap between the training and test sets highlights the
difficulty of generalizing to unseen protein structures in this task.

The evaluation oracle is trained on the complete dataset (train+val+test). To attain the best hyper-
parameters, we randomly split the full dataset into two subsets, an in-distribution set for training,
denoted as I, and an out-of-distribution set for validation, denoted as O. Note that here the evaluation
oracle is trained part of the variants of all wild-type proteins (i.e. Megascale-Train-I & Megascale-
Val-I & Megascale-Test-I), and the out-of-distribution set contains unseen sequence variants, but no
new structures. The Pearson correlation on each subset is presented in Table 8. It achieves much
higher correlations than the fine-tuning oracle, indicating good generalizability of the evaluation
oracle to new sequences of in-distribution protein structures. For the final evaluation oracle used to
calculate results in Table 2, we train it on the full dataset using the best hyperparameters selected
as discussed. It achieves a Pearson correlation of 0.951 on Megascale training set and 0.959 on
Megascale test set (both being in-distribution for the evaluation oracle).

Finetuning Setup. We utilize the pretrained inverse folding model and the fine-tuning oracle
described above for fine-tuning. During DRAKES’s stage 1 data collection, we generate sequences
from the pretrained model over 50 steps. We set α = 0.0003 and truncate the backprogagtion at step
25. The model is finetuned with proteins in Megascale training set with batch size 128 (16 samples
per iteration, with gradient accumulated over 8 iterations) for 100 epochs. For DRAKES w/o KL,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 8: Performance of the reward oracles for predicting stability conditioned on protein sequence
and structure, across a variety of Megascale subsets.

Model Eval Dataset Pearson Corr ↑

Fine-Tuning Oracle Megascale-Train 0.828
Megascale-Test 0.685

Megascale-Train-I 0.948
Evaluation Oracle Megascale-Train-O 0.942

Megascale-Test-I 0.955
Megascale-Test-O 0.920

we follow the same setup, but set α to zero. The model is evaluated on Megascale test set, where
we generate 128 sequences conditioned on each protein structure for every method (with batch size
of 16 over 8 batches) and each random seed. We report the mean and standard deviation of model
performance across 3 random seeds.

Evaluation Oracle Accounts for Over-Optimization. As discussed in Section 6.2, for the enhancer
design experiment, significant over-optimization occurs when evaluating Pred-Activity, even with an
evaluation oracle trained on distinct data unseen during fine-tuning. In contrast, the protein inverse
folding experiment largely mitigates this issue. Table 9 shows the median values of Pred-ddG for the
generated sequences based on both the evaluation oracle (same as those reported in Table 2) and the
fine-tuning oracle. Although DRAKES w/o KL shows significantly higher Pred-ddG than DRAKES
with the fine-tuning oracle, their performance with the evaluation oracle remains similar, suggesting
less pronounced over-optimization in evaluation. This is because enhancer sequences are relatively
homogeneous, and even though we split based on chromosomes, each chromosome still has similar
regions. However, protein structures are more distinct, and training on different proteins creates
unique model landscapes.

Table 9: Model performance on protein inverse folding, with Pred-ddG calculated using either the
evaluation oracle (Eval) or the fine-tuning oracle (FT).

Method Pred-ddG-Eval (median) ↑ Pred-ddG-FT (median) ↑

Pretrained -0.544(0.037) 0.161(0.012)
CG -0.561(0.045) 0.158(0.017)
SMC 0.659(0.044) 0.543(0.013)
TDS 0.674(0.086) 0.557(0.005)
CFG -1.159(0.035) -1.243(0.013)

DRAKES w/o KL 1.108(0.004) 0.833(0.000)
DRAKES 1.095(0.026) 0.702(0.002)

Ablation Study on Gradient Truncation Number. To show the impact of the gradient truncation
module, we conduct an ablation study on the gradient truncation number. The results are shown in
Table 10. While the model performance is robust with different truncation numbers, an intermediate
level of gradient truncation leads to the best performance.

Table 10: Ablation study on gradient truncation number on inverse protein folding.

Truncation Number Pred-ddG (median) ↑ %(ddG> 0) (%) ↑ scRMSD (median) ↓ %(scRMSD< 2)(%) ↑ Success Rate (%) ↑

15 0.977 83.2 0.852 92.4 76.0
25 1.095 86.4 0.918 91.8 78.6
35 1.033 84.8 0.868 92.7 77.7

Ablation Study on Gumbel Softmax Temperature Schedule. We conduct an ablation study with
different temperature schedules of Gumbel Softmax, i.e. a linear schedule and a constant schedule.
As shown in Table 11, both schedules achieve similar performance, indicating the robustness of our
method. In the performance reported in Table 2, we utilize the linear schedule.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 11: Ablation study on Gumbel Softmax temperature schedule on inverse protein folding.

Temperature Schedule Pred-ddG (median) ↑ %(ddG> 0) (%) ↑ scRMSD (median) ↓ %(scRMSD< 2)(%) ↑ Success Rate (%) ↑

Constant 1.178 86.5 0.897 93.2 80.3
Linear 1.095 86.4 0.918 91.8 78.6

Results with pLDDT. In addition to scRMSD, we further measure the self-consistency of the
generated sequences using pLDDT. The results are shown in Table 12. Following the common
practice as in Widatalla et al. (2024), we utilize 80 as the cutoff threshold and define a success
generation as having positive predicted stability (i.e., Pred-ddG>0) and confident ESMFold-predicted
structure (i.e., pLDDT > 80). The results align well with those in Table 2 using scRMSD. DRAKES
significantly outperforms all baseline methods in terms of the overall success rate.

Table 12: Model performance on inverse protein folding. DRAKES generates protein sequences
that have both high stability and high confidence in ESMFold predicted structures, outperforming
baselines in the overall success rate. We report the mean across 3 random seeds, with standard
deviations in parentheses.

Method Pred-ddG (median) ↑ %(ddG> 0) (%) ↑ pLDDT (median) ↑ %(pLDDT> 80)(%) ↑ Success Rate (%) ↑

Pretrained -0.544(0.037) 36.6(1.0) 87.9(0.0) 87.5(0.1) 33.8(0.8)
CG -0.561(0.045) 36.9(1.1) 87.9(0.0) 87.5(0.2) 34.3(0.5)
SMC 0.659(0.044) 68.5(3.1) 88.3(0.1) 84.1(1.0) 53.7(4.3)
TDS 0.674(0.086) 68.2(2.4) 88.3(0.1) 85.6(0.7) 54.4(2.8)
CFG -1.186(0.035) 11.0(0.4) 65.7(0.0) 7.8(0.1) 0.0(0.0)

DRAKES w/o KL 1.108(0.004) 100.0(0.0) 73.4(0.2) 40.4(0.2) 40.4(0.2)
DRAKES 1.095(0.026) 86.4(0.2) 87.0(0.0) 85.6(0.7) 72.3(0.8)

Diversity of Generated Sequences. We evaluate the diversity of the protein sequences generated by
different methods using the average sequence entropy of each protein backbone in the test set. The
results are shown in Table 13. DRAKES achieves a comparable level of diversity as the pretrained
model, significantly outperforming SMC and TDS. This further justifies the efficacy of DRAKES to
achieve the optimization objective of generating stable sequences, while maintaining high diversity.
Among all baselines, DRAKES is the only method that have both a high success rate and high
diversity.

Table 13: Average sequence entropy of the generated sequences on protein inverse folding.

Method Sequence Entropy ↑

Pretrained 34.7(0.2)
CG 34.6(0.1)
SMC 24.9(1.2)
TDS 24.9(0.5)
CFG 8.4(0.1)

DRAKES w/o KL 25.7(0.1)
DRAKES 33.3(0.2)

Additional Results. We provide more examples of the generated proteins in Figure 6, in addition to
Figure 2. We also provide the specific values for energy, Pred-ddG and scRMSD of the visualized
protein generated by DRAKES, as well as the energy values for the corresponding wild-type structure.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 6: Additional examples of generated proteins.

28

	Introduction
	Related Works
	Preliminary
	Diffusion Models on Discrete Spaces
	Goal: Generating Natural Samples While Optimizing Reward Functions

	Algorithm
	Key Formulation
	Direct Reward Backpropagation with Gumbel Softmax Trick (DRAKES)

	Theory of DRAKES
	Proof Sketch of Theorem 1
	Relation to Classifier Guidance for Discrete Diffusion Models

	Experiments
	Baselines
	Regulatory DNA Sequence Design
	Protein Sequence Design: Optimizing Stability in Inverse Folding Model

	Conclusions
	More Related Works
	Potential Limitations
	Proof of Theorems
	Preparation
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Extension with Stochastic Initial Distributions
	Proof

	Details of Algorithm
	Straight-Through Gumbel Softmax
	Simplified Formula of g()
	Schedule of Gumbel Softmax Temperature

	Experimental Details and Additional Results
	Baselines
	Regulatory DNA Sequence Design
	Protein Inverse Folding

