
Published as a conference paper at ICLR 2025

SUPERVISED AND SEMI-SUPERVISED DIFFUSION
MAPS WITH LABEL-DRIVEN DIFFUSION

Harel Mendelman, Ronen Talmon
Viterbi Faculty of Electrical and Computer Engineering, Technion
harel.men@campus.technion.ac.il, ronen@ee.technion.ac.il

ABSTRACT

In this paper, we introduce Supervised Diffusion Maps (SDM) and Semi-
Supervised Diffusion Maps (SSDM), which transform the well-known unsuper-
vised dimensionality reduction algorithm, Diffusion Maps, into supervised and
semi-supervised learning tools. The proposed methods, SDM and SSDM, are
based on our new approach that treats the labels as a second view of the data.
This unique framework allows us to incorporate ideas from multi-view learning.
Specifically, we propose constructing two affinity kernels corresponding to the
data and the labels. We then propose a multiplicative interpolation scheme of the
two kernels, whose purpose is twofold. First, our scheme extracts the common
structure underlying the data and the labels by defining a diffusion process driven
by the data and the labels. This label-driven diffusion produces an embedding that
emphasizes the properties relevant to the label-related task. Second, the proposed
interpolation scheme balances the influence of the two kernels. We show on mul-
tiple benchmark datasets that the embedding learned by SDM and SSDM is more
effective in downstream regression and classification tasks than existing unsuper-
vised, supervised, and semi-supervised nonlinear dimension reduction methods.

1 INTRODUCTION

Manifold learning has emerged as a powerful approach for uncovering the underlying structure
of complex high-dimensional datasets. Aiming to mitigate the “curse of dimensionality”, the core
idea behind manifold learning is the manifold assumption, i.e., assuming that high-dimensional data
lies on or near a lower-dimensional manifold, which captures the essential features of the data.
This lower-dimensional representation can reveal patterns, relationships, and intrinsic geometries
obscured in the original ambient high-dimensional space.

Manifold learning techniques are designed to discover these low-dimensional manifolds by lever-
aging the geometric properties of the data. Unlike linear dimensionality reduction methods, such as
Principal Component Analysis (PCA) (Pearson, 1901), manifold learning algorithms are non-linear
and can model more complex structures. These methods are particularly effective when data is gen-
erated by non-linear processes, making them well-suited for applications in many applied science
fields, such as bioinformatics, biomedical, and neuroscience (Diaz-Papkovich et al., 2021; Sulam
et al., 2017; Dimitriadis et al., 2018).

Even with recent advances in deep learning, manifold learning methods remain relevant for their
interpretability, effectiveness with small datasets, lower risk of overfitting, and lower computational
requirements. Additionally, their concepts have influenced geometric deep learning, with ongoing
research promising further advancements in that area.

Numerous manifold learning algorithms have been developed in the last two decades. Some of the
most prominent techniques include Isomap (Tenenbaum et al., 2000), Locally Linear Embedding
(LLE) (Roweis & Saul, 2000), Laplacian Eigenmaps (LE) (Belkin & Niyogi, 2003), Diffusion Maps
(DM) (Coifman & Lafon, 2006), t-Distributed Stochastic Neighbor Embedding (t-SNE) (Van der
Maaten & Hinton, 2008), and UMAP (McInnes et al., 2018).

Despite their advantages, standard manifold learning methods have limitations such as parameter
selection, noise sensitivity, and computational complexity in large-scale datasets, which have already

1

Published as a conference paper at ICLR 2025

been partially resolved in recent advances, e.g., Karoui & Wu (2016); Shen & Wu (2022). In this
work, we focus on another limitation – the incorporation of label information. At their core, manifold
learning methods are unsupervised, and therefore, they often do not provide an effective solution that
exploits all the information in a large body of problems where some label information exists.

In this paper, we present Supervised Diffusion Maps (SDM) and Semi-Supervised Diffusion Maps
(SSDM), which are supervised and semi-supervised variants of Diffusion Maps (Coifman & Lafon,
2006). Unlike existing supervised and semi-supervised manifold learning methods (See Section 2),
we present a new approach, where we view the labels as an additional data modality and employ
concepts of multimodal manifold learning. Concretely, we propose to construct a separate affinity
kernel for the labels, allowing us to capture the underlying geometry of the labels in addition to that
of the data. Then, based on Alternating Diffusion (AD) (Lederman & Talmon, 2018), a multimodal
manifold learning method that relies on a product of affinity kernels, we propose a multiplicative
kernel interpolation scheme of the data and label kernels. This results in a kernel representing a tran-
sition probability matrix of a Markov chain on the data and labels. In analogy to AD (Talmon & Wu,
2019), this kernel approximates a continuous diffusion process on the manifold consisting of a two-
step diffusion process: first on the labels and then on the data, henceforth referred to as “label-driven
diffusion”. This approach reveals the common structure underlying the data and labels, resulting in
a data embedding that emphasizes only the properties relevant to the specified task related to the
labels. We present theoretical justification and experimental results that show the advantages of the
proposed SDM and SSDM compared to existing manifold learning methods on several benchmarks.

Our main contributions are as follows:

• Multi-View Approach to Supervised and Semi-Supervised Manifold Learning: View-
ing labels as a second source of information.

• New Kernel Interpolation Scheme: Interpolating affinity kernels to reveal their common-
alities, while providing a mechanism for weighting the contribution of each.

• Experimental Results: Showing that SDM and SSDM outperform existing non-linear
manifold learning algorithms on real-world benchmark datasets.

2 RELATED WORK

Numerous supervised and semi-supervised adaptations of manifold learning algorithms have been
explored. These methods generally adopt one of the following approaches.

Several supervised and semi-supervised variants of manifold learning algorithms, such as LLE
(Zhang, 2009), Diffusion Maps (Szlam et al., 2008), and t-SNE (Hajderanj et al., 2019), modify
the similarity or distance metric. Typically, the dissimilarity metric is redefined as follows:

D(xi, xj) =

√

1− exp
(

−d2(xi,xj)
ϵ

)
, if yi = yj√

exp
(

d2(xi,xj)
ϵ

)
− α, if yi ̸= yj

, (1)

where xi and xj are the data samples, yi and yj are their corresponding labels, d(·, ·) is a distance
metric, and ϵ and α are tunable parameters.

Another approach optimizes inter-class and intra-class objectives, as employed for example by a
variant of Isomap (Yang et al., 2016), where the goal is to preserve intra-class distances while in-
creasing inter-class distances:

min
Z

α
∑
yi=yj

(d(xi, xj)− d(zi, zj))
2 − β

∑
yi ̸=yj

d2(xi, xj), (2)

where Z represents a lower-dimensional embedding, and α and β control the trade-off between the
intra-class and inter-class objectives.

In addition, some methods like variants of LE (Ma et al., 2019) and UMAP (McInnes et al., 2018),
divides the objective into two components, one that focuses on the data and another that incorporates

2

Published as a conference paper at ICLR 2025

label information. An example of such an objective function is:

min
Z

α
∑

(d(xi, xj)− d(zi, zj))
2
+ β

∑
d2(zi, ẑc), (3)

where ẑc serves as the representative point for class c.

These three approaches often overlook the potential similarity between the geometric structures
underlying the data and the labels, as they integrate label information into the data manifold, which
may result in a skewed representation. Recognizing that labels and data might reside on similar
structures, our method introduces a new approach by learning a representation that captures the
commonalities between the geometries of the data and labels.

3 BACKGROUND

3.1 DIFFUSION MAPS

Diffusion Maps, introduced by Coifman & Lafon (2006), present spectral analysis-based low-
dimensional data embedding with diffusion geometry and diffusion distance.

Consider a measure space (M, dµ), where M is a smooth Riemannian manifold and dµ(x) =
p(x)dx is a measure with density p(x) ∈ C3(M). Assume M is isometrically embedded in Rd,
and let {xi ∈M}ni=1 ⊂ Rd be a set of n points sampled from p(x).

Diffusion Maps begin with constructing an affinity matrix W, typically using a Gaussian kernel:

W(i, j) = exp

(
−d(xi, xj)

2

ϵ

)
, (4)

where d(·, ·) is a distance metric, and ϵ is the kernel scale. This matrix captures local pairwise
similarities between the sampled points. Then, normalization of W is applied using two diagonal
matrices, D1 and D2, derived from the sums of rows of W and K̃ = D−1

1 WD−1
1 , respectively.

The resulting normalized matrix K = D−1
2 K̃ is a row-stochastic matrix, viewed as the transition

probability matrix of a Markov chain on the data (Coifman & Lafon, 2006).

From the eigenvectors vk and eigenvalues µk of K, Diffusion Maps is defined by Ψk(xi) = µτ
kvk(i),

where τ > 0 denotes the diffusion time parameter, and k = 1, 2, . . . , n. It was shown in Coifman &
Lafon (2006) that the matrix K represents a diffusion process on the continuous underlying manifold
when a large number of points is available. The diffusion propagation of a sample i is modeled by
iteratively applying the matrix K. Specifically, if δi denotes a one-hot vector with a single non-zero
entry at the i-th coordinate representing an initial mass concentrated at sample i, the sequence of dif-
fused mass vectors is given by δ⊤i Kτ . The diffusion distance between samples i and j is defined by
dτ (i, j) = ∥δ⊤i Kτ −δ⊤j Kτ∥2. This distance metric not only captures the direct similarities between
samples but also accounts for their connectivity throughout the Markov chain. As a result, it provides
a robust measure that is less sensitive to local variations, outliers, and noise within the dataset. In
addition, it can be approximated by the Euclidean distance between the respective Diffusion Maps,
i.e., ∥Ψk(xi)−Ψk(xj)∥2.

3.2 ALTERNATING DIFFUSION

Alternating Diffusion (AD) (Lederman & Talmon, 2018) is an extension of Diffusion Maps designed
to extract the common structure of two aligned datasets {x(1)

i }ni=1 and {x(2)
i }ni=1. AD starts by

building affinity matrices, W(1) and W(2), for each dataset as in Eq. 4. These affinity matrices
are normalized to form the diffusion operators K(1) and K(2), following the procedure used in
Diffusion Maps (See Subsection 3.1). The AD operator is defined by the product of the two diffusion
operators K(1)∩(2) = K(1)K(2). Like Diffusion Maps, this operator defines a propagation that
consists of alternating diffusion steps via K(1) and K(2) on the two datasets. Lederman & Talmon
(2018) showed that the resulting diffusion process captures the common structure between the two
datasets, minimizing the influence of dataset-specific factors.

3

Published as a conference paper at ICLR 2025

4 PROPOSED METHOD

Consider a labeled training dataset {(xi, yi)}ni=1 consisting of n data samples xi ∈ Rd and their
corresponding labels yi, and a test dataset {xj}mj=1 consisting of m unlabeled test data samples
xj ∈ Rd. Our goal is to obtain an informative low dimensional representation of both the training and
test datasets, given by the embedding {Ψ(xi)}ni=1 and {Ψ(xj)}mj=1 of the samples into a Euclidean
space Rℓ, ℓ < d. Same as in many dimension reduction methods, e.g., Belkin & Niyogi (2003);
Coifman & Lafon (2006), we aim to find an embedding, whose Euclidean distances are meaningful.
Specifically, following Diffusion Maps (Coifman & Lafon, 2006), we build an embedding, whose
Euclidean distances approximate the diffusion distances (see Subsection 3.1). Importantly, such a
construction assumes unlabeled data. The main novelty in this paper is that we propose to account for
the given labels of the training data, such that samples with similar labels are mapped to close points
in the embedding space, and samples with dissimilar labels are mapped to distant points, thereby
improving the embedding, especially for downstream tasks such as classification and regression.

Seemingly, the desired embedding described above could be obtained directly using an appropriate
manipulation of the classical Multidimensional Scaling (MDS) (Carroll & Arabie, 1998) or other su-
pervised and semi-supervised dimensionality reduction techniques that minimize distances between
similar labels and maximize distances between dissimilar labels (See Section 2). However, this re-
quires unnatural data and label weighting and usually has poor scalability (Ma et al., 2019). We
propose a different approach that mitigates these shortcomings. Our approach relies on the premise
that both the data and the labels have similar underlying geometric structures, and consequently,
uncovers their commonality through a diffusion process that integrates both data and labels.

For simplicity, we first describe SDM (supervised setting) in the context of a single unlabeled test
sample x. We then extend this description to multiple unlabeled test samples {xj}mj=1, and fi-
nally describe SSDM (semi-supervised settting). The first step is to build an affinity matrix WD

in R(n+1)×(n+1) on the set {xi}ni=1 ∪ x, consisting of the training data and one test sample. The
elements of this affinity matrix are given by

WD(i, j) = exp

(
−d2D(xi, xj)

ϵD

)
, (5)

where dD(·, ·) is a distance metric in Rd, e.g., the Euclidean distance, and ϵD is a hyperparameter.
Then, the affinity matrix is normalized twice, as described in Subsection 3.1, resulting in a data
kernel, denoted by D ∈ R(n+1)×(n+1).

Similarly, we propose to build an affinity matrix between the labels. Since the label of the test sample
x is missing, we define the following affinity matrix, whose elements are given by:

WP (i, j) =

exp

(
−d2

P (yi,yj)
ϵP

)
, if i, j ≤ n

0, if i > n or j > n, and i ̸= j

1, if i, j > n and i = j

, (6)

where dP (·, ·) is a distance metric between the labels and ϵP is a hyperparameter. If the labels
are continuous (regression problem), we compute the distance between the labels using a standard
distance metric, e.g., the Euclidean distance. If the labels are discrete (classification problem), we
propose the following metric (other metrics may also be considered):

dP (yi, yj) =

{
1

nl·nm

∑
yk∈Cl,yq∈Cm

dD(xk, xq), if yi ∈ Cl, yj ∈ Cm, l ̸= m

0, if yi = yj
, (7)

where Cl = {y | y ∈ Class l} for l = 1, . . . , C, C is the number of classes, and nl is the size of Cl.
As described in Subsection 3.1, the affinity matrix WP is normalized twice, giving rise to the label
kernel P ∈ R(n+1)×(n+1), representing the prior label information we have on the training dataset.
Specifically, the construction in Eq. 6 adds an isolated node representing x to the transition graph P.

Once the kernels D and P are obtained, the goal is to find embeddings for {(xi, yi)}ni=1 and x.
To exploit that both the data and labels share similar underlying geometric structures, we build
on AD (Lederman & Talmon, 2018) and utilize the product of kernels to uncover commonalities.
Specifically, we propose the following interpolation scheme:

Γ(t) = P1−tDt, 0 ≤ t ≤ 1. (8)

4

Published as a conference paper at ICLR 2025

In this scheme, Γ(t) denotes the interpolated kernel, where t balances between P and D. The con-
tribution of our method extends beyond the introduction of a label kernel. It enhances AD in two
notable ways. First, it accommodates kernels with partial alignment as x lacks a corresponding label
(Eq. 6). Second, it provides a mechanism for weighting the contribution of the data and the labels
through the hyperparameter t. In Section 5, we show that Γ(t) facilitates an approximation of the
embedding that would have been obtained in a fully aligned setting without missing labels.

We use Γ(t) as a kernel in a manner similar to Diffusion Maps (See Subsection 3.1) to obtain the
embedding of {xi}ni=1 and x for t. Specifically, the embedding is given by

Ψk(xi) = µkvk(i), Ψk(x) = µkvk(n+ 1), (9)

where k = 1, 2, . . . , n+1 indexes the components, µk denotes the k-th eigenvalue and vk(i) denotes
the i-th entry of the k-th right eigenvector of Γ(t). We summarize the key steps of SDM with a single
unlabeled test sample in Algorithm 1.

Algorithm 1 Generate the embed-
ding of {xi}ni=1 ∪ x

1: Construct WD (Eq. 5)
2: Construct WP (Eq. 6)
3: Obtain D, P by normalizing

WD, WP as in Sec. 3.1
4: Compute Γ(t) for t ∈ [0, 1]

(Eq. 8)
5: Obtain {Ψk(xi)}ni=1,Ψk(x)}

(Eq. 9)

Since the embedding of x is generated without alignment with
a label, we observed a slight improvement in downstream tasks
by introducing a similar distortion to the embedding of the
training set, ensuring better consistency with the embedding
of x. For details, see Appendix B.

When multiple test samples {xj}mj=1 are given, we apply the
described procedure sequentially for each sample. This results
in the embedding of both the training and test samples, given
by:

{Ψk(xi)}ni=1, {Ψk(xj)}mj=1. (10)
A summary of SDM with multiple unlabeled test samples is
provided in Algorithm 2 in Appendix A.1.

Considering one test sample at a time neglects possible infor-
mative mutual relationships between the test samples and is computationally intensive. Instead, we
propose to enhance the embedding of multiple test samples by considering a semi-supervised setting
consisting of the labeled training data and all the unlabeled test data simultaneously. This will also
expedite SDM, alleviating the need to construct and interpolate two affinity kernels for each training
and test sample.

Concretely, instead of adding a single unlabeled sample to the training data, we append the entire
test set, resulting in the union {xi}ni=1 ∪ {xj}mj=1. Then, we build the data kernel D and label
kernel P that correspond to this union set based on the affinities Eq. 5 and Eq. 6, respectively, and
the dual normalization, where the kernel matrices are now in R(n+m)×(n+m). This construction
adds m isolated nodes to the transition graph P, unlike the single isolated node added in SDM.
We obtain the embedding of all training and test samples using a single kernel Γ(t). Specifically,
the embedding is given by Ψk(xi) = µkvk(i) for i = 1, 2, . . . , n and Ψk(xj) = µkvk(n + j)
for j = 1, 2, . . . ,m. We term this algorithm SSDM, which results, as in SDM, in embedding as
in Eq. 10. Since SSDM uses a single pair of affinity kernels for the entire dataset, its runtime is
significantly shorter compared to SDM, as demonstrated in Section 6.2. A summary of SSDM is
provided in Algorithm 3 in Appendix A.1.

5 THEORETICAL JUSTIFICATION

In this section, to simplify the analysis, we consider the equally weighted interpolation, denoted by
PD, instead of the tunable form P1−tDt (refer to Appendix C.4 for details on the tunable form).
Additionally, for the purpose of the analysis, we define the inaccessible kernel representing affinities
between the training labels and the unknown test label in the set {yi}ni=1 ∪ y by L. Analogous to P,
we first compute the affinity kernel WL as follows:

WL(i, j) = exp

(
−d2P (yi, yj)

ϵP

)
,

for i, j = 1, . . . , n + 1, and then, apply the same normalization to obtain the inaccessible kernel
L ∈ R(n+1)×(n+1). In practice, we use P as a proxy for the inaccessible L.

5

Published as a conference paper at ICLR 2025

Let N (D)
i denote the δD-neighborhood of xi, given by N (D)

i = {xj | d2D(xi, xj) < δD}. Similarly,
let N (L)

i denote the δL-neighborhood of yi, defined as N (L)
i = {yj | d2P (yi, yj) < δL}. We assume

that the values of WD and WL outside the δD-neighborhood and δL-neighborhood, respectively,
are negligible.

Proposition 1. The absolute value of the difference between any element (i, j) of the inaccessible
kernel product LD and the corresponding element (i, j) of the available PD is bounded as follows:

|[LD]i,j − [PD]i,j | ≤

1

|N (L)
i ||N (D)

n+1|
1 ≤ i ≤ n , yi ∈ N (L)

n+1, xj ∈ N (D)
n+1

max

{
rj ,

1

|N (D)
n+1|

}
i = n+ 1 , xj ∈ N (D)

n+1

0 otherwise

,

where rj = min

{
1

|N (L)
n+1|

, 1

|N (D)
j |

}
and |N (D)

i | denotes the size of the set, representing the number

of samples within the neighborhood of the i-th sample.

Corollary 1. If the neighborhoods N (D)
i and N (L)

i of each sample i have at least N1 neighbors,
the bounds in Proposition 1 simplify to:

|[LD]i,j − [PD]i,j | ≤

1

N2
1

1 ≤ i ≤ n , yi ∈ N (L)
n+1, xj ∈ N (D)

n+1

1
N1

i = n+ 1 , xj ∈ N (D)
n+1

0 otherwise

,

See Appendix C.2 for the proof of Proposition 1.

Based on the elementwise similarity of PD and LD, we show that the eigenvectors of PD approx-
imate the eigenvectors of LD, utilizing the concept of a pseudo-spectrum.

Definition 1 (ϵ-pseudo-spectrum (Trefethen, 2020)). Given a matrix M ∈ Rn×n, the ϵ-pseudo-
spectrum for a small ϵ > 0 is defined by:

σϵ(M) = {µ ∈ R | ∃v ∈ Rn with ∥v∥2 = 1 s.t. ∥(M− µI)v∥2 ≤ ϵ} ,

where σ(M) denotes the set of eigenvalues of M, I represents the identity matrix, and ∥ · ∥2 denotes
the ℓ2 norm.

Proposition 2. Let v be an eigenvector of LD with a corresponding eigenvalue µ. If the neigh-
borhoods N (D)

i and N (L)
i of each sample i have at least N1 neighbors and at most N2 neigh-

bors, then, v is a ϵ-pseudo-eigenvector of PD with a corresponding ϵ-pseudo-eigenvalue µ,

i.e.,∥(PD− µI)v∥ ≤ ϵ, where ϵ =
√

N2
2

N3
1
+ N2

N2
1

.

Corollary 2. If N1 = N2 = N , then the value of ϵ in Proposition 2 simplifies to ϵ =
√

2
N .

See Appendix C.3 for the proof of Proposition 2.

Combining Propositions 1 and 2 indicates that when using P as a proxy for L, the inaccessible
embedding that would have been obtained by LD is approximated by the proposed embedding
based on PD.

We note that the analysis presented in this subsection can be straightforwardly extended to ac-
commodate multiple test samples, as in the case of SSDM. In this extended setting, ϵ is given by

ϵ =
√

c+1
N , where c represents the maximum number of test samples j = n+ 1, . . . , n+m within

the neighborhoods N (D)
i and N (L)

i of each training sample i = 1, . . . , n.

Next, we exploit the fact that D, L, and P could be viewed as transition probability matrices of
a Markov chain on the dataset (See Subsection 3.1). This viewpoint was extensively studied and
exploited in the context of Diffusion Maps (Coifman & Lafon, 2006), where the Markov chain
gives rise to a diffusion process on the data. Therefore, LD and PD are also transition probability
matrices of Markov chains, where each step involves two transitions: the first is on the labels and the

6

Published as a conference paper at ICLR 2025

second is on the data, defining “label-driven diffusion”. In this analysis, we focus on the (i, n+1)-th
elements of the matrices, representing the transition probabilities from any labeled sample i ̸= n+1
to the (n+ 1)-th unlabeled sample. While the (n+ 1)-th node is isolated in P (i.e., [P]i,n+1 = 0),
the (i, n+ 1)-th elements of LD and PD are given by

[LD]i,n+1 =

n+1∑
j=1

Li,jDj,n+1, [PD]i,n+1 =

n+1∑
j=1

Pi,jDj,n+1 =

n∑
j=1

Li,jDj,n+1, (11)

because Pi,j = Li,j for i, j ̸= n+ 1, and Pi,n+1 = 0 for i ̸= n+ 1.

Thus, the (n + 1)-th node becomes reachable in PD, while the entries [LD]i,n+1 and [PD]i,n+1

differ only by the last term in the sum, Li,n+1Dn+1,n+1. The term Li,n+1Dn+1,n+1 ̸= 0 only if the
(n+1)-th sample is inN (L)

i . According to Corollary 1, the absolute value of this term is bounded by
1/N2

1 . Therefore, if the (n+1)-th sample is not inN (L)
i , the transition probability from the i-th node

to the (n + 1)-th node in two diffusion steps through PD is equal to that through LD. Otherwise,
the transition probabilities are approximately equal when N1 is large. Appendix C.5 provides an
example comparing label-driven diffusion to ordinary two-step diffusion solely on the data.

6 EXPERIMENTAL RESULTS

We present experimental results that showcase the performance of SDM and SSDM on a synthetic
dataset and 12 real datasets. These experiments demonstrate the effectiveness of SDM and SSDM
in learning low-dimensional embeddings and their impact on downstream tasks, such as regression
and classification, compared to several classical and recent baselines. We provide a Python imple-
mentation of SDM and SSDM.1

6.1 TOY PROBLEM

We generated a dataset similar to the toy problem presented in Lederman & Talmon (2018). Our
dataset consists of 500 images with three figures: Superman, Spider-Man, and Flash. In each im-
age, the three figures are rotated by different degrees. The images are of size 100 × 100 pix-
els (i.e., 10,000-dimensional data). Each image is labeled with Superman’s rotation angle, where
the angles of the other two figures are viewed as nuisance factors. The dataset is divided into
a 50% training set and a 50% testing set, where the labels of the testing set are disregarded.
Figure 1 shows an example of an image with a label of 54◦ (the angle of Superman). Our
toy task is to reveal the rotation angle of Superman in unlabeled images of the three figures.

Figure 1: Superman
at a 54-degree rota-
tion.

This dataset is designed to embody an explicit underlying manifold struc-
ture. The rotation angle of each figure could be viewed as a point on a one-
dimensional sphere S1, such that each image, containing three independent
angles, lies on the product manifold S1 × S1 × S1. The eigenvalues and
eigenfunctions of the Laplace-Beltrami operator of S1 are (Gallier, 2009):

µk = −k2, v
(1)
k = cos(kxi), v

(2)
k = sin(kxi), (12)

providing closed-form analytical expressions for the spectral components that are computed in our
method in a data-driven manner.

We applied SDM and SSDM to this toy problem. We used the Euclidean distance in the data kernel
D and angular distance in the label kernel P to accommodate the cyclic nature of the angles.

Figure 2 shows the evolution of the principal spectral component denoted by Ψ
(t)
1 from the label ker-

nel P = Γ(t = 0) to the data kernel D = Γ(t = 1) obtained by SDM. In Appendix D.1, we present
additional components (Figure 11) and SSDM components (Figure 12). The x-axis represents the
angle (label), and the y-axis represents the value of the respective entry of Ψ(t)

1 , where blue and red
points indicate training and test samples, respectively. Note that each point in Figure 2 (SDM) was
generated using a different kernel, while the points in Figure 12 in Appendix D.1 (SSDM) were
generated using a single kernel, as described in Section 4. At t = 0, we see that the entries of Ψ(0)

1

1The code is available at https://github.com/harel147/sdm.

7

https://github.com/harel147/sdm

Published as a conference paper at ICLR 2025

Figure 2: Progression of Ψ(t)
1 from t = 0 (label kernel) to t = 1 (data kernel). The x-axis represents

the angle (i.e., the label) and the y-axis the value of the corresponding Ψ
(t)
1 entry, where blue and

red points for training (labeled) and test (unlabeled) samples, respectively.

are meaningless, since Γ(t = 0) contains no information about the unlabeled samples. At t = 1, we
see that the entries of Ψ(1)

1 are highly noisy, as Γ(t = 1) does not incorporate any label information,
and the results coincide with that of the unsupervised Diffusion Maps. For 0 < t < 1, we see that the
entries of Ψ(t)

1 are cleaner and more similar to the spherical harmonic functions in Eq. 12, especially
as t decreases and Γ(t) approaches the label kernel. To complement the presentation, in Figure 13 in
Appendix D.1 we present the two-dimensional embedding of the toy dataset obtained using SSDM
with various t values. We display results for both the toy problem dataset and a baseline dataset
containing only images of Superman (without the nuisance figures). This visualization demonstrates
that SSDM generates informative embeddings of S1 that are consistent with the embedding obtained
by Diffusion Maps applied to the “clean” data (without the nuisance figures).

Figure 3: Evaluation of SDM and
SSDM on the toy problem.

We evaluated SDM and SSDM by training a KNN regressor on
the top four spectral components for each t in 0, 0.01, . . . , 1.0
using the training set and assessing performance on the test set
using angular Mean Absolute Error (MAE).

Figure 3 displays the MAE of SDM and SSDM in predicting
Superman’s rotation angle as a function of t, compared to the
baseline performance of unsupervised Diffusion Maps (DM).
The results demonstrate the superiority of SDM and SSDM
over DM due to the incorporation of labels. Specifically, SDM
achieves the best results for small values of t, while SSDM
performs better for larger values of t in a wide range, high-
lighting its robustness to the tuning of the hyperparameter t in
addition to its superior computational efficiency.

To demonstrate the importance of the proposed interpolation
scheme, we compared it to a simpler interpolation method analogous to the one employed by AD
(Lederman & Talmon, 2018). Table 2 in Appendix D.2 illustrates the effectiveness of SDM and
SSDM compared to this simpler approach.

To observe the effect of increasing the ratio of labeled samples in the semi-supervised setting, we
analyzed SSDM performance of with varying labeled data ratios. Consistent training (100 samples,
20% of the dataset) and testing sets (100 samples) were used across experiments to ensure that the
results reflect only embedding quality. The minimal MAE for the optimal t is 17.42° for a 20%
labeled data ratio, 5.84° for 40%, 4.76° for 60%, and 4.46° for 80%. These results demonstrate the
improved effectiveness of SSDM with increased labeled data. Notably, performance only slightly
worsens when decreasing from 80% labels to 40%, and significantly deteriorates only when the
ratio is reduced to 20%. Figure 14 in Appendix D.1 shows the MAE as a function of t for each ratio.

6.2 REAL DATASETS

6.2.1 SUPERVISED SETTING

We evaluated 7 datasets from the UCI Machine Learning Repository and Scikit-learn library (see
Appendix E.1 for details). Each dataset underwent 50 data splits (70% training - 30% testing) for

8

Published as a conference paper at ICLR 2025

Table 1: Evaluation results, reporting NMSE for regression (‘R’) and Misclassification Rate for
classification (‘C’). Our algorithms are S/SDM for supervised SDM and semi-supervised SSDM.

Dataset Unsupervised Algorithms Semi/Supervised Algorithms
Name Type UMAP Isomap tSNE LE LLE DM S/SUMAP SStSNE S/SDM

Supervised Setting
Iris C 0.037 0.047 0.044 0.034 0.06 0.051 0.035 0.041 0.034
Ionosphere C 0.15 0.112 0.117 0.12 0.121 0.108 0.155 0.111 0.073
Arrhythmia C 0.51 0.484 0.476 0.443 0.533 0.506 0.485 0.456 0.431
Musk C 0.191 0.189 0.145 0.122 0.204 0.18 0.171 0.163 0.101
Yacht R 0.549 0.395 0.451 0.208 0.498 0.43 0.549 - 0.12
Boston R 0.084 0.087 0.074 0.083 0.08 0.096 0.083 - 0.068
Liver R 0.508 0.50 0.511 0.481 0.502 0.497 0.519 - 0.474

Semi-Supervised Setting
Mice C 0.029 0.03 0.01 0.045 0.002 0.162 0.029 0.047 0.016
Rice C 0.146 0.127 0.148 0.152 0.156 0.161 0.153 - 0.104
Silhouettes C 0.39 0.35 0.378 0.419 0.297 0.437 0.389 0.315 0.248
Raisin C 0.211 0.195 0.216 0.216 0.204 0.26 0.22 0.18 0.176
Concrete R 0.077 0.066 0.064 0.08 0.051 0.085 0.07 - 0.036

learning dimension reduction embedding and training KNN models—5 neighbors for regression and
1 neighbor for classification.

For each dataset and algorithm, we reduced the original data dimensionality to a range of 1 to 30
dimensions. We then trained KNN models and calculated the errors – Normalized Mean Square Er-
ror (NMSE) for regression and Misclassification Rate for classification. These errors were averaged
across the 50 data splits for each dataset. We report the minimum average error achieved (within the
range of 1 to 30 dimensions) and the corresponding standard deviation.

We compared the proposed SDM against several unsupervised algorithms: Diffusion Maps (Jiang
& Shen, 2020), UMAP (McInnes et al., 2018), Isomap (Tenenbaum et al., 2000), t-SNE (Van der
Maaten & Hinton, 2008), Laplacian Eigenmaps (LE) (Belkin & Niyogi, 2003), and Locally Lin-
ear Embedding (LLE) (Roweis & Saul, 2000). We also compared SDM against supervised UMAP
(SUMAP) (McInnes et al., 2018) and semi-supervised t-SNE (SStSNE) (McInnes et al., 2016). We
compared SDM against semi-supervised t-SNE rather than supervised t-SNE because, to the best of
our knowledge, a public implementation of a supervised variant of t-SNE is not available.

To ensure robustness, we selected t for SDM once on the first data split and applied it consistently
across all 50 splits. A similar approach was used for selecting the hyperparameters of the other
methods, namely, the number of neighbors in UMAP, SUMAP, Isomap, LE, and LLE, and the per-
plexity in t-SNE and SStSNE. For SStSNE, we do not show regression results as the method does
not support continuous labels. See Appendix B for additional implementation details.

Table 1 (top part) presents the results. For the complete table, including standard deviations and with
the number of dimensions that yielded the smallest error indicated in parentheses, see Table 4 in Ap-
pendix E.2. The best-performing result for each dataset among all algorithms is in bold. We see that
our SDM consistently outperforms unsupervised Diffusion Maps across all datasets. Additionally,
our SDM achieves the best results for all datasets.

6.2.2 SEMI-SUPERVISED SETTING

We considered five datasets from the UCI Machine Learning Repository and the Scikit-learn library.
Since SSDM computes a single kernel for the entire dataset, it is faster and facilitates application to
larger datasets (with more than 500 samples) than those used in the supervised setting. Each dataset
underwent the same processing and evaluation procedure as in the supervised setting, including
generating 50 data splits and training KNN models.

We compared our SSDM against the same unsupervised algorithms as in the supervised setting. To
adhere to the semi-supervised setting, we learned the embedding on the entire dataset rather than on

9

Published as a conference paper at ICLR 2025

(a) SSDM (Ours) (b) Isomap (c) SSUMAP (d) t-SNE

Figure 4: Two-dimensional embedding of the Yacht dataset: dots (·) for labeled samples and pluses
(+) for unlabeled samples.

the train set. Additionally, we compared our SSDM against the semi-supervised variants of UMAP
(SSUMAP) (McInnes et al., 2018) and t-SNE (SStSNE) (McInnes et al., 2016). As in the supervised
setting, we used the same approach for selecting the hyperparameters: t for our SSDM and the
number of neighbors and perplexity for the other algorithms. SStSNE excludes the Rice dataset due
to convergence issues and the Concrete dataset because it does not support regression.

Table 1 (bottom part) presents the results. For the complete table, see Table 4 in Appendix E.2. We
see in the table that our SSDM consistently outperforms the unsupervised Diffusion Maps across all
datasets. Moreover, our SSDM achieves the best result for all datasets except for Mice.

In Figure 4, we present the two-dimensional embedding of the Yacht dataset obtained by SSDM,
Isomap, SSUMAP, and t-SNE. In the embedding generated by SSDM, we see that the labels (rep-
resented by the color) correspond to the 2D location in the embedded space, in contrast to the other
embeddings, thereby demonstrating the effectiveness of our method in visually representing the data
and capturing the label information.

6.3 COMPLEXITY AND RUNTIME ANALYSIS

The time complexity of SDM is O(n4), with a space complexity of O(n2), where n is the dataset
size. This makes SDM impractical for large datasets. In contrast, SSDM has a time complexity of
O(n3) while maintaining a space complexity of O(n2), making it more suitable for larger datasets.
Table 6 in Appendix E.5 compares the runtimes of the evaluated algorithms. While SDM is slower
than other methods, SSDM achieves runtimes comparable to the alternatives.

In Appendix F, we propose an optimized SSDM variant with a time complexity of O(k2 · n) and a
space complexity of O(k · n), where k is the number of randomly sampled labeled points. We eval-
uate its performance on six large datasets, as shown in Table 7 (Appendix F). Runtime comparisons
in Table 8 (Appendix F) show that the optimized SSDM is significantly faster than SSUMAP across
all datasets. A detailed complexity analysis is provided in Appendix F.

7 CONCLUSION

In this paper, we introduce Supervised Diffusion Maps (SDM) and Semi-Supervised Diffusion Maps
(SSDM), which extend the classical Diffusion Maps algorithm by incorporating label information.
Treating labels as an additional view and using a multiplicative interpolation of affinity kernels, our
methods effectively fuse and balance between the structures underlying data and labels. Results on
benchmark datasets demonstrate that SDM and SSDM give rise to low-dimensional representations
that lead to superior performance in downstream regression and classification tasks compared to
existing methods, showcasing their effectiveness in leveraging label information for enhanced data
representation. We remark that the main limitation of SDM is its computational load, as two kernels
must be constructed and interpolated for each sample. This limitation was mitigated in SSDM at
the expense of higher approximation error between the available partially aligned kernel and the
inaccessible fully aligned kernel due to the smaller ratio between labeled and unlabeled samples,
leading to a less informative embedding. In future work, we plan to explore the utility and adaptation
of the fusion of data and label kernels, developed in this paper, in the context of the emerging
geometric deep learning.

10

Published as a conference paper at ICLR 2025

ETHICS STATEMENT

This paper introduces new machine learning techniques. All datasets used in this study are publicly
available and commonly employed in benchmarking machine learning algorithms. The methods
developed respect the privacy and integrity of the data, and no personal or sensitive information was
used.

REPRODUCIBILITY STATEMENT

The details of the experimental settings are provided in Section 6. We include detailed proofs of the
theoretical analysis in Appendix C. Additional implementation details can be found in Appendix B.
Our source code is available at https://github.com/harel147/sdm.

ACKNOWLEDGMENTS

The work of HM and RT was supported by the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No. 802735-ERC-DIFFOP.

REFERENCES

Liver Disorders. UCI Machine Learning Repository, 1990. DOI: https://doi.org/10.24432/C54G67.

Rice (Cammeo and Osmancik). UCI Machine Learning Repository, 2019. DOI:
https://doi.org/10.24432/C5MW4Z.

Francis R Bach, Gert RG Lanckriet, and Michael I Jordan. Multiple kernel learning, conic duality,
and the smo algorithm. In Proceedings of the twenty-first international conference on Machine
learning, pp. 6, 2004.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–1396, 2003.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
convolutional networks. In Proceedings of the AAAI conference on artificial intelligence, vol-
ume 35, pp. 3950–3957, 2021.

Margarida Cardoso. Wholesale customers. UCI Machine Learning Repository, 2013. DOI:
https://doi.org/10.24432/C5030X.

J Douglas Carroll and Phipps Arabie. Multidimensional scaling. Measurement, judgment and deci-
sion making, pp. 179–250, 1998.

David Chapman and Ajay Jain. Musk (Version 1). UCI Machine Learning Repository, 1994. DOI:
https://doi.org/10.24432/C5ZK5B.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational harmonic
analysis, 21(1):5–30, 2006.

Ron Cole and Mark Fanty. ISOLET. UCI Machine Learning Repository, 1991. DOI:
https://doi.org/10.24432/C51G69.

Alex Diaz-Papkovich, Luke Anderson-Trocmé, and Simon Gravel. A review of umap in population
genetics. Journal of Human Genetics, 66(1):85–91, 2021.

11

https://github.com/harel147/sdm

Published as a conference paper at ICLR 2025

George Dimitriadis, Joana P Neto, and Adam R Kampff. t-sne visualization of large-scale neural
recordings. Neural computation, 30(7):1750–1774, 2018.

Guowang Du, Lihua Zhou, Yudi Yang, Kevin Lü, and Lizhen Wang. Deep multiple auto-encoder-
based multi-view clustering. Data Science and Engineering, 6(3):323–338, 2021.

R. A. Fisher. Iris. UCI Machine Learning Repository, 1988. DOI: https://doi.org/10.24432/C56C76.

Jean Gallier. Notes on spherical harmonics and linear representations of lie groups. preprint, 2009.

Onnink R. Gerritsma, J. and A. Versluis. Yacht Hydrodynamics. UCI Machine Learning Repository,
2013. DOI: https://doi.org/10.24432/C5XG7R.

Acar Burak Muderrisoglu Haldun Guvenir, H. and R. Quinlan. Arrhythmia. UCI Machine Learning
Repository, 1998. DOI: https://doi.org/10.24432/C5BS32.

Laureta Hajderanj, Isakh Weheliye, and Daqing Chen. A new supervised t-sne with dissimilarity
measure for effective data visualization and classification. In Proceedings of the 8th International
Conference on Software and Information Engineering, pp. 232–236, 2019.

David Harrison Jr and Daniel L Rubinfeld. Hedonic housing prices and the demand for clean air.
Journal of environmental economics and management, 5(1):81–102, 1978.

Gardiner Katheleen Higuera, Clara and Krzysztof Cios. Mice Protein Expression. UCI Machine
Learning Repository, 2015. DOI: https://doi.org/10.24432/C50S3Z.

H Hotelling. Relations between two sets of variates. Biometrika, 1936.

Bowen Jiang and Maohao Shen. Dimensionality reduction via diffusion map improved with super-
vised linear projection. In 2020 IEEE International Conference on Image Processing (ICIP), pp.
1796–1800. IEEE, 2020.

Meina Kan, Shiguang Shan, Haihong Zhang, Shihong Lao, and Xilin Chen. Multi-view discriminant
analysis. IEEE transactions on pattern analysis and machine intelligence, 38(1):188–194, 2015.

Noureddine El Karoui and Hau-Tieng Wu. Connection graph laplacian methods can be made robust
to noise. The Annals of Statistics, pp. 346–372, 2016.

Abhishek Kumar and Hal Daumé. A co-training approach for multi-view spectral clustering. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 393–400,
2011.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Roy R Lederman and Ronen Talmon. Learning the geometry of common latent variables using
alternating-diffusion. Applied and Computational Harmonic Analysis, 44(3):509–536, 2018.

Yongmin Li, Shaogang Gong, Jamie Sherrah, and Heather Liddell. Support vector machine based
multi-view face detection and recognition. Image and Vision computing, 22(5):413–427, 2004.

Ya-Wei Eileen Lin, Ronald R Coifman, Gal Mishne, and Ronen Talmon. Tree-wasserstein distance
for high dimensional data with a latent feature hierarchy. arXiv preprint arXiv:2410.21107, 2024.

Sitao Luan, Mingde Zhao, Chenqing Hua, Xiao-Wen Chang, and Doina Precup. Complete the miss-
ing half: Augmenting aggregation filtering with diversification for graph convolutional networks.
arXiv preprint arXiv:2008.08844, 2020.

Minghua Ma, Tingquan Deng, Ning Wang, and Yanmei Chen. Semi-supervised rough fuzzy lapla-
cian eigenmaps for dimensionality reduction. International journal of machine learning and
cybernetics, 10:397–411, 2019.

Leland McInnes, Alexander Fabisch, Christopher Moody, and Nick Travers. Semi-supervised t-sne
using a bayesian prior based on partial labelling, 2016.

12

Published as a conference paper at ICLR 2025

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Pete Mowforth and Barry Shepherd. Statlog (Vehicle Silhouettes). UCI Machine Learning Reposi-
tory. DOI: https://doi.org/10.24432/C5HG6N.

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):559–572, 1901.

Vladislav Rajkovic. Nursery. UCI Machine Learning Repository, 1989. DOI:
https://doi.org/10.24432/C5P88W.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. science, 290(5500):2323–2326, 2000.

Chao Shen and Hau-Tieng Wu. Scalability and robustness of spectral embedding: landmark diffu-
sion is all you need. Information and Inference: A Journal of the IMA, 11(4):1527–1595, 2022.

Wing S. Hutton L. Sigillito, V. and K. Baker. Ionosphere. UCI Machine Learning Repository, 1989.
DOI: https://doi.org/10.24432/C5W01B.

Ashwin Srinivasan. Statlog (Landsat Satellite). UCI Machine Learning Repository, 1993. DOI:
https://doi.org/10.24432/C55887.

Jeremias Sulam, Yaniv Romano, and Ronen Talmon. Dynamical system classification with diffusion
embedding for ecg-based person identification. Signal Processing, 130:403–411, 2017.

Arthur D Szlam, Mauro Maggioni, and Ronald R Coifman. Regularization on graphs with function-
adapted diffusion processes. Journal of Machine Learning Research, 9(8), 2008.

Ronen Talmon and Hau-Tieng Wu. Latent common manifold learning with alternating diffusion:
analysis and applications. Applied and Computational Harmonic Analysis, 47(3):848–892, 2019.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for non-
linear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Lloyd N Trefethen. Spectra and pseudospectra: the behavior of nonnormal matrices and operators.
2020.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Chang Xu, Dacheng Tao, and Chao Xu. A survey on multi-view learning. arXiv preprint
arXiv:1304.5634, 2013.

Bo Yang, Ming Xiang, and Yupei Zhang. Multi-manifold discriminant isomap for visualization and
classification. Pattern Recognition, 55:215–230, 2016.

I-Cheng Yeh. Concrete Compressive Strength. UCI Machine Learning Repository, 2007. DOI:
https://doi.org/10.24432/C5PK67.

Shi-qing Zhang. Enhanced supervised locally linear embedding. Pattern Recognition Letters, 30
(13):1208–1218, 2009.

Jing Zhao, Xijiong Xie, Xin Xu, and Shiliang Sun. Multi-view learning overview: Recent progress
and new challenges. Information Fusion, 38:43–54, 2017.

Koklu Murat Çinar, İlkay and Sakir Tasdemir. Raisin. UCI Machine Learning Repository, 2023.
DOI: https://doi.org/10.24432/C5660T.

13

Published as a conference paper at ICLR 2025

A ALGORITHMS AND BLOCK DIAGRAMS

A.1 ALGORITHMS

Algorithm 2 Supervised Diffusion Maps (SDM)

Input:
• Train data: n original dimension train data samples {xi}ni=1

• Test data: m original dimension test data samples {xj}mj=1

• Train labels: {yi}ni=1

Parameters:
• Interpolation parameter: t ∈ (0, 1)
• Data distance metric: metric used to measure the distance between data samples
• Labels distance metric: metric used to measure the distance between labels

Output: Low-dimensional embeddings of the training and testing data
Step 1: Extract embeddings along the interpolation for the test set

1: Construct WP (Eq. 6). Obtain P by normalizing WP as in 3.1.
2: For each xj in the test set:

a. Construct WD for {xi}ni=1 ∪ xj (Eq. 5). Obtain D by normalizing WD as in 3.1.
b. Calculate Γ(t) (Eq. 8).
c. Obtain Ψk(xj)} (Eq. 9).

Step 2: Extract embeddings along the interpolation for the train set
1: For each (xi, yi) in the training set, treat it as unlabeled by ignoring yi, and apply the procedure

described in Step 1 to collect the embeddings of xi.

Algorithm 3 Semi-Supervised Diffusion Maps (SSDM)

Input:
• Train data: n original dimension train data samples {xi}ni=1

• Test data: m original dimension test data samples {xj}mj=1

• Train labels: {yi}ni=1

Parameters:
• Interpolation parameter: t ∈ (0, 1)
• Data distance metric: metric used to measure the distance between data samples
• Labels distance metric: metric used to measure the distance between labels

Output: Low-dimensional embeddings of the training and testing data
1: Construct WD for {xi}ni=1 ∪ {xj}mj=1 (Eq. 5). Obtain D by normalizing WD as in 3.1.
2: Construct WP (Eq. 6). Obtain P by normalizing WP as in 3.1.
3: Calculate Γ(t) (Eq. 8).
4: Obtain {Ψk(xi)}ni=1 and {Ψk(xj)}mj=1, where Ψk(xi) = µkvk(i) for i = 1, 2, . . . , n and

Ψk(xj) = µkvk(n + j) for j = 1, 2, . . . ,m. Here, µk denotes the k-th eigenvalue and vk(i)
denotes the i-th entry of the k-th right eigenvector of Γ(t).

14

Published as a conference paper at ICLR 2025

A.2 BLOCK DIAGRAMS

Figure 5: Block diagram of the SDM framework. The data kernel D and label kernel P are con-
structed separately for each sample. The embeddings shown in the lower part represent the eigenvec-
tors. Blue rows/columns in D and P correspond to labeled data samples, while the red row/column
correspond to the unlabeled data sample. Similarly, the blue embeddings correspond to labeled data,
and the red embeddings correspond to unlabeled data samples.

Figure 6: Block diagram of the SSDM framework. The data kernel D and label kernel P are con-
structed once for all samples. The embeddings shown in the lower part represent the eigenvectors.
Blue rows/columns in D and P correspond to labeled data samples, while red rows/columns corre-
spond to unlabeled data samples. Similarly, the blue embeddings correspond to labeled data, and the
red embeddings correspond to unlabeled data samples.

15

Published as a conference paper at ICLR 2025

B ADDITIONAL IMPLEMENTATION DETAILS

In our study, we utilized the official Sklearn implementations for t-SNE, Isomap, LE and LLE. For
UMAP, supervised UMAP, and semi-supervised UMAP we employed the official implementations.
Diffusion Maps were implemented by us.

Regarding supervised t-SNE, although multiple versions have been published in academic papers,
the code implementations were not released. Therefore, we utilized the semi-supervised t-SNE ver-
sion (McInnes et al., 2016) implemented by Leland McInnes, the creator of UMAP (McInnes et al.,
2018).

For all algorithms, we primarily used default parameters, except for selecting the number of neigh-
bors parameter for UMAP, supervised UMAP, semi-supervised UMAP, Isomap, LE, and LLE, and
the perplexity for t-SNE and semi-supervised t-SNE.

To select the ϵ for the Gaussian kernels of the data and label kernel for SDM and SSDM, we ap-
plied the following heuristic: we calculated 16 kernels using different ϵ values from 10−5 to 1010,
and chose the ϵ value that resulted in the kernel with the largest number of eigenvalues in the range
[0.0001, 0.9999]. We applied this heuristic because we observed numerical issues when the eigen-
values of the kernel were too large or too small. We did not optimize over ϵ to try to improve
performance on the datasets.

We selected the flow resolution parameter, which is the number of sampled kernels along the inter-
polation, defining {ti}li=1 in the interval [0, 1], to be 101 for all evaluated datasets. This means that
we generated embeddings for each test and train sample along the interpolation for all kernels at ti
in 0, 0.01, 0.02, . . . , 0.99, 1.0, then selected the optimal t from this set based on the first data split,
as described in Subsection 6.2.1. As for the distance metric, we used only Euclidean distance for
both the data kernel and the label kernel.

As for SSDM, the optimal t is usually large ([0.9, 1)). This means that the interpolated kernel result
is close to D. We found it effective to apply the following SVD shrinkage-based denoising tactic
to the kernel D before applying SSDM. We reconstruct D with singular values sampled from a
sigmoid normalized between 0 and 1. Practically, we do this as follows:

Algorithm 4 Pseudocode for SVD Shrinkage-Based Denoising Tactic

1: U,Σ, V ← SV D(D)
2: s← Linspace(−5, 5, n)
3: σ ← 1

1+exp(s)

4: σ ← σ−min(σ)
max(σ)−min(σ)

5: Σ← σ
6: D← UΣV

As described in 4 for SDM, the embedding of the training set for t can be obtained straightforwardly
using Ψk(xi) = µkvk(i) for i = 1, 2, . . . , n. However, since the embedding of x was generated
without alignment with a label, we observed a slight improvement in downstream tasks by applying
a similar distortion to the training set embeddings, ensuring greater consistency with the embedding
of x. To achieve this, we extend the x procedure to all training samples {xi}ni=1 using a leave-one-
out approach, where each sample (xi, yi) in the training set is treated as unlabeled. In this case, we
construct kernels in Rn×n using the data samples {xj}nj ̸=i ∪ xi and the (n− 1) labels {yj}nj ̸=i. For
each sample xi, we compute the embedding as Ψk(xi) = µkvk(n).

In the original Diffusion Maps algorithm, Eigenvalue Decomposition (EVD) is applied to the kernel.
In our approach, we utilize Singular Value Decomposition (SVD) instead, as previously suggested
for Alternating Diffusion (AD) in Talmon & Wu (2019). We chose SVD because it produces results
similar to EVD, but with the added advantages of faster computation and greater numerical stability
in NumPy’s implementation.

The hardware utilized for testing the runtimes of SDM and SSDM, as depicted in Table 6 in Ap-
pendix E.5, is the ROG Strix G16 Asus laptop equipped with an Intel i9-14900HX processor.

16

Published as a conference paper at ICLR 2025

C THEORETICAL JUSTIFICATION: PROOFS AND EXPLANATIONS

C.1 DISCUSSION OF SHARED STRUCTURE ASSUMPTION

Our method is designed to extract the shared underlying structure between the data and labels, rely-
ing on the assumption that they exhibit a common geometry. While this assumption is challenging
to validate directly, we propose an alternative, more practical criterion: when the labels of two sam-
ples are close (i.e., the label distance is small), the distances produced by our label-driven diffusion
process should be smaller than the direct pairwise distances between the data samples. This leads to
a higher transition probability in our kernel compared to the data kernel. Conversely, if the labels are
distant (i.e., the label distance is large), the distances from our label-driven diffusion process should
exceed the direct pairwise distances between data samples, resulting in a lower transition probability
in our kernel compared to the data kernel. If this relationship holds, it suggests that the assumption
is valid for the given dataset. In simpler terms, the assumption is that our label-driven diffusion more
accurately reflects the label distances than the direct pairwise distances between the data samples.
This assumption can be formalized as follows:
Assumption 1. For any two data samples i and j, if the labels yi and yj are similar, i.e.,
dP (yi, yj) < η, then [PD]i,j > [D]i,j . Conversely, if the labels yi and yj are not similar, i.e.,
dP (yi, yj) > η, then [PD]i,j < [D]i,j ,

where η is a parameter that defines whether two labels are considered similar or not.

When this assumption does not hold – that is, when the direct pairwise distances between data
samples align better with the label distances than our diffusion distances – the traditional Diffusion
Maps is expected to outperform our method. In such cases, the kernel D will better represent the
label distances than our kernel PD.

To assess whether the assumption holds for real datasets, we propose using heatmap visualizations
of both our method’s kernel and the unsupervised Diffusion Maps kernel. These heatmaps, sorted
by label with rows representing unlabeled samples and columns representing labeled samples, pro-
vide a visual means of evaluating the assumption. An ideal heatmap for classification should exhibit
diagonal high-value blocks corresponding to each class, indicating that samples have high transi-
tion probabilities to others within the same class and low probabilities to those in other classes, as
outlined in Assumption 1.

Figures 7 and 8 show heatmaps for our method and the unsupervised Diffusion Maps applied to the
Mice dataset (Higuera & Cios, 2015) and the Raisin dataset (Çinar & Tasdemir, 2023), respectively.
In both cases, our kernel better approximates the ideal diagonal block structure compared to the
unsupervised Diffusion Maps kernel. This result aligns with the Misclassification Rates reported in
Table 4. For the Mice dataset, our SSDM embedding achieves a Misclassification Rate of 0.016 ±
0.009, while the unsupervised Diffusion Maps yield a Misclassification Rate of 0.162 ± 0.019.
Similarly, for the Raisin dataset, SSDM achieves a Misclassification Rate of 0.176±0.019, compared
to 0.26± 0.021 for the unsupervised Diffusion Maps.

Conversely, Figure 9 presents heatmaps for the Customers dataset (Cardoso, 2013), where neither
method effectively captures the label structure. The heatmaps lack the expected diagonal block pat-
terns, reflecting a failure to align with the assumption. This is further reflected in the Misclassifica-
tion Rates: SSDM achieves 0.328± 0.044, while the unsupervised Diffusion Maps perform slightly
better with a Misclassification Rate of 0.283 ± 0.047. In this case, where the assumption does not
hold, as evident in Figure 9, the unsupervised Diffusion Maps outperform SSDM.

17

Published as a conference paper at ICLR 2025

(a) SSDM, Misclassification Rate: 0.016± 0.009 (b) Diffusion Maps, Misclassification Rate: 0.162 ±
0.019

Figure 7: Heatmap visualization of our method’s kernel and the unsupervised Diffusion Maps kernel
for the Mice dataset.

(a) SSDM, Misclassification Rate: 0.176± 0.019 (b) Diffusion Maps, Misclassification Rate: 0.26±
0.021

Figure 8: Heatmap visualization of our method’s kernel and the unsupervised Diffusion Maps kernel
for the Raisin dataset.

(a) SSDM, Misclassification Rate: 0.328± 0.044 (b) Diffusion Maps, Misclassification Rate: 0.283 ±
0.047

Figure 9: Heatmap visualization of our method’s kernel and the unsupervised Diffusion Maps kernel
for the Customers dataset.

18

Published as a conference paper at ICLR 2025

C.2 PROOF OF PROPOSITION 1

Proof of Proposition 1. We consider modifications for tractability. First, we clip negligible affinity
values by

WD(i, j) =

{
exp

(
−d2

D(xi,xj)
ϵD

)
, if d2D(xi, xj) ≤ δD

0, if d2D(xi, xj) > δD
. (13)

Second, we consider a different kernel normalization given by D = D−1
1 WD, where D1 is a

diagonal matrix consisting of the sum of rows of WD. Note that the resulting normalized data
kernel D is row-stochastic. In addition, it was shown in Coifman & Lafon (2006) that it is similar to
the symmetric kernel used so far when the data is uniformly distributed on the data manifold. The
label kernel P and the inaccessible kernel L undergo the same modifications.

Let Li,j denote the elements of L and Di,j denote the elements of D. We refer to the i-th row vector
of L as li and the i-th column vector of D as di. Using this notation, we can express the elements
of PD and LD as follows:

[LD]i,j = lidj, (14)

[PD]i,j =

{
lidj − Li,n+1Dn+1,j , for 1 ≤ i ≤ n

Dn+1,j , if i = n+ 1
. (15)

Thus, we can relate LD and PD as E = LD−PD, where the elements of E are defined by:

Ei,j =

{
Li,n+1Dn+1,j , for 1 ≤ i ≤ n

ln+1dj −Dn+1,j , if i = n+ 1
. (16)

Upper bounding ∥Ei,j∥ is equivalent to upper bounding ∥[LD]i,j − [PD]i,j∥, which is the goal of
the proof. Therefore, from now on, we will focus on that.

Next, we define wD(xi) and wL(yi) as the row sums of WD(i, j) and WL(i, j). We assume that
for sufficiently large n, the row sums of L and P are approximately the same, as P before row
normalization only lacks the values of the last column of L before row normalization. We bound
wD(xi) as follows:

wD(xi) =
∑

xj∈N (D)
i

exp

(
−dD

2(xi, xj)

ϵD

)
≥

∑
xj∈N (D)

i

exp

(
−δD
ϵD

)
†
= |N (D)

i | exp(−1) ≈ |N (D)
i |,

(17)
where |N (D)

i | denotes the size of the set N (D)
i , and the transition marked by † is achived under the

assumption that δD = Θ(ϵD)

Similarly, we get that:
wL(yi) ≥ |N (L)

i |, (18)

where |N (L)
i | denotes the size of the set N (L)

i .

Thus, based on Eq. 17 and Eq. 18, we can upper bound each element of D and L as follows:

Di,j =
WD(i, j)

wD(xi)
≤ WD(i, j)

|N (D)
i |

≤ 1

|N (D)
i |

, (19)

Li,j =
WL(i, j)

wL(yi)
≤ WL(i, j)

|N (L)
i |

≤ 1

|N (L)
i |

. (20)

From Eq. 20 and Eq. 19, we obtain:

Li,jDk,l ≤
1

|N (L)
i ||N (D)

k |
∀i, j, k, l ∈ [1, n+ 1]. (21)

Now, if we examine the n upper rows of E, they take the form Li,n+1Dn+1,j . Therefore, by Eq. 21,
we have:

Li,n+1Dn+1,j ≤
1

|N (L)
i ||N (D)

n+1|
⋆
=

1

N2
1

∀i ∈ [1, n],∀j ∈ [1, n+ 1]. (22)

19

Published as a conference paper at ICLR 2025

The transition marked by ⋆ in Eq. 22 is achieved under the assumption that every sample has at least
N1 samples in its δ-neighborhood in both D and L. Similarly, all subsequent transitions in the proof
marked with ⋆ are based on the same assumption.

Considering the (n+ 1)-th row of E, it takes the form ln+1dj −Dn+1,j . Therefore, we can bound
it as follows:

∥ln+1dj −Dn+1,j∥ ≤ max{ln+1dj,Dn+1,j}. (23)
Considering only ln+1dj, we can upper bound it by plugging in Eq. 21 as follows:

ln+1dj =

n+1∑
i=1

Ln+1,iDi,j =
∑

yi∈N (L)
n+1,xi∈N (D)

j

Ln+1,iDi,j ≤
min{|N (L)

n+1|, |N
(D)
j |}

|N (L)
n+1||N

(D)
j |

(24)

= min

{
1

|N (L)
n+1|

,
1

|N (D)
j |

}
⋆
=

1

N1
. (25)

Considering only Dn+1,j , we can upper bound it by plugging in Eq. 19 as follows:

Dn+1,j ≤
1

|N (D)
n+1|

⋆
=

1

N1
. (26)

Therefore, we can conclude that:

∥ln+1dj −Dn+1,j∥ ≤ max

{
min

{
1

|N (L)
n+1|

,
1

|N (D)
j |

}
,

1

|N (D)
n+1|

}
⋆
=

1

N1
. (27)

We proceed by demonstrating when Ei,j = 0:

• For 1 ≤ i ≤ n: The entry Ei,j is nonzero only if yi ∈ N (L)
n+1 and xj ∈ N (D)

n+1.

• For i = n+ 1: We have
∥Ei,j∥ = ∥ln+1dj −Dn+1,j∥,

where ln+1dj =
∑n+1

i=1 Ln+1,iDi,j . Therefore,

∥Ei,j∥ = ∥ln+1dj −Dn+1,j∥ ≤ max {ln+1dj,Dn+1,j} .

Here, ln+1dj is nonzero only if there are samples (xi, yi) for i ∈ [1, n + 1] such that
yi ∈ N (L)

n+1 and xi ∈ N (D)
j . If such samples exist, it implies that the j-th sample, for

j ∈ [1, n+1], is close to the (n+1)-th sample. For simplicity, we assume this occurs when
yj ∈ N (L)

n+1 and xj ∈ N (D)
n+1.

Additionally, Dn+1,j is nonzero only when xj ∈ N (D)
n+1 for j ∈ {1, . . . , n+ 1}.

Thus, by combining both cases, Ei,j for i = n+ 1 is nonzero only when xj ∈ N (D)
n+1.

Based on the analysis for the cases when Ei,j = 0, along with the element-wise bounds provided in
Eq. 22 and Eq. 27, we conclude the proof.

20

Published as a conference paper at ICLR 2025

C.3 PROOF OF PROPOSITION 2

Proof of Proposition 2. As demonstrated in the Proof of Proposition 1, PD can be expressed as a
perturbed version of LD such that PD = LD−E, where E is defined as follows:

Ei,j =

{
Li,n+1Dn+1,j , for 1 ≤ i ≤ n

ln+1dj −Dn+1,j , if i = n+ 1
. (28)

By the eigen decomposition, we have LDv = µv. Substituting LD = PD + E, and noting that v
is an eigenvector of LD with the corresponding eigenvalue µ, we get:

(PD+E)v = µv. (29)

We can reorganize this as:
(PD− µI)v = −Ev. (30)

Applying the norm on both sides, we obtain:

∥(PD− µI)v∥ = ∥ −Ev∥ = ∥Ev∥ ≤ ∥E∥∥v∥ = ∥E∥, (31)

where the last equality holds because ∥v∥ = 1.

We proceed by constructing the matrix E(b) as follows:

E
(b)
i,j =

1

N2
1
, for 1 ≤ i ≤ n, yi ∈ N (L)

n+1, xj ∈ N (D)
n+1

1
N1

, if i = n+ 1, xj ∈ N (D)
n+1

0, else

. (32)

Thus, based on the proof of Proposition 1, E(b) provides an element-wise bound on E by construc-
tion, such that ∥Ei,j∥ ≤ E

(b)
i,j for all i, j ∈ {1, . . . , n+ 1}.

We continue by considering ∥E(b)∥1 and ∥E(b)∥∞, which are computed through the maximal col-
umn sum and row sum respectively. We assume that each sample has at most N2 neighbors within
its δ-neighborhood in both D and L. Thus, for each column vector of E(b), the sum of the first n
entries is bounded by N2

N2
1

, and the (n + 1)-th entry is bounded by 1
N1

. Consequently, the maximal
column sum is bounded by:

∥E(b)∥1 ≤
N2

N2
1

+
1

N1

⋆
=

2

N
. (33)

Additionally, the sum of each of the first n row vectors of E(b) is bounded by N2

N2
1

, while the sum of

the (n+ 1)-th row vector is bounded by N2

N1
. Therefore, the maximal row sum is bounded by:

∥E(b)∥∞ ≤
N2

N1

⋆
= 1. (34)

The transitions marked by ⋆ in Eq. 33 and Eq. 34 assume that N1 and N2 are approximately equal
to N , i.e., N1 ≈ N ≈ N2.

Using the upper bound of the spectral norm ∥E(b)∥ ≤
√
∥E(b)∥1∥E(b)∥∞, we get:

∥E(b)∥ ≤
√
∥E(b)∥1∥E(b)∥∞ ≤

√
N2

N1

(
N2

N2
1

+
1

N1

)
=

√
N2

2

N3
1

+
N2

N2
1

⋆
=

√
2

N
. (35)

Since the bound of ∥E(b)∥ depends on ∥E(b)∥1 and ∥E(b)∥∞, which are computed through the
maximal column sum and row sum respectively, this is also a valid bound for ∥E∥, as E(b) is an
element-wise bounding matrix of E. Thus, we get:

∥E∥ ≤ ∥E(b)∥ ≤

√
N2

2

N3
1

+
N2

N2
1

⋆
=

√
2

N
. (36)

21

Published as a conference paper at ICLR 2025

Assuming that ϵ =
√

N2
2

N3
1
+ N2

N2
1

⋆
=
√

2
N , and considering that N is sufficiently large, substituting

this expression into Eq. 31 yields:

∥(PD− µI)v∥ = ∥E∥ ≤ ∥E(b)∥ ≤ ϵ. (37)

Thus, from Definition 1, we conclude that the eigenvector v of LD is an ϵ-pseudo-eigenvector of
PD with the corresponding eigenvalue µ.

C.4 BALANCING P AND D USING t

Considering our interpolation scheme, we have:

Γ(t) = P1−tDt, 0 ≤ t ≤ 1.

For any matrix A ∈ Rn×n, which are similar to Symmetric Positive Definite (SPD) matrices (such as
P and D when using row normalization), the fractional power α can be expressed using Eigenvalue
Decomposition (EVD) as follows:

Aα = UΣαV ⊤,

where U is an orthogonal matrix containing the left eigenvectors of A, V is an orthogonal matrix
containing the right eigenvectors of A, and Σ is a diagonal matrix with the eigenvalues σi of A on
its diagonal. The fractional power Σα is defined as:

Σα = diag(σα
1 , σ

α
2 , . . . , σ

α
n),

where each eigenvalue σi is raised to the power α.

By raising P and D to the fractional powers 1 − t and t, respectively, we amplify the smaller
eigenvalues more significantly. Since smaller eigenvalues correspond to high-frequency components
of graph signals, this fractional power operation effectively acts as a high-frequency amplifier. By
adjusting t, we can control the balance of high-frequency amplification between P and D. When
t is small, the high frequencies of D are amplified, and when t is large, the high frequencies of P
dominate.

Next, we address the concepts of homophily and heterophily in the context of graphs. Homophily
refers to the phenomenon where connected nodes share the same label, whereas in a heterophilic
graph, the labels of neighboring nodes can differ. Recent studies (Bo et al., 2021; Chien et al., 2020;
Luan et al., 2020) have shown that high-frequency graph signals are empirically effective in tackling
the challenges posed by heterophilic graphs. Given that the graph represented by the data kernel D
can be heterophilic as the data may be quite noisy, amplifying the high frequencies of D using the
parameter t can be effective. Similarly, if the quality of the labels is subpar, amplifying the high
frequencies of P may also help. In conclusion, our interpolation scheme balances the amplification
of high frequencies in both P and D, which can be interpreted as interpolation in the frequency
domain.

22

Published as a conference paper at ICLR 2025

C.5 LABEL-DRIVEN DIFFUSION ILLUSTRATIVE EXAMPLE

This appendix presents a simple toy problem aimed solely at illustration. Consider a dataset consist-
ing of three samples {x1, x2, x3} with corresponding labels {y1, y2, y3}, and suppose that only y1
and y2 are available and y3 is unavailable. From this dataset, we can construct three graphs with the
same node set {1, 2, 3}, representing the three samples, but with three different transition kernels:
D, L, and P.

For the purpose of this analysis, we assume that the transition kernel L captures the hidden intrinsic
geometry of the data as it has access to all the labels (available and unavailable). The transition
kernel P also captures this intrinsic geometry but is incomplete due to the absence of the label y3.
The transition kernel D is noisy, as it is derived from the samples {x1, x2, x3} without access to
the labels. For simplicity, we construct the graphs without normalization and without self-loops.
Consequently, we obtain the graphs and their corresponding transition kernels depicted in Fig. 10.

Figure 10: Graphs and transition kernels for L, P, and P.

We now consider a two-step diffusion from node 1 to the unlabeled node 3. The optimal value for
this diffusion is given by the (1, 3)-th element of L2, which captures the complete hidden intrinsic
structure of the data:

L2(1, 3) = 0.5

If we perform a two-step diffusion on the dataset using the unlabeled samples through D2 (as in the
unsupervised Diffusion Maps), we obtain:

D2(1, 3) = 0.5 + ϵ3 + 0.5ϵ1 + ϵ1ϵ3

When employing our method, which involves first step on the labels and second on the data using
PD (where P serves as a proxy for the inaccessible L), we have:

PD(1, 3) = 0.5 + ϵ3

Additionally, if we consider two-step diffusion first on the labels and then on the data using the
inaccessible LD, which we attempt to approximate with PD, we have:

LD(1, 3) = 0.5 + ϵ3

Consequently, we observe that the transition probability from node 1 to node 3 using PD in our
method is equal to that using the inaccessible LD. Moreover, the transition probability obtained
with PD exhibits less distortion compared to the optimal transition probability from L2, while the
distortion exhibited by D2 is larger.

23

Published as a conference paper at ICLR 2025

D ADDITIONAL EXPERIMENTAL RESULTS FOR THE TOY PROBLEM

D.1 TOY PROBLEM ADDITIONAL FIGURE

Figure 11: SDM progression of the first three components along the interpolation from the label kernel at t = 0
to the data kernel at t = 1. Key areas are highlighted: purple rectangle indicate noisy original Diffusion Maps
components; yellow rectangle show potential optimal t value components at t = 0.02; light blue rectangle
enclose non-informative t = 0 components.

Figure 12: SSDM progression of the first three components along the interpolation from the label kernel at
t = 0 to the data kernel at t = 1. In this case, the optimal t value is large (i.e., 0.8).

24

Published as a conference paper at ICLR 2025

(a) t=0 (b) t=0.02 (c) t=0.1 (d) t=0.6 (e) t=1 (DM)

(f) t=0 (g) t=0.02 (h) t=0.1 (i) t=0.6 (j) t=1 (DM)

Figure 13: Two-dimensional embedding of SSDM with various t values. The first row displays
results for the toy problem dataset, as detailed in Subsection 6.1, featuring three figures (Superman
and two interference figures). The second row, serving as a baseline, shows results for a dataset
containing only images of Superman, without interference figures. Dots (·) denote labeled training
samples, while pluses (+) denote unlabeled test samples.

Figure 14: SSDM performance with varying labeled data ratios.

D.2 COMPARISON WITH AD INTERPOLATION

To demonstrate the importance of the proposed interpolation scheme, we compared it to a simpler
interpolation, given by PD, which does not balance between P and D using t, for both supervised
and semi-supervised settings. This simpler interpolation is analogous to the one employed by AD
(Lederman & Talmon, 2018).

Table 2 presents the angular MAE and R2 obtained by our SDM and SSDM, as well as by a random
guess baseline, DM, and the AD interpolation. The table demonstrates the effectiveness of SDM
and SSDM in generating informative embeddings that consistently outperform the other methods.
Notably, DM performs only slightly better than a random guess, while AD in the semi-supervised
setting is equivalent to a random guess.

25

Published as a conference paper at ICLR 2025

Table 2: Evaluation of SDM and SSDM, compared to baselines and AD.

Method Supervised Semi-supervised
MAE R2 MAE R2

Random guess - - 90° 0.0
DM (baseline) - - 79° 0.08
AD 50.3° 0.55 85.35° -0.01
Our Method 8.88° 0.97 4.1° 0.99

E ADDITIONAL DETAILS AND RESULTS FOR REAL DATASETS

E.1 REAL DATASETS

Table 3 presents the datasets and their properties, where n stands for the number of samples, d for
the original data dimensions, and in the ’Type’ column, ’C’ stands for classification and ’R’ for
regression.

Table 3: Datasets

Dataset Type n d

Iris (Fisher, 1988) C 150 4
Ionosphere (Sigillito & Baker, 1989) C 351 34
Yacht (Gerritsma & Versluis, 2013) R 308 6
Boston (Harrison Jr & Rubinfeld, 1978) R 506 13
Liver (mis, 1990) R 345 5
Arrhythmia (Guvenir & Quinlan, 1998) C 452 279
Musk (Chapman & Jain, 1994) C 476 166
Mice (Higuera & Cios, 2015) C 1080 77
Rice (mis, 2019) C 3810 7
Concrete (Yeh, 2007) R 1030 8
Silhouettes (Mowforth & Shepherd) C 845 18
Raisin (Çinar & Tasdemir, 2023) C 900 7

26

Published as a conference paper at ICLR 2025

E.2 COMPLETE RESULTS WITH STANDARD DEVIATION

Table 4: Complete evaluation results with standard deviation and with the number of dimensions
that yielded the smallest error indicated in parentheses.

D
at

as
et

U
ns

up
er

vi
se

d
A

lg
or

ith
m

s
Se

m
i/S

up
er

vi
se

d
A

lg
or

ith
m

s
N

am
e

Ty
pe

U
M

A
P

Is
om

ap
tS

N
E

L
E

L
L

E
D

M
S/

SU
M

A
P

SS
tS

N
E

S/
SD

M
Su

pe
rv

is
ed

Se
tt

in
g

Ir
is

C
0.

03
7(

24
)

0.
04

7(
22

)
0.

04
4(

2)
0.

03
4(

23
)

0.
06

(3
)

0.
05

1(
9)

0.
03

5(
9)

0.
04

1(
2)

0.
03

4(
5)

±
0.

02
6

±
0.

03
4

±
0.

02
3

±
0.

02
7

±
0.

04
8

±
0.

04
7

±
0.

02
2

±
0.

03
5

±
0.

02
6

Io
no

sp
he

re
C

0.
15

(1
1)

0.
11

2(
5)

0.
11

7(
2)

0.
12

(2
7)

0.
12

1(
7)

0.
10

8(
21

)
0.

15
5(

24
)

0.
11

1(
29

)
0.

07
3(

30
)

±
0.

02
9

±
0.

02
8

±
0.

02
6

±
0.

02
5

±
0.

03
1

±
0.

02
5

±
0.

02
7

±
0.

02
8

±
0.

02
3

A
rr

hy
th

m
ia

C
0.

51
(2

3)
0.

48
4(

25
)

0.
47

6(
4)

0.
44

3(
28

)
0.

53
3(

22
)

0.
50

6(
29

)
0.

48
5(

15
)

0.
45

6(
30

)
0.

43
1(

10
)

±
0.

03
6

±
0.

03
5

±
0.

04
1

±
0.

03
9

±
0.

03
5

±
0.

03
3

±
0.

03
5

±
0.

03
8

±
0.

04
8

M
us

k
C

0.
19

1(
26

)
0.

18
9(

23
)

0.
14

5(
2)

0.
12

2(
18

)
0.

20
4(

30
)

0.
18

(1
6)

0.
17

1(
25

)
0.

16
3(

7)
0.

10
1(

8)
±

0.
02

9
±

0.
03

1
±

0.
02

5
±

0.
02

5
±

0.
03

1
±

0.
03

2
±

0.
03

±
0.

02
4

±
0.

02
4

Y
ac

ht
R

0.
54

9(
16

)
0.

39
5(

29
)

0.
45

1(
4)

0.
20

8(
30

)
0.

49
8(

4)
0.

43
(1

7)
0.

54
9(

5)
-

0.
12

(2
)

±
0.

05
4

±
0.

05
6

±
0.

04
7

±
0.

05
4

±
0.

05
8

±
0.

09
±

0.
05

7
±

0.
06

3
B

os
to

n
R

0.
08

4(
7)

0.
08

7(
16

)
0.

07
4(

10
)

0.
08

3(
30

)
0.

08
(1

3)
0.

09
6(

6)
0.

08
3(

15
)

-
0.

06
8(

3)
±

0.
01

1
±

0.
01

1
±

0.
00

9
±

0.
01

2
±

0.
01

3
±

0.
01

1
±

0.
01

2
±

0.
01

L
iv

er
R

0.
50

8(
28

)
0.

50
(3

)
0.

51
1(

2)
0.

48
1(

30
)

0.
50

2(
2)

0.
49

7(
6)

0.
51

9(
18

)
-

0.
47

4(
15

)
±

0.
05

1
±

0.
05

1
±

0.
05

1
±

0.
04

6
±

0.
05

8
±

0.
05

1
±

0.
06

±
0.

05
4

Se
m

i-S
up

er
vi

se
d

Se
tt

in
g

M
ic

e
C

0.
02

9(
30

)
0.

03
(2

8)
0.

01
(1

0)
0.

04
5(

13
)

0.
00

2(
30

)
0.

16
2(

30
)

0.
02

9(
23

)
0.

04
7(

3)
0.

01
6(

23
)

±
0.

01
2

±
0.

01
1

±
0.

00
8

±
0.

01
6

±
0.

00
4

±
0.

01
9

±
0.

01
3

±
0.

01
4

±
0.

00
9

R
ic

e
C

0.
14

6(
9)

0.
12

7(
27

)
0.

14
8(

7)
0.

15
2(

8)
0.

15
6(

7)
0.

16
1(

29
)

0.
15

3(
23

)
-

0.
10

4(
8)

±
0.

00
8

±
0.

00
8

±
0.

00
8

±
0.

00
8

±
0.

00
9

±
0.

00
9

±
0.

00
8

±
0.

00
9

Si
lh

ou
et

te
s

C
0.

39
(1

4)
0.

35
(2

0)
0.

37
8(

16
)

0.
41

9(
24

)
0.

29
7(

17
)

0.
43

7(
29

)
0.

38
9(

28
)

0.
31

5(
16

)
0.

24
8(

8)
±

0.
03

2
±

0.
02

4
±

0.
02

7
±

0.
03

±
0.

02
7

±
0.

02
2

±
0.

02
9

±
0.

04
2

±
0.

02
9

R
ai

si
n

C
0.

21
1(

18
)

0.
19

5(
26

)
0.

21
6(

5)
0.

21
6(

3)
0.

20
4(

4)
0.

26
(3

0)
0.

22
(1

2)
0.

18
(3

)
0.

17
6(

19
)

±
0.

02
±

0.
02

2
±

0.
02

1
±

0.
01

9
±

0.
02

1
±

0.
02

1
±

0.
02

2
±

0.
01

8
±

0.
01

9
C

on
cr

et
e

R
0.

07
7(

19
)

0.
06

6(
6)

0.
06

4(
7)

0.
08

(3
0)

0.
05

1(
8)

0.
08

5(
29

)
0.

07
(2

6)
-

0.
03

6(
26

)
±

0.
00

5
±

0.
00

5
±

0.
00

5
±

0.
00

6
±

0.
00

5
±

0.
00

7
±

0.
00

5
±

0.
00

6

27

Published as a conference paper at ICLR 2025

E.3 COMPARISON BETWEEN SDM AND SSDM

We present a comparison between SDM and SSDM, acknowledging that SDM, in principle, can be
applied in semi-supervised settings, particularly when runtime is not a constraint. To address this, we
have included a detailed comparison in Table 5, showcasing results for both SDM and SSDM across
all datasets where only SDM results were previously reported. As highlighted in the table, SDM
generally achieves slightly better performance than SSDM, consistent with our theoretical analysis.
However, SSDM demonstrates superior performance in certain cases, such as the Yacht dataset and
the toy problem introduced in this paper, as illustrated in Figure 3.

The reason why SSDM can surpass SDM in certain cases becomes evident when examining the
components of the toy problem shown in Figures 11 and 12. Figure 11 presents the SDM results
with the optimal t = 0.02, while Figure 12 displays the SSDM results with the optimal t = 0.8.
From these figures, we observe that SDM embeddings, influenced by individual kernels for each
data point, exhibit greater variability, leading to embeddings that are less consistent across samples.
In contrast, SSDM embeddings, constructed from a single kernel, demonstrate greater consistency
across samples.

Theoretically, this variability in SDM could be mitigated by using larger kernels. However, SDM
becomes impractical for large datasets due to its computational complexity.

In conclusion, while SSDM is significantly more time-efficient and its performance is comparable
to SDM, SDM remains relevant for fully supervised settings and can achieve better performance in
some cases.

Table 5: Comparison between SDM and SSDM, reporting NMSE for regression (‘R’) and Misclas-
sification Rate for classification (‘C’), along with runtimes (in seconds).

Dataset SDM SSDM
Name Type Error Runtime Error Runtime
Iris C 0.034 ± 0.026 5.5 0.036 ± 0.022 0.1
Ionosphere C 0.073 ± 0.023 50 0.098 ± 0.023 0.4
Arrhythmia C 0.431 ± 0.048 107 0.431 ± 0.038 0.7
Musk C 0.101 ± 0.024 124 0.124 ± 0.023 0.5
Yacht R 0.12 ± 0.063 9.3 0.008 ± 0.003 0.1
Boston R 0.068 ± 0.01 41 0.05 ± 0.008 0.3
Liver R 0.474 ± 0.054 13 0.48 ± 0.051 0.1

28

Published as a conference paper at ICLR 2025

E.4 ERROR RATES ACROSS DIMENSIONALITY

SDM achieves the best results for all datasets, and in some cases, its performance is superior across
all chosen dimensions. For instance, as shown in Figure 15, SDM outperforms all evaluated algo-
rithms for the Ionosphere dataset across all dimensions from 1 to 30.

Moreover, SSDM achieves the best result for all datasets except for Mice, and in some cases, its
performance is superior across most chosen dimensions. For instance, as shown in Figure 16, our
SSDM outperforms all evaluated algorithms for the Silhouettes dataset across all dimensions from
3 to 30.

Figure 15: This figure depicts the error rate for the Ionosphere dataset as the number of dimensions
increases in the supervised setting.

Figure 16: This figure depicts the error rate for the Silhouettes dataset as the number of dimensions
increases in the semi-supervised setting.

29

Published as a conference paper at ICLR 2025

E.5 RUNTIME COMPARISON

Table 6: Comparison of Runtimes [in secs]

Dataset UMAP Isomap tSNE LE LLE DM SUMAP SSUMAP SStSNE SDM SSDM
Iris 2.5 0.01 0.5 0.01 0.01 0.02 4.3 2.6 0.8 5.5 0.1

Mice 3 0.5 47 0.5 0.2 4.1 5 3.5 29.4 934 3
Rice 7 2.7 110 0.7 1 16.2 8.5 7.8 N/A N/A 55

30

Published as a conference paper at ICLR 2025

F COMPLEXITY ANALYSIS AND OPTIMIZED SSDM IMPLEMENTATION

For SSDM, the affinity kernels D and P are computed with a time complexity of O(d · n2), where
d is the dimensionality of the data. The computation of Dt and P1−t using SVD requires O(n3),
and multiplying the kernels to obtain P1−tDt also takes O(n3). Finally, obtaining the embeddings
using SVD is an additional O(n3). Therefore, the overall time complexity of SSDM is O(n3), with
a space complexity of O(n2).

In contrast, SDM involves applying the SSDM procedure n times, resulting in a time complexity of
O(n4) and a space complexity of O(n2). This analysis indicates that SDM is impractical for large
or even medium-sized datasets, while SSDM remains feasible for datasets with up to approximately
10,000 samples.

To overcome this limitation, we have implemented an optimized version of SSDM that is highly
suitable for large-scale datasets. In the optimized version, instead of constructing the label and data
kernels P and D with dimensions n× n, we randomly sample k labeled samples from the training
set. This results in a label kernel P of size k × k and a data kernel D of size k × n, where k is set
in our experiments to 0.01 · n if n > 10, 000 and to 0.1 · n if n ≤ 10, 000. Empirically, we have
found that a small proportion of labeled samples can effectively represent the space in large datasets.
For very large datasets, k can be set to any fixed small value, smaller than 0.01 · n. Apart from the
adjustments to the kernel dimensions, the other steps of the optimized SSDM remain identical to
those in SSDM. This modification reduces the complexity of the optimized SSDM to O(k2 · n),
making it scalable for very large datasets (larger than 100,000 samples).

Furthermore, the optimized SSDM is implemented using torch, leveraging GPU acceleration to
perform matrix multiplications in parallel. This allows for significant speedups in computation, en-
abling the method to process large-scale datasets efficiently.

For comparison, t-SNE has a time complexity of O(n2), with optimized versions having a com-
plexity of O(n · log n), while UMAP has a time complexity of O(d · n1.14). As such, for smaller
values of k, our method is more time-efficient than these alternatives, as observed in our empirical
experiments.

To evaluate the effectiveness of the optimized SSDM and the improvements in runtime, we follow
the procedure outlined in Section 6, which involves reducing the dimensionality, training a KNN
classifier, and reporting the Misclassification Rate.

First, we compare the optimized SSDM to the unoptimized SSDM on the Rice dataset (3810 sam-
ples). As reported in Table 6, the unoptimized SSDM takes 55 seconds. By contrast, using the
optimized SSDM with k = 0.1 · n = 381, we achieve a runtime of just 0.03 seconds, repre-
senting a ×1833 improvement in runtime. The Misclassification Rate for the optimized SSDM is
0.133± 0.013, which is slightly worse than the 0.104± 0.009 reported for the unoptimized SSDM.
However, this trade-off is accompanied by a significant improvement in runtime.

In Figure 17, we present heatmap visualizations (as discussed in Appendix C.1) comparing the
unoptimized SSDM, which utilizes all training labels, to the optimized SSDM, which uses only
k = 381 labels.

Next, we demonstrate the effectiveness of the optimized SSDM on large datasets that are impractical
to process using the unoptimized SSDM. Specifically, we evaluate the optimized SSDM on the
MNIST dataset (LeCun et al., 1998), Fashion-MNIST (Xiao et al., 2017), Isolet (Cole & Fanty,
1991), Adult (Becker & Kohavi, 1996), Landsat (Srinivasan, 1993), and Nursery (Rajkovic, 1989).
In these experiments, the parameter k is set to 0.01 · n for n > 10, 000 and 0.1 · n for n ≤ 10, 000.

Table 7 presents the Misclassification Rate for each dataset. For comparison, we include results for
the unsupervised Diffusion Maps (by using the data kernel D employed in the optimized SSDM,
which has dimensions of k × n) and semi-supervised UMAP. As shown in the table, our SSDM
achieves the best performance on 3 out of the 6 datasets.

Table 8 reports the runtime comparisons. Notably, our optimized SSDM is significantly faster than
semi-supervised UMAP across all datasets.

31

Published as a conference paper at ICLR 2025

Table 7: Evaluation on Large Datasets: Comparison of Diffusion Maps, SSUMAP, and the Opti-
mized SSDM

Dataset Misclassification Rate
Name n d DM SSUMAP SSDM (ours)

MNIST 70,000 784 0.22 ± 0.006 0.046 ± 0.001 0.1 ± 0.003
Fashion-MNIST 70,000 784 0.33 ± 0.016 0.21 ± 0.006 0.25 ± 0.004

Isolet 7797 617 0.147 ± 0.003 0.178 ± 0.005 0.087 ± 0.006
Adult 48842 14 0.211 ± 0.002 0.212 ± 0.001 0.23 ± 0.003

Landsat 6435 36 0.181 ± 0.013 0.127 ± 0.004 0.127 ± 0.007
Nursery 12960 8 0.128 ± 0.03 0.193 ± 0.005 0.082 ± 0.008

Table 8: Runtimes on Large Datasets (in seconds): Comparison of SSUMAP and the Optimized
SSDM

Dataset Runtime
Name n d SSUMAP SSDM (ours)

MNIST 70,000 784 35 8.1
Fashion-MNIST 70,000 784 35 8.35

Isolet 7797 617 7 1.2
Adult 48842 14 27 1.4

Landsat 6435 36 6.3 0.12
Nursery 12960 8 5.5 0.4

(a) Optimized SSDM (b) Unoptimized SSDM

Figure 17: Heatmap visualization of the optimized SSDM kernel using only k = 381 labeled sam-
ples, compared to the unoptimized SSDM kernel utilizing all labeled samples for the Rice dataset.

32

Published as a conference paper at ICLR 2025

G EXTENDED REVIEW AND FUTURE DIRECTIONS

G.1 MULTI-VIEW LEARNING

Multi-view learning utilizes information from multiple representations or perspectives of the same
data to enhance learning performance. These views can originate from different modalities, such
as text, images, or audio, or from different transformations of the same modality (Xu et al., 2013).
Traditional approaches like co-training (Kumar & Daumé, 2011) focus on alternating the training
of classifiers on distinct views, leveraging the mutual information between them to improve perfor-
mance. Canonical Correlation Analysis (CCA) is a foundational method that identifies linear trans-
formations of two views to maximize their correlation in a shared subspace (Hotelling, 1936). Recent
developments in multi-view deep learning have integrated these principles into neural networks, en-
abling models like multi-view autoencoders (Du et al., 2021) to jointly learn from heterogeneous
data representations.

Recent advancements in multi-view learning include the emergence of co-regularization and margin-
consistency algorithms (Zhao et al., 2017). Co-regularization approaches introduce constraints to
ensure the consistency of predictions across views, utilizing methods like multi-view Support Vector
Machines (SVMs) (Li et al., 2004) and multi-view linear discriminant analysis (Kan et al., 2015)
to align feature spaces. Margin-consistency algorithms, on the other hand, enforce agreement on
decision boundaries across views, often leveraging maximum entropy discrimination frameworks
(Zhao et al., 2017). These methods demonstrate the power of multi-view learning in diverse tasks
such as clustering, classification, and transfer learning, where the complementary information from
multiple views significantly enhances performance.

A key challenge in multi-view learning is effectively integrating diverse and sometimes incomplete
views in a scalable manner. Large-scale applications, such as analyzing multi-modal datasets (e.g.,
combining video, audio, and text), demand computationally efficient algorithms. Approaches like
multi-view dimensionality reduction aim to create low-dimensional representations that preserve
the shared structure among views while accounting for unique characteristics.

One branch of multi-view learning is multi-kernel learning (Bach et al., 2004), which combines
multiple kernels, each capturing a specific view or aspect of the data, into a unified framework. By
integrating diverse sources of information, kernel methods provide a flexible and powerful approach
to learning relationships in complex datasets. They are particularly well-suited for multi-view set-
tings because they can model nonlinear relationships and accommodate varying feature spaces be-
tween views. Kernel-based methods often employ techniques like kernel alignment or optimization
of weights across kernels to balance the contributions of different views.

Alternating diffusion (Lederman & Talmon, 2018) is a prominent method within the multi-kernel
learning framework. Our work incorporates elements of multi-view learning by treating labels as
a second view of the data. While we focus on alternating diffusion to integrate label information,
similar strategies can be applied in other multi-view methods to incorporate labels and enhance the
learning process.

G.2 EXTENDED REVIEW OF ALTERNATING DIFFUSION

Alternating Diffusion (AD) (Lederman & Talmon, 2018) extends the Diffusion Maps framework,
and diffusion geometry (Coifman & Lafon, 2006; Lin et al., 2024), to extract the common structure
of two aligned datasets,

{x(1)
i }

n
i=1 , {x(2)

i }
n
i=1.

This technique is particularly useful for analyzing multi-view data where the goal is to disentangle
shared latent structures while suppressing view-specific variability.

The process begins by constructing affinity matrices W(1) and W(2) for the datasets {x(1)
i }ni=1 and

{x(2)
i }ni=1, respectively. The entries of these matrices are computed using a Gaussian kernel:

W(v)(i, j) = exp

(
−
d(x

(v)
i , x

(v)
j)2

ϵ(v)

)
, v ∈ {1, 2},

33

Published as a conference paper at ICLR 2025

where d(·, ·) is a distance metric, and ϵ(v) is the kernel scale parameter for view v. These affinity
matrices encode local pairwise similarities within each dataset.

To construct diffusion operators, the affinity matrices are normalized in two stages. First, a diagonal
matrix D

(v)
1 is computed from the row sums of W(v):

D
(v)
1 (i, i) =

∑
j

W(v)(i, j).

The affinity matrix is then symmetrically normalized to obtain:

K̃(v) = (D
(v)
1)−1W(v)(D

(v)
1)−1.

Next, a second diagonal matrix D
(v)
2 is calculated from the row sums of K̃(v):

D
(v)
2 (i, i) =

∑
j

K̃(v)(i, j).

Finally, the row-stochastic diffusion operator is obtained as:

K(v) = (D
(v)
2)−1K̃(v).

This matrix, K(v), represents the transition probability matrix of a Markov chain on the dataset for
view v.

The alternating diffusion process combines the diffusion operators from the two views. The com-
bined operator, K(1)∩(2), is defined as:

K(1)∩(2) = K(1)K(2).

This operator alternates between propagating information through K(1) and K(2), facilitating the
extraction of shared structures between the datasets.

To extract the shared latent structure, spectral decomposition is performed on K(1)∩(2). The eigen-
vectors corresponding to the largest eigenvalues provide the embedding coordinates:

K(1)∩(2)vj = µjvj , j = 1, 2, . . . , n,

where vj are the embedding vectors, and µj are the eigenvalues. The dominant eigenvectors repre-
sent the smoothest variations that are consistent across both datasets.

In conclusion, Alternating Diffusion extends the Diffusion Maps framework to capture the common
structure between two aligned datasets by using an alternating diffusion process that propagates
information back and forth across the two modalities. This process can be interpreted as diffusion
on two distinct graphs, one for each dataset. In each diffusion step, the kernel corresponds to a
transition matrix on the respective graph, where mass is propagated across the vertices (samples)
based on the kernel’s transition probabilities. As the process alternates between the two kernels, the
mass spreads across both graphs, ensuring that information from both datasets influences each other.
This alternating propagation gradually aligns shared structures while suppressing dataset-specific
variations, resulting in a smooth representation that highlights the common features between the
datasets and effectively extracts the shared latent structure while filtering out modality-specific noise.

G.3 FUTURE WORK

One possible direction for future work is to explore other kernel interpolation schemes for inte-
grating data and label information. While our current method uses a specific approach to combine
the kernels, alternative schemes may provide better performance or adapt more effectively to dif-
ferent datasets. Investigating these alternatives could enhance the flexibility and robustness of the
framework.

Another promising idea is to learn the amplitude of each spectral component (eigenvalue) instead of
relying on the power mechanism we currently use, where the eigenvalues are raised to t and 1 − t.
Our current approach maintains the relative order of the components for any value of t, with the
leading eigenvalues of P and D always remaining dominant. By explicitly learning the eigenvalues,

34

Published as a conference paper at ICLR 2025

it would be possible to adjust the order and influence of components dynamically, potentially leading
to improved performance by tailoring the spectral properties to specific tasks or datasets.

Additionally, extending our multi-view approach to other algorithms, as we have done here with
alternating diffusion, is another avenue worth exploring. By applying the same principles to methods
like multi-view autoencoders, we could enable these approaches to better leverage label information
and enhance their effectiveness in classification, regression, or clustering tasks.

Lastly, as we have demonstrated the effectiveness of our label-driven diffusion in a graph setting,
we believe it could also be beneficial to explore its incorporation in the context of geometric deep
learning. Geometric deep learning methods, which work on non-Euclidean data such as graphs and
manifolds, could further benefit from our approach by capturing complex relationships between data
and labels in a way that respects the underlying geometry of the data.

35

	Introduction
	Related Work
	Background
	Diffusion Maps
	Alternating Diffusion

	Proposed Method
	Theoretical Justification
	Experimental Results
	Toy Problem
	Real Datasets
	Supervised Setting
	Semi-Supervised Setting

	Complexity and Runtime Analysis

	Conclusion
	Algorithms and Block Diagrams
	Algorithms
	Block Diagrams

	Additional Implementation Details
	Theoretical Justification: Proofs and Explanations
	Discussion of Shared Structure Assumption
	Proof of Proposition 1
	Proof of Proposition 2
	Balancing P and D Using t
	Label-Driven Diffusion Illustrative Example

	Additional Experimental Results for the Toy Problem
	Toy Problem Additional Figure
	Comparison with AD Interpolation

	Additional Details and Results for Real Datasets
	Real Datasets
	Complete Results with Standard Deviation
	Comparison Between SDM and SSDM
	Error Rates Across Dimensionality
	Runtime Comparison

	Complexity Analysis and Optimized SSDM Implementation
	Extended Review and Future Directions
	Multi-view Learning
	Extended Review of Alternating Diffusion
	Future Work

