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ABSTRACT
Salient Object Detection (SOD) aims to identify and segment the
most prominent objects in images. Existing methods on SOD utilize
various Transformer-based models for feature extraction. However
due to the scale of training datasets and training methods, these
Transformer-based models still lack performance and generaliza-
tion in segmentation. Segment Anything Model (SAM) is trained
on a large-scale segmentation dataset, which gives it strong gener-
alization and segmentation capabilities. Nonetheless, SAM requires
accurate prompts of target objects, which is unavailable in SOD. Ad-
ditionally, SAM lacks the utilization of multi-scale and multi-layer
information, as well as the incorporation of fine-grained details.
In order to apply SAM to SOD, and address its shortcomings, we
propose aMulti-scale and Detail-enhanced SAM (MDSAM). Specif-
ically, we introduce a Lightweight Multi-Scale Adapter (LMSA),
which allows SAM to learn multi-scale information with few train-
able parameters. Moreover, we propose a Multi-Layer Fusion Block
(MLFB) to comprehensively utilize the multi-layer information from
the SAM’s encoder. Finally, we propose a Detail Enhancement Mod-
ule (DEM) to incorporate SAM with fine-grained details. Experi-
mental results demonstrate the superior performance of our model
on multiple SOD datasets and its strong generalization to other
segmentation tasks. The source code will be publicly available.

CCS CONCEPTS
• Computing methodologies → Interest point and salient
region detections.

KEYWORDS
Segment Anything Model, Salient Object Detection, Adapter, Multi-
scale, Multi-layer, Detail Enhancement

1 INTRODUCTION
The goal of Salient Object Detection (SOD) is to detect and segment
the most prominent regions in an image. SOD plays a crucial role
in several downstream tasks, such as object tracking [61], object
segmentation [45], and person re-identification [38].

In the last decade, Convolutional Neural Networks (CNNs) [6,
24, 39] have achieved outstanding results on SOD. However, SOD
requires sufficient global semantic information, which is challeng-
ing for CNNs due to their limited receptive fields. With the strong
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Figure 1: (a) indicates the process of SAM automatically gen-
erating masks. (b) indicates SAM inference with carefully
selected prompts. (c) shows that our MDSAM infers without
prompt. (d) and (e) indicates SAM with Adapter is unable
to utilize multi-scale and multi-level information. MDSAM
can locate targets more accurately and segment them with
fine-grained details.

capability of global reception, Vision Transformer (ViT) [3] greatly
benefits SOD that requires global object comparisons. Previous
works [32, 34, 55] also use T2T-ViT [28], PVT [46], and Swin Trans-
former [57] for feature extraction. These Transformer-based models
exhibit great performance in classification and detection, which
benefit from their training on the ImageNet [35] dataset with the
classification task. However, due to dataset scale and pretraining
task category, the performance and generalization of the models
on segmentation tasks can be further improved.

Recently, a large segmentation model called Segment Anything
Model (SAM) [2] has been proposed. SAM benefits from more than
1 billion training samples, which grants it powerful generalization
capability in segmentation. As a result, SAM achieves outstanding
performance in various domains [21, 42, 43]. Compared to other
Transformer-based foundation models, SAM is more suitable for
application in segmentation tasks such as SOD. During inference,
SAM requires constructive prompts such as points, boxes, or rough
masks corresponding to the segmentation targets. As illustrated

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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by Fig. 1(a), the automatic-generated mask from SAM is hard to be
used in SOD. As shown in Fig. 1(b), the point prompt requires an
accurate number and placement of points. Even a slight difference
can lead to incorrect results. The box prompt may be ineffective
in certain scenes. Thus, applying SAM to SOD requires carefully
selected prompts from targets. This is improper for SOD since the
ground truth is unavailable during inference. Full fine-tuning is
a method of applying SAM to SOD. However, it may lead to an
excessive number of training parameters, even resulting in a decline
in segmentation results. Previous works have used Adapter [33] to
train large models. Nonetheless, as shown in Fig. 1(d), SAM trained
with Adapter performs poorly in multi-scale scenarios. Further-
more, due to the limitation of the ViT-based encoder and the simple
feature upsampling strategy in the mask decoder, SAM lacks de-
tails and causes coarse segmentation results. Additionally, in neural
networks, low-level information helps the model discriminate the
shape and position of the target, while high-level information aids
in semantic discrimination. SAM directly utilizes the encoder’s
last layer, resulting in the loss of low-level information. Using the
Adapter cannot solve this drawback. Fig. 1(b) illustrates that SAM
encounters inaccurate segmentation and insufficient edges due to
a lack of fine-grained details. As depicted in Fig. 1(d), SAM lacks
the utilization of multi-layer information, leading to the model’s
inability to accurately discern the shape of the targets.

To address these issues, we propose a novel framework called
Multi-scale and Detail-Enhanced SAM (MDSAM). MDSAM trans-
fers SAM to the SOD task while supplying multi-scale information
and fine-grained details. Specifically, we first propose a novel Light-
weight Multi-Scale Adapter (LMSA). LMSA enables SAM training
with fewer parameters while extracting multi-scale information. In
addition, we propose a Multi-Layer Fusion Block (MLFB) to extract
and fuse the outputs from different layers of the SAM’s encoder.
MLFB enables the decoder to fully utilize the multi-layer informa-
tion. Finally, we employ a Detail Enhancement Module (DEM) to
incorporate image details and edges for prediction, which helps
generate precise and detailed segmentation results. MDSAM not
only performs well on SOD but also exhibits superior performance
on other segmentation tasks. This showcases MDSAM inherits the
strong generalization capability of SAM.

Our main contributions are summarized as follows:

• We propose a novel framework for adapting SAM to SOD,
named Multi-scale and Detail-enhanced SAM (MDSAM).
We introduce a Lightweight Multi-Scale Adapter (LMSA)
for learning task-specific information while being training-
efficient and strong in acquiring multi-scale information.

• We comprehensively utilize the multi-layer information from
the SAM’s image encoder by using our proposed Multi-Layer
Fusion Block (MLFB).

• We propose the Detail Enhancement Module (DEM) to in-
troduce fine-grained details to segmentation results.

• We perform Extensive experiments on mainstream datasets
to verify the effectiveness of our MDSAM. Further experi-
ments are conducted to demonstrate the strong generaliza-
tion of our proposed model.

2 RELATEDWORK
2.1 Salient Object Detection
Currently, models for SOD are mainly divided into CNN-based
and Transformer-based approaches. Due to the complexity of some
scenes, which involve objects of various sizes and intricate shapes,
most models consider multi-scale and multi-layer information.
CNN-based models mostly use ResNet [24] as their backbone to
extract multi-scale features. CPD [59] proposes a fast and accurate
framework for SOD. F3Net [22] proposes a novel multi-layer fu-
sion to solve the difference between layers. CAGNet [40] exploits
the nature of multi-layer information to distinguish the salient ob-
ject and suppress the non-salient regions. DFI [18] simultaneously
detects salient objects, edges, and skeletons in an end-to-end uni-
fied framework. GateNet [47] addresses the lack of interference
control between the encoder and the decoder as well as the dispar-
ity in contributions among different encoder blocks. MINet [51]
introduces aggregate interaction modules for feature integration
and self-interaction modules within each decoder unit to enhance
multi-scale feature efficiency and prediction consistency. LDF [23]
improves accuracy by separating the saliency map into body and
detail maps and employing iterative refinement through feature
interaction. MENet [49] employs a novel multi-level hybrid loss and
a multi-scale feature enhancement module to improve accuracy in
complex scenes. Different from the aforementioned, Tracer [30] uti-
lizes EfficientNet [41] and enhances SOD by using attention-guided
tracing modules and an adaptive pixel intensity loss function for im-
proved performance and computational efficiency. However, CNN-
based models lack the perception of long-distance information.

In contrast, Vision Transformer has a global receptive field, mak-
ing it highly effective for SOD task that requires global seman-
tic information. Nonetheless, due to the single-scale issue of ViT,
Transformer-based models also adopt other models as backbones.
VST [34] uses T2T-ViT [28] to capture long-range dependencies
and integrates multi-level features for high-resolution results. Self-
Reformer [55] employs PVT [46] as its backbone and incorporates
global and local context branches to obtain both global semantic and
local detail information. ICON [32] utilizes Swin Transformer [57]
to extract features and enhance the integrity of detected salient
regions by aggregating diverse features and improving feature chan-
nels. BBRF [31] develops a method to enhance SOD by expanding
the receptive fields, which allows for more accurate detection of
objects across various scales, especially those that are unusually
large or small. DC-Net [19] employs a divide-and-conquer strategy
with dual encoders and a novel two-level decoder to enhance SOD
with high efficiency and accuracy.

Despite the impressive performance of these Transformer-based
models on the SOD task, SAM exhibits superior feature extraction
capabilities and robust generalization ability. Consequently, it is
reasonable to transfer SAM for SOD to leverage these strengths.

2.2 Segment Anything Model
SAM [2] is proposed to build a foundation model for image segmen-
tation. It performs remarkably well on many tasks [1, 42]. However,
SAM requires precise prompts, such as points and boxes of the
target. These prompts are difficult to obtain for SOD. Previous
work [34, 55] has chosen to perform full fine-tuning on foundation
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Figure 2: Overall architecture of the proposed MDSAM. It consists of four key components: a SAM encoder with Lightweight
Multi-scale Adapters (LMSA), a multi-layer Multi-Layer Fusion Block (MLFB) that includes Weight Distributors (WD), a SAM
mask decoder, a Detail Enhancement Module (DEM) with Multi-scale Edge Enhancement Module (MEEM).

models in order to transfer it to downstream tasks. Yet, direct full
fine-tuning can lead to an excessive number of training parame-
ters, even resulting in performance degradation. There are some
works that attempt to transfer foundation models with a small num-
ber of trainable parameters. Adapter [33] introduces an efficient
transfer learning approach for NLP by fixing the parameters of the
original network and adding a few trainable parameters, achieving
competitive performance with fewer parameters compared to full
fine-tuning. Prefix-Tuning [27] and LoRA [13] also fix the original
model parameters. Prefix-tuning prepends a sequence of continu-
ous task-specific vectors to the input. LoRA injects trainable rank
decomposition matrices into each layer of the Transformer architec-
ture. Some works [21, 25, 43, 58] also attempt to use these methods
to transfer SAM to downstream tasks.

However, these methods failed to enable SAM to learn multi-
scale andmulti-layer information. Furthermore, due to performance
constraints, ViT-based methods require the downsampling of inputs
when extracting features. This leads to a loss of detailed information.
Additionally, SAM’s simple decoder fails to incorporate detailed
information into features, result in coarse segmentation. Our MD-
SAM uses small training parameters to transfer SAM into SOD
and enable SAM to acquire multi-scale information. Moreover, we
introduce lightweight modules to utilize multi-layer information in
the encoder and add fine-grained details to the final output.

3 METHOD
We propose a novel Multi-scale and Detail-Enhanced SAM (MD-
SAM) for the SOD task. The overall architecture of our proposed
MDSAM is shown in Fig. 2. Specifically, we describe our Light-
weight Multi-Scale Adapter (LMSA) in Sec. 3.1 which reduces pa-
rameters for training and improves the multi-scale capability in
semantic learning. The design of the Multi-Layer Fusion Block

(MLFB) in detail is presented in Sec. 3.2. In Sec. 3.3, we present the
Detail Enhancement Module (DEM). Finally, we formulate the loss
function in Sec. 3.4.

3.1 Lightweight Multi-Scale Adapter
Although SAM performs well on multiple segmentation tasks, the
challenge of providing suitable prompts still limits its direct ap-
plication in SOD, as shown in Fig. 1. One possible solution is to
full fine-tuning SAM. However, the excessive number of trainable
parameters from the SAM’s encoder and insufficient data lead to
unsatisfactory model performance. Adapter [33] and LoRA [13]
are two methods for training large models with few parameters.
Due to the lack of multi-scale and local information, these methods
fail to enable the model to learn sufficient semantic information
for SOD. To resolve these issues, we propose a Lightweight Multi-
Scale Adapter (LMSA) which extracts comprehensive features by
learning multi-scale information and adds depth-wise convolution
at different scales to capture local information. To the best of our
knowledge, we are the first to apply the Pyramid Pooling Mod-
ule (PPM) [16] to acquire multi-scale information for transferring,
and we make further improvements by enhancing the module’s
capability of extracting local information. In this way, our MDSAM
incorporates multi-scale and local information while requiring few
parameters for training.

As shown in Fig. 3, Each block of the SAM’s encoder is com-
posed of a Multi-Head Self-Attention (MHSA) [5], an MLP, and two
normalization layers. It is expressed as follows:

X̂𝑖 = 𝑀𝐻𝑆𝐴(𝐿𝑁 (X𝑖 )) + X𝑖 , (1)

X𝑖+1 = 𝑀𝐿𝑃 (𝐿𝑁 (X̂𝑖 )) + X̂𝑖 , (2)

where X𝑖 ∈ R𝑁×𝐷 is the input of 𝑖-th Transformer block. 𝑁 is the
number of tokens. 𝐷 is the Transformer’s embedding dimension.
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Figure 3: Details of the proposed LMSA.

X̂𝑖 ∈ R𝑁×𝐷 is intermediate output. 𝐿𝑁 denotes Layer Normaliza-
tion [20]. Following the work of 3DSAM-Adapter [15], we add an
LMSA before the first normalization in each Transformer block.

The detailed structure of the LMSA is shown in Fig. 3. Specifically,
for a Transformer block’s input X𝑖 , we first use a linear projection
layer to reduce its dimension :

Xdown
𝑖 = 𝜏 (𝑅𝑒𝐿𝑈 (Xdown (X𝑖 ))), (3)

where Xdown ∈ R𝐷× 𝐷
𝑟 is a linear projection layer to reduce the

number of feature channels. 𝜏 [·] is the reshape operation. After a
ReLU activation function, we reshape the feature into 2d feature
X𝑠
𝑖
∈ R

𝐷
𝑟
×𝑊 ×𝐻 for further spatial information process.

Then, we use Global Average Pooling (GAP) layers to obtain
multi-scale features X𝑠

𝑖, 𝑗
∈ R

𝐷
4×𝑟 ×𝑊𝑗×𝐻 𝑗 , and utilize depth-wise

convolution layers to capture local information.

X𝑠
𝑖, 𝑗 = 𝜙𝑙1×1 (𝐺𝐴𝑃 (X

𝑠
𝑖 )), 1 ≤ 𝑗 ≤ 4, (4)

X̄𝑠
𝑖, 𝑗 = 𝑈𝑃 (𝐷𝑊𝐶𝑜𝑛𝑣 (X𝑠

𝑖, 𝑗 )), (5)

where 𝜙𝑙1×1 contains a convolution layer with 1 × 1 kernels and a
GELU function. 𝐷𝑊𝐶𝑜𝑛𝑣 is composed of a depth-wise convolution
layerwith 3×3 kernels and a GELU function.𝑈𝑃 denotes the bilinear
interpolation for upsampling features to the specific resolution.

By upsampling features of different scales, we fuse feature X̄𝑠
𝑖, 𝑗 ∈

R
𝐷
𝑟
×𝑊 ×𝐻 with the original-scale feature X𝑠

𝑖
that contains local

information after DWConv:

X̄𝑖 = 𝜙𝑙1×1 ( [X̄𝑖,1, X̄𝑖,2, X̄𝑖,3, X̄𝑖,4, 𝐷𝑊𝐶𝑜𝑛𝑣 (X𝑠
𝑖 )]), (6)

where X̄𝑖 ∈ R
𝐷
𝑟
×𝑊 ×𝐻 and [·] is channel-wise concatenation.

Figure 4: Architecture of the proposed MLFB.

Finally, we reshape the feature X̄𝑖 to 1d feature. With a linear pro-
jection layer and residual connection [24], we get the final output
X̄𝑖 ∈ R𝑁×𝐷 of LMSA:

X̄down
𝑖 = Wup (𝜏 (X̄𝑖 )) + X𝑖 , (7)

where Wup ∈ R
𝐷
𝑟
×𝐷 denotes a linear projection layer to restore

the feature dimension.
With LMSA, SAM can be transferred to the SOD task with a small

number of training parameters. Furthermore, compared to Adapter
and LoRA, LMSA can better utilizemulti-scale and local information
with nearly the samemodel parameters, thereby enabling the model
to learn better features.

3.2 Multi-Layer Fuison Block
In the SAM’s encoder, each layer contains different information.
Shallow layers contain more low-level information, while deep lay-
ers contain richer high-level information. High-level information is
rich in semantic content, aiding the model in categorization. Low-
level information includes the shape and position of objects. In the
SOD task, complex scenes are often encountered. Relying solely on
the high-level information from deep layers may not locate objects
accurately. Therefore, leveraging multi-level information is neces-
sary. SAM wastes multi-layer information when directly utilizing
the output from the encoder’s last layer as the mask decoder’s input.
Moreover, the simple concatenation fusion strategy cannot fully
integrate the information from multiple layers. Thus, we propose a
Multi-Layer Fusion Block (MLFB). As shown in Fig. 4, MLFB cal-
culates the attention weights for different layers and obtains their
proportion with Weight Distributor (WD). By using the calculated
proportion, the information on each layer can be fully utilized.

We denote the features of different layers in the SAM’s encoder
as F𝑔 ∈ R𝐷1×𝐻×𝑊 (𝑔 = 3, 6, 9, 12). F𝑐 𝑓 ∈ R𝑁×𝐷1 is generated by a
simple concatenation fusion, which contains cross-layer informa-
tion for weight calculation:

F𝑐 𝑓 = 𝜙1×1 ( [F3, F6, F9, F12]), (8)

where 𝜙1×1 is composed of a convolution layer with 1 × 1 kernels,
a batch normalization, and a ReLU activation function. After ob-
taining F𝑐 𝑓 , We send it to WD and calculate the weight of the final
fusion feature for each F𝑔 :

P̂𝑔 = 𝛿 (𝐺𝐴𝑃 (𝜙1×1 (F𝑔))), 𝑔 ∈ [3, 6, 9, 12], (9)

F̄𝑔 = P̂𝑔 × F𝑔 + F𝑔, (10)
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where 𝛿 denotes the Sigmoid function. P̂𝑖 ∈ R𝐷1×1 is the weight of
each F𝑔 . Finally, we obtain the integrated feature F𝑓 ∈ R𝐷1×𝐻×𝑊

with weighted multi-layer feature:

F𝑓 = F̄3 + F̄6 + F̄9 + F̄12 . (11)

After MLFB, F𝑓 will be used as image embedding for the mask
decoder. We remove the last IoU scores branch of the mask decoder
and apply deep supervision for its intermediate output.

Unlike the original SAM, the features after passing through the
MLFB module utilize multi-layer information. And the low-level
and high-level information from encoder are fully fused. With the
assistance of LMSA and MLFB, the model sufficiently leverages
multi-scale and multi-level information. This greatly aids SAM’s
application in the SOD task.

3.3 Detail Enhancement Module
Despite the introduction of LMSA and MLFB aids SAM in precisely
localizing targets and obtaining shapes, there are still some remain-
ing issues. The ViT structure in SAM’s encoder employs a 16 × 16
patch embedding strategy, which loses detailed information at high
resolution. Moreover, the interpolate upsampling strategy in the
SAM decoder has no detail restored, which leads to poor results
quality. Thus the details and edges in SAM are not sufficiently seg-
mented. To generate a mask with more detailed information, we
propose a Detail Enhancement Module (DEM), which enhances
fine-grained details at the input image resolution scale.

As shown in Fig 5, in DEM, there is a primary branch and an
auxiliary branch. The primary branch upsamples features from the
mask decoder output to the original input resolution. The auxiliary
branch extracts fine-grained detail information from the original
resolution image and adds it to the features in the primary branch.
However, directly extracting details at the image input resolution
would lead to excessive computation, slowing down model infer-
ence speed. Therefore, a Multi-scale Edge Enhancement Module
(MEEM) is proposed. In MEEM, we use 3 × 3 average pooling and
1× 1 convolution to replace 3× 3 convolutions for the extraction of
detailed information. Additionally, we utilize Edge Enhancer (EE)
to strengthen edges in the feature maps.

In DEM, we first concatenate the mask decoder feature F𝑚 and
the last layer of encoder feature F𝑑 , then use a 1 × 1 convolution
block to carry out a simple fusion. We progressively upsample the
features to the input resolution by using bilinear interpolation and
3 × 3 convolution blocks:

F𝑠𝑖 = 𝜙1×1 ( [F𝑑 , F𝑚]), (12)

F𝑐 = 𝜙3×3 (𝑈𝑃×2 (𝜙3×3 (𝑈𝑃×2 (F𝑠𝑖 )))) (13)
where 𝑈𝑃×2 denotes 2× bilinear interpolation upsampling. 𝜙3×3
contains a convolution layer with 3 × 3 kernels, a batch normal-
ization, and a ReLU function. However, the coarse feature F𝑐 lacks
detail and edge information. Thus, we proposed a MEEM to utilize
the input image to incorporate fine-grained details. Specifically, for
an input image F𝑚 , we apply a 3×3 convolution to extract the local
features of images:

F𝑖 𝑓 = 𝜙3×3 (F𝑚), (14)
where F𝑖 𝑓 ∈ R𝐷2×𝐻×𝑊 . By the proposed MEEM, we extract edge
information from the image at multiple scales obtained by different

Figure 5: Illustration of the proposed DEM.

receptive fields, further enhancing the edge information of the
features. To reduce the computational complexity, we use average
pooling to expand the receptive field. The formula representation
of the MEEM is as follows:

F𝑒0 = 𝜙1×1 (F𝑖 𝑓 ), (15)

F𝑒𝑡+1 = 𝐴𝑃 (𝜙 ′1×1 (F
𝑒
𝑡 )), (0 ≤ 𝑡 ≤ 2), (16)

where 𝐴𝑃 denotes the Average Pooling with 3 × 3 kernels. 𝜙 ′1×1
denotes 1 × 1 convolution with batch normalization and sigmoid
function. F𝑒𝑡 ∈ R𝐷2×𝐻×𝑊 is the features with different scale. Then,
we introduce the Edge Enhancer (EE) module to strengthen the
detailed information at each scale:

F𝑒𝑒𝑐 = 𝐸𝐸 (F𝑒𝑐 ), (1 ≤ 𝑐 ≤ 3), (17)

where F𝑒𝑒𝑐 ∈ R𝐷2×𝐻×𝑊 is the enhanced features with edge infor-
mation. The operation 𝐸𝐸 module is shown in the top-right part of
Fig. 5, which can be represented as follows:

Fedge
𝑐 = F𝑒𝑐 −𝐴𝑃 (F𝑒𝑐 ), (18)

F𝑒𝑒𝑐 = 𝜙 ′1×1 (F
edge
𝑐 ) + F𝑒𝑐 , (19)

where Fedge
𝑐 ∈ R𝐷2×𝐻×𝑊 . Then, we fuse these features with simple

concatenation and a convolution layer:

F𝑚𝑒 = 𝜙1×1 ( [F𝑒0, F
𝑒𝑒
1 , F𝑒𝑒2 , F𝑒𝑒3 ]), (20)

where F𝑚𝑒 ∈ R𝐷2×𝐻×𝑊 is the feature output of the MEEM. In this
way, we obtain feature F𝑚𝑒 that includes both the fine-grained de-
tails and the multi-scale edge information. We use these features to
complement the missing information in feature F𝑐 . After concatena-
tion, we apply two 3× 3 convolution blocks and a 1× 1 convolution
block to obtain the final result F𝑓 :

F𝑑𝑒 = [F𝑐 , F𝑚𝑒 + F𝑖 𝑓 ], (21)

F𝑓 = 𝜙
𝑓

1×1 (𝜙3×3 (𝜙3×3 (F𝑑𝑒 ))), (22)

where 𝜙 𝑓

1×1 is a 1 × 1 convolution layer for output.
In DEM, the most crucial role for extracting fine-grained infor-

mation for the results is the auxiliary branch. With the assistance
of MEEM, MDSAM can quickly and efficiently extract rich detail
information containing edges. By combining the two branches, the
issue of lacking details in SAM has been resolved.
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Table 1: Quantitative comparison between our method and other SOTA methods. The best, second best, and third best results
are highlighted in red, green, and blue, respectively.

Year Method Input Size Params (M) FLOPs (G) FPS DUTS-TE DUT-OMRON HKU-IS ECSSD PASCAL-S
𝑀𝐴𝐸 𝐹𝑚𝑎𝑥

𝛽
𝑆𝑚 𝐸𝑚 𝑀𝐴𝐸 𝐹𝑚𝑎𝑥

𝛽
𝑆𝑚 𝐸𝑚 𝑀𝐴𝐸 𝐹𝑚𝑎𝑥

𝛽
𝑆𝑚 𝐸𝑚 𝑀𝐴𝐸 𝐹𝑚𝑎𝑥

𝛽
𝑆𝑚 𝐸𝑚 𝑀𝐴𝐸 𝐹𝑚𝑎𝑥

𝛽
𝑆𝑚 𝐸𝑚

CNN-Based Methods
2019 CPD [59] 352 × 352 47.84 17.82 123 0.043 0.972 0.869 0.898 0.056 0.818 0.825 0.847 0.034 0.828 0.905 0.938 0.037 0.946 0.918 0.942 0.071 0.876 0.848 0.882
2020 F3Net [22] 352 × 352 25.54 16.48 167 0.035 0.905 0.888 0.920 0.053 0.841 0.838 0.864 0.028 0.943 0.917 0.952 0.033 0.957 0.924 0.948 0.061 0.892 0.861 0.898
2020 CAGNet-L [40] 480 × 480 - - - 0.029 0.898 0.897 0.939 0.047 0.818 0.845 0.882 0.024 0.940 0.923 0.961 0.026 0.950 0.930 0.959 0.063 0.878 0.870 0.917
2020 DFI [18] 224 × 224 29.61 11.31 102 0.039 0.896 0.887 0.912 0.055 0.818 0.839 0.865 0.031 0.934 0.920 0.951 0.035 0.949 0.927 0.924 0.065 0.885 0.857 0.861
2020 GateNet-X [47] 384 × 384 128.63 162.13 130 0.035 0.908 0.897 0.916 0.051 0.847 0.849 0.865 0.029 0.946 0.925 0.947 0.035 0.957 0.929 0.944 0.064 0.892 0.865 0.895
2020 MINet-R [51] 320 × 320 162.38 87.10 62 0.037 0.884 0.884 0.917 0.056 0.831 0.833 0.860 0.029 0.942 0.919 0.952 0.033 0.954 0.925 0.950 0.064 0.881 0.856 0.896
2020 LDF [23] 352 × 352 25.15 15.57 177 0.034 0.905 0.892 0.925 0.052 0.835 0.839 0.865 0.028 0.943 0.919 0.953 0.034 0.956 0.924 0.948 0.060 0.887 0.863 0.903
2022 TE3 [30] 384 × 384 14.02 3.23 24 0.028 0.909 0.899 0.943 0.046 0.840 0.848 0.881 0.025 0.944 0.924 0.961 0.029 0.954 0.929 0.958 0.052 0.896 0.871 0.916
2022 TE5 [30] 512 × 512 31.30 6.06 15 0.026 0.923 0.910 0.948 0.045 0.850 0.856 0.887 0.022 0.950 0.930 0.963 0.027 0.959 0.934 0.958 0.050 0.900 0.879 0.921
2022 TE7 [30] 640 × 640 66.27 10.17 9 0.023 0.932 0.920 0.954 0.045 0.849 0.856 0.883 0.021 0.953 0.934 0.967 0.026 0.962 0.936 0.959 0.047 0.906 0.883 0.928
2023 MENet [49] 354 × 354 - - - 0.028 0.918 0.905 0.938 0.045 0.845 0.850 0.871 0.023 0.951 0.927 0.960 0.021 0.957 0.928 0.951 0.053 0.897 0.872 0.910

Transformer-Based Methods
2021 VST [34] 224 × 224 44.48 23.18 70 0.037 0.895 0.896 0.919 0.058 0.836 0.850 0.871 0.029 0.946 0.928 0.952 0.033 0.954 0.932 0.951 0.061 0.882 0.872 0.902
2022 SelfReformer [55] 224 × 224 90.70 12.83 62 0.027 0.920 0.911 0.943 0.043 0.853 0.861 0.884 0.024 0.949 0.931 0.960 0.027 0.959 0.936 0.957 0.051 0.902 0.881 0.919
2022 ICON-S [32] 384 × 384 92.15 52.80 69 0.025 0.924 0.917 0.954 0.043 0.862 0.869 0.900 0.022 0.954 0.935 0.968 0.023 0.962 0.914 0.968 0.048 0.903 0.885 0.924
2023 BBRF [31] 352 × 352 74.00 67.02 62 0.025 0.911 0.909 0.949 0.044 0.839 0.861 0.896 0.020 0.949 0.932 0.969 0.022 0.961 0.939 0.969 0.049 0.887 0.878 0.923
2023 DC-Net-S [19] 384 × 384 509.61 211.27 24 0.023 0.932 0.925 0.952 0.039 0.868 0.875 0.898 0.021 0.957 0.941 0.966 0.023 0.968 0.947 0.965 0.049 0.904 0.887 0.917
2023 SAM [2] 512 × 512 89.94 103.17 46 0.030 0.921 0.909 0.937 0.044 0.865 0.869 0.896 0.022 0.956 0.935 0.965 0.025 0.968 0.944 0.964 0.061 0.897 0.866 0.902
2024 MDSAM 384 × 384 100.21 66.23 50 0.025 0.934 0.919 0.950 0.040 0.886 0.881 0.913 0.020 0.962 0.941 0.970 0.023 0.972 0.946 0.965 0.052 0.912 0.880 0.918
2024 MDSAM 512 × 512 100.21 123.44 35 0.024 0.937 0.920 0.949 0.039 0.887 0.878 0.910 0.019 0.963 0.941 0.969 0.021 0.974 0.948 0.967 0.052 0.907 0.882 0.917

Figure 6: Visual comparison of saliency maps output from MDSAM and 6 other methods. MDSAM is with a 512 × 512 input
resolution. MDSAM* is with a 384 × 384 input resolution.

3.4 Loss Function
Our loss functions are composed of the Binary Cross Entropy Loss,
the IoU loss, and the L1 loss, which are adopted in previous meth-
ods [4, 30, 48]. However, only supervising F𝑓 will cause the model
excessive focus on DEM. Thus We add the same losses supervision
to F𝑚 . The total loss of MDSAM is formulated as follows:

L(S, S𝑔𝑡 ) = L𝐵𝐶𝐸 + L𝐼𝑜𝑈 + L𝐿1, (23)

L𝑡𝑜𝑡𝑎𝑙 = L𝑓 (S𝑓 , S𝑔𝑡 ) + L𝑚 (S𝑚, S𝑔𝑡 ) . (24)

4 EXPERIMENT
4.1 Experiment Setting
Datasets.We train our proposed MDSAM on DUTS-TR [29] (10533
images), and evaluate it on five SOD benchmark datasets, including
DUTS-TE [29] (5019 images), DUTS-OMRON [7] (5168 images),
HKU-IS [26] (4447 images), ECSSD [37] (1000 images) and PASCAL-
S [50] (850 images).

Metrics.We evaluate four widely-used metrics and compare our
results with state-of-the-art models. Following previous works, we

calculate the Mean Absolute Error (𝑀𝐴𝐸) [14], the max F-measure
(𝐹𝑚𝑎𝑥
𝛽

) [8], the S-measure (𝑆𝑚) [12] and themean Enhanced-alignment
Measure (𝐸𝑚) [11] for evaluation.

Implementation Details.We use an NVIDIA A100 GPU with
80 GB of memory to train our model. For initialization, we load the
weights of the image encoder and mask decoder from the SAM-B
model. And the rest of MDSAM is initialized randomly. We selected
512 × 512 and 384 × 384 as the model inputs and set the batch sizes
to 16 and 32, respectively. We train the model using the AdamW
optimizer with a weight decay of 1𝑒−4. We freeze SAM’s encoder
and set the learning rate to 5𝑒−5 for the rest of the pre-trained
weights. For our proposed modules, we set the learning rate to
5𝑒−4. We employ a warm-up period of 5 epochs and train until the
maximum of 80 epochs.

4.2 Comparision to the State-of-the-art Methods
We compare our proposed MDSAM with 15 other models, includ-
ing CPD [59], F3Net [22], CAGNet [40], DFI [18], GateNet [47],
MINet [51], LDF [23], ICON [32], TE [30], MENet [49], VST [34],
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Table 2: Ablation studies of the LMSA. * denotes the number
of parameters for SAM’s mask decoder

Method
Trainable DUTS-TE DUT-OMRON

Parameters (M) 𝑀𝐴𝐸 𝐹𝑚𝑎𝑥
𝛽

𝑆𝑚 𝑀𝐴𝐸 𝐹𝑚𝑎𝑥
𝛽

𝑆𝑚

Full fine-tuning 83.43 + 3.51* 0.030 0.921 0.909 0.044 0.865 0.869
Adapter [33] 7.09 + 3.51* 0.028 0.923 0.915 0.045 0.866 0.871
LoRA [13] 7.09 + 3.51* 0.028 0.924 0.914 0.044 0.864 0.872
LMSA 7.15 + 3.51* 0.027 0.927 0.917 0.043 0.872 0.874

Figure 7: Visual comparison of four SAM training strategies.

SelfReformer [55], DC-Net [19], BRRF [31], SAM [2]. In our experi-
ment, SAM uses the original design and full fine-tuning on SOD.
For a fair comparison, the saliency maps are either provided by
authors or generated by their released pre-trained model. And all
metrics are calculated by the same tool.
Quantitative Evaluation. Table. 1 and Table. 2 shows the quanti-
tative results of the compared methods. MDSAM in 512× 512 input
resolution achieves the best results in DUTS-OMRON, HKU-IS, and
ECSSD. Furthermore, MDSAM demonstrates high competitiveness
on the DUTS as well. Although MDSAMmay exhibit subpar perfor-
mance on the PASCAL-S dataset, it achieves the best overall results.
At the 384 × 384 input resolution, MDSAM attains the best overall
performance around similar resolutions. In Table. 1 and Table. 2,
SAM is fully fine-tuned at a resolution of 512 × 512. Due to the
lightweight designs of LMSA, MLFB, and DEM, it can be observed
that compared to the original SAM, MDSAM only slightly increases
the model parameters. At the same resolution, MDSAM’s inference
speed also only experiences a slight decrease. Moreover, when MD-
SAM infers at a resolution of 384 × 384, it outperforms SAM at a
resolution of 512 × 512 in both inference speed and accuracy.
Qualitative Evaluation. We selected four representative images
for comparison. The quantitative results in Fig. 6 illustrate that in
complex scenarios, MDSAM can accurately locate objects of vari-
ous sizes and fully recognize the shape of objects. Furthermore, the
results of our proposed MDSAM display more fine-grained details
and accurate edges than other methods.

4.3 Ablation Study
To verify the effectiveness of our proposed modules, we conduct
ablation studies with an input resolution of 512 × 512.
Effectiveness of LMSA. We conduct experiments on the original

Table 3: Ablation studies of our proposed module. MLFB*
indicates using F𝑐 𝑓 as the output of MLFB. DEM* indicates
delete MEEM from DEM. The best scores are marked in bold.

Method
DUTS-TE DUT-OMRON

𝑀𝐴𝐸 𝐹𝑚𝑎𝑥
𝛽

𝑆𝑚 𝑀𝐴𝐸 𝐹𝑚𝑎𝑥
𝛽

𝑆𝑚

(a) Full fine-tuning 0.030 0.921 0.909 0.044 0.865 0.869
(b) SAM+LMSA 0.027 0.927 0.917 0.043 0.872 0.874

(c) SAM+LMSA+MLFB* 0.027 0.928 0.918 0.042 0.871 0.873
(d) SAM+LMSA+MLFB 0.025 0.931 0.920 0.041 0.876 0.878

(e) SAM+LMSA+MLFB+DEM* 0.025 0.932 0.921 0.041 0.878 0.877
(f) SAM+LMSA+MLFB+DEM 0.024 0.937 0.920 0.039 0.887 0.878

Figure 8: Visual comparison of our proposed modules.

SAM structure which only deletes the prompt encoder. Follow-
ing the same structures of [43, 58], which transfer SAM to down-
stream segmentation tasks, we introduce Adapter and LoRA to SAM
for transferring to SOD. We keep the parameters of the Adapter,
LoRA similar to LMSA. As shown in Table. 3, it can be observed
that LMSA, with trainable parameters in SAM’s encoder similar
to Adapter and LoRA but significantly fewer than full fine-tuning,
results in improved performance. The visual comparison in Fig. 7
further illustrates that the utilization of multi-scale information by
LMSA enables the model to acquire sufficient semantic information.
Consequently, it can accurately locate objects of varying sizes and
quantities in complex scenarios.
Effectiveness of MLFB. As the results shown in Table 4’s 1-3 rows
when we only use F𝑐 𝑓 (which is from a naive concatenation fusion),
the performance improvement is marginal. This indicates that in-
sufficient fusion can introduce additional noisy information to the
features, thereby limiting the performance of the model. However,
when we employ MLFB for fusion, there is a significant improve-
ment compared to the absence of a fusion strategy. As shown in Fig.
8, the simple concatenation fusion strategy may confuse the model,
leading to incorrect judgments. Compared to naive concatenation
fusion and no fusion module, MLFB better recognizes the shape
and contour of the entire object. This demonstrates that multi-layer
fusion ensures the full utilization of information from each layer.
Effectiveness of DEM. The validation results for the DEMmodule
and its MEEM component are shown in Table 4’s 4-5 rows. The
use of DEM without the MEEM module leads to slightly improved
model performance, but the model still lacks sufficient edge in-
formation. However, incorporating the MEEM module results in
the strongest model performance, demonstrating that the use of
MEEM within the DEM enables the model to capture more detailed
information. Fig. 8 illustrates that with DEM containing MEEM,
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Table 4: Performance comparison between our method and other SOD and COD methods on COD10K, CAMO, and NC4K
datasets. The best, second best, and third best results are highlighted in red, green, and blue, respectively. MDSAM is with a
512 × 512 input. MDSAM* is with a 384 × 384 input.

Year Method COD10K NC4K CAMO
𝑀𝐴𝐸 𝐹𝑚

𝛽
𝑆𝑚 𝐸𝑚 𝑀𝐴𝐸 𝐹𝑚

𝛽
𝑆𝑚 𝐸𝑚 𝑀𝐴𝐸 𝐹𝑚

𝛽
𝑆𝑚 𝐸𝑚

Salient Object Detection
2020 F3Net [22] 0.051 0.593 0.739 0.795 0.070 0.689 0.767 0.793 0.109 0.616 0.711 0.741
2020 MINet-R [51] 0.042 0.657 0.770 0.859 0.056 0.764 0.812 0.887 0.090 0.691 0.748 0.838
2021 VST [34] 0.042 0.653 0.781 0.837 0.050 0.771 0.831 0.877 0.076 0.738 0.787 0.838

Camouflaged Object Detection
2021 MGL-R [36] 0.035 0.711 0.814 0.852 0.052 0.782 0.833 0.867 0.088 0.726 0.775 0.812
2021 C2FNet [54] 0.036 0.723 0.813 0.890 0.049 0.795 0.838 0.897 0.080 0.762 0.796 0.854
2021 SINet-v2 [10] 0.037 0.718 0.815 0.887 0.048 0.805 0.847 0.903 0.070 0.782 0.820 0.882
2022 BSA-Net [17] 0.034 0.738 0.818 0.891 0.048 0.808 0.841 0.897 0.079 0.763 0.794 0.851
2022 BGNet [53] 0.033 0.753 0.831 0.901 0.044 0.820 0.851 0.907 0.073 0.789 0.812 0.870
2022 ZoomNet [52] 0.029 0.766 0.838 0.888 0.043 0.818 0.853 0.896 0.066 0.794 0.820 0.878
2023 FEDER [9] 0.031 0.751 0.822 0.900 0.044 0.824 0.847 0.907 0.071 0.781 0.802 0.867
2023 FSPNet [60] 0.026 0.769 0.851 0.895 0.035 0.843 0.879 0.915 0.050 0.830 0.856 0.899
2024 MDSAM* 0.028 0.778 0.839 0.905 0.040 0.837 0.864 0.910 0.056 0.822 0.841 0.888
2024 MDSAM 0.025 0.803 0.862 0.921 0.037 0.850 0.875 0.921 0.053 0.834 0.852 0.903

Figure 9: Visual comparison of output from our model with 6 other methods. MDSAM is with a 512 × 512 input resolution.
MDSAM* is with a 384 × 384 input resolution.

the model obtains more fine-grained details and segments precisely.

4.4 Model Generalization
SAM exhibits strong generalization capabilities. Our MDSAM not
only adds multi-scale, multi-layer information, and fine-grained
detail to SAM but also retains the model’s generalization ability.
We demonstrated this in experiments on Camouflaged Object De-
tection (COD). Unlike SOD, which aims to find salient objects, COD
focuses on detecting objects that are difficult to detect in scenes.
COD10K [10] contains 5,066 camouflaged, 1,934 non-camouflaged,
3000 background images. CAMO [44] contains 1,250 camouflaged
and 1,250 non-camouflaged images. NC4K [56] contains 4,121 cam-
ouflaged images. We employed a training strategy similar to [60].
We train MDSAM with all images containing camouflaged objects
in the COD10K training dataset and CAMO training datasets. We
test MDSAM on the test dataset. We compared our MDSAM with
SOD models F3NET [22], MINet [51], VST [34], and COD models
C2FNet [54], SINetv2 [10], BSA-Net [17], BGNet [53], ZoomNet [52],

and FSPNet [60]. we use four metrics for validation. Unlike SOD,
we replaced the max F-measure (𝐹𝑚𝑎𝑥

𝛽
) with the mean F-measure

(𝐹𝑚
𝛽
). As shown in Table. 5, our MDSAM achieves comparable per-

formance on the COD task. In qualitative evaluation, as shown in
Fig. 9, our MDSAM demonstrates more precise localization and
fine-grained details. In summary, MDSAM not only performs ex-
cellently on SOD tasks but also exhibits outstanding performance
on COD tasks, demonstrating our model’s excellent generalization
capabilities.

5 CONCLUSION
In this paper, we propose MDSAM for the SOD task. By introducing
LMSA into SAM’s encoder, we transfer SAM to SOD and enable
the model to learn multi-scale information. Furthermore, we utilize
the MLFB to fuse the different layers of SAM’s encoder effectively.
To address the issue of lacking fine-grained details in SAM, we
propose DEM. Experimental results demonstrate the effectiveness
and strong generalization of our approach.
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