Table 1: The FPS of PolyDiffuse counts both the MapTR proposal generator and the GS-DM. The running time in this table is measured on a single Nvidia RTX A5000 GPU. The PolyDiffuse here is retrained during rebuttal and has a slightly better performance than Table.2 of the main paper.

Matching Criterion \rightarrow					Chamfer distance				+ Ordered angle distance				
Method	Stages	Steps	FPS	$\overline{AP_p}$	AP_d	AP_b	mAP	AP_p	AP_d	AP_b	mAP		
MapTR	1	1	14.3	55.8	60.9	61.1	59.3	46.1	43.4	41.9	43.8		
+PolyDiffuse	2	2	6.3	56.8	59.8	60.9	59.2	50.3	48.2	44.3	47.6		
+PolyDiffuse	2	5	4.8	58.1	59.7	61.2	59.6	51.8	49.5	45.4	48.9		
+PolyDiffuse	2	10	3.4	58.2	59.7	61.3	59.7	52.0	49.5	45.4	49.0		

Table 2: The FPS of PolyDiffuse counts both the RoomFormer proposal generator and the GS-DM. The running time is measured with a single Nvidia RTX A5000 GPU. The same PolyDiffuse model is used as the Table.1 of the main paper.

Evaluation Le	Room			Corner			Angle					
Method	Stages	Steps	FPS	Prec.	Rec.	F1	Prec.	Rec.	F1	Prec.	Rec.	F1
RoomFormer	1	1	29.9	96.3	96.2	96.2	89.7	86.7	88.2	85.4	82.5	83.9
+PolyDiffuse	2	2	11.7	96.9	96.4	96.6	90.3	87.1	88.7	85.8	82.8	84.3
+PolyDiffuse	2	5	7.1	98.5	97.9	98.2	92.5	89.0	90.7	90.3	86.9	88.6
+PolyDiffuse	2	10	4.4	98. 7	98.1	98.4	92.8	89.3	91.0	90.8	87.4	89.1

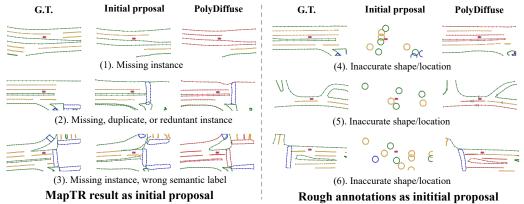


Figure 1: Failure examples of PolyDiffuse on the HD mapping task. We mark a predicted map element by red color if it is a true positive under both the Chamfer distance and the order-aware angle distance matching criteria. The thresholds used here are 1.0m and 10° , respectively. See the text in the global response for discussions and analyses.

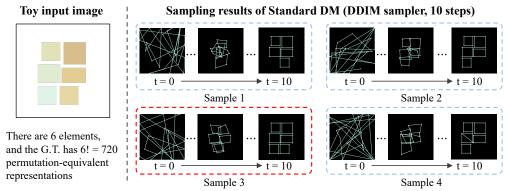


Figure 2: A simple toy experiment of using a standard DM to fit a single data sample with 6 elements. Four sampling results with *different initial noises* are shown. The DDIM sampler is used with 10 denoising steps. Only one of the four samples (*i.e.*, Sample 3) gets the correct final result due to the challenges induced by the set ambiguity, as explained in the main paper.