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A APPENDIX

A.1 EXPERIMENTAL SETUP

Our numerical implementation utilized the PyTorch framework and the Adam optimizer with a base
learning rate of 0.001, which decays by 0.1 after each training epoch. All presented results were
obtained using an MLP with three hidden layers, each containing 300 hidden nodes, and activation
parameters drawn from a uniform distribution with support between 0 and 1. The training and testing
processes were executed on a single 24GB NVIDIA RTX A6000 GPU. For performance evaluation,
we used Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) for
images, and Intersection over Union (IoU) for occupancy fields

A.2 ADDITIONAL EXPERIMENTS

A.2.1 IMAGE SUPER RESOLUTION

As the learning process of an INR enables the discovery of a continuous functional mapping from
low-dimensional spatial coordinates to high-dimensional signal space, one gains the ability to query
the learned representation as needed. Consequently, unlike grid-based image representations, this
representation becomes decoupled from the spatial resolution of the image, allowing for image
super-resolution through interpolation of the learned representation.

For the purpose of demonstrating image super-resolution, we selected two images with different
levels of detail complexity. The first, referred to as the ”boy image” from the Set 14 Dataset (git), is a
dynamic image that contains sharp frequency contents throughout the image, which could potentially
challenge the detail retrieval capabilities of super-resolution. The second image, a woman, where
sharp frequency details are only concentrated primarily around facial features, offering a localized
test for the super-resolution process (See figure 8). Both images were downsampled by a factor of
two and then used to train the INR. The trained INR, unconstrained by spatial resolution, was then
used to infer high-resolution images.

The performance of image super-resolution demonstrates the generalizability of an INR. As evident
from the results, AINR consistently exhibits not only the best PSNR and SSIM values across both
cases but also the most visually coherent result, irrespective of the complexity of the image even
with randomly initialized activation function parameters, when compared to existing INRs. Among
the INRs, WIRE shows a notable deficiency in generalizing to a large set of unseen coordinates
during testing, particularly evident in complex images. For example, in the case of the ”boy im-
age,” WIRE struggles to generalize the down-scaled image’s implicit mapping. When attempting
super-resolution, WIRE introduces a significant number of random values for unseen coordinates,
highlighting its limitations in handling images with varying complexity levels. Conversely, in the
”women image,” WIRE demonstrates a more reasonable representation. A simillar situation can
be seen from both GAUSS and MFN. Therefore, indicating a dependency of WIRE, GAUSS, and
MFN’s super-resolution capabilities on the detailedness of an image. These methods tend to excel
with images where details are localized, such as the ”women image,” but fail with highly detailed
images like the ”boy image,” revealing the unreliability of their learned implicit neural representa-
tions.

A closer examination of SIREN’s super-resolution images reveals a learned low-passed representa-
tion, missing high-frequency components in the decoded high-resolution image. In contrast, AINR
exhibits unparalleled performance in all scenarios tested, confirming the robustness and reliability of
its learned representation. The performance of AINR is consistent across different types of images,
establishing it as the only architecture capable of learning a reliable, continuous representation of
images. These findings further corroborate our hypothesis: an INR equipped with an appropriately
sequenced activation framework learns a superior representation than a fixed sequence of activations
that depends on the given signal.

A.2.2 EDGE DETECTION

INRs are characterized by their inherent ability to encode signals in an implicit manner, where a key
attribute of a generalized INR lies in its ability to undertake tasks which are typically reserved for
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Figure 8: Image super resolution capabilities of AINR. The top row showcases super resolution
results for the ”boy image,” where it contains a rapidly varing dynamic content throughout the image,
while the bottom row depicts a woman’s picture with localized frequencies around the face region.
AINR emerges as the sole INR consistently delivering the highest PSNR and SSIM scores for both
cases, showcasing its superiority in learned implicit neural representation.

explicit representations. With the explict signal representations, especially with images, the spatial
filters like Sobel, Gaussian, Canny, etc enable the extraction of edges. This process is essential for
activities like identifying the boundaries of objects, detecting text, or recognizing facial features, all
of which rely significantly on precise edge detection (Ziou et al., 1998). Even though it’s possible
to obtain edge maps from an INR through its decoded outputs, INRs provide the benefit of repre-
sentations that are learned and differentiable. Therefore, an INR must not only precisely capture the
signal but also facilitate the retrieval of its gradient data. For an INR to efficiently function as an
edge detector, an INR requires to encode pixel-level relationships within its weights and biases.

The capabilities of extracting edge maps using INRs become evident when applied to an image
which has clear visual edges, like the Monarch picture from the Set 5 Dataset (git). To identify
the possibility of edge detection capabilities of INRs, initially, the image representation has been
learned through training the INR. Thereafter, the gradient operator is utilized between this learned
model and the coordinates used during training. Figure 9 illustrates the RGB image of the Monarch
alongside its edge maps derived from INRs.

AINR stands out by providing the cleanest and most well-defined edge map, identifying necessary
edges with minimal false edge identifications. Among other INRs, while MFN can identify edges,
its edge map often contains excessive texture content, potentially leading to false edge detection.
GAUSS on the other hand, produced smooth edge maps, which can diminish the true edge signal and
result in a less reliable representation. In contrast, AINR preserves intricate patterns, offering a more
accurate portrayal of the butterfly’s natural markings. SIREN also demonstrates its effectiveness
as an edge detector, leveraging its built-in capabilities for identifying edges. However, even in the
absence of such inherent advantages, AINR excels in detecting edges, highlighting its proficiency in
capturing complex patterns and delivering precise representations. Therefore, AINR showcases its
effectiveness as a reliable edge detector compared to existing state-of-the-art INRs.

A.3 HIGH HREQUENCY ENCODING CAPABILITIES

A straightforward method to evaluate the high-frequency encoding capabilities of INRs are by as-
sessing their effectiveness in representing sharp frequencies. This can be achieved by examining a
simple image comprised solely of sharp transitions, where the abrupt color changes in the spatial
domain correspond to high-frequency components in the frequency domain.

For this experiment, we selected the image displayed on the left side of figure 10. INRs were then
trained on this image. Once each INR had learned the implicit representation, it was decoded by in-
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Figure 9: AINR’s edge detection capabilities: Edge maps obtained through applying the gradient
operator on the learned representation.

putting the corresponding coordinates. Subsequently, we obtained normalized error plots comparing
the ground truth with the decoded representations.

Figure 10: Ability to encode high frequencies in INRs. The results present normalized error plots
obtained after training each INR on the ground truth image. It is evident that AINR exhibits the
lowest error among the INRs when encoding signals into their weights and biases. Notably, it excels
in encoding high frequencies exceptionally well compared to the other INRs as AINR is tailored
to the given signal. Conversely, WIRE and SIREN demonstrate errors not only in encoding high-
frequency content but also in constant color areas.

As illustrated in figure 10, AINR exhibits the smallest error margin between the decoded image and
the ground truth, in comparison to other models such as SIREN and WIRE, which demonstrate no-
ticeable errors even in areas of uniform color. This outcome distinctly highlights AINR’s superior
capability in accurately encoding high-frequency components. Such precision in representation val-
idates the underlying hypothesis of AINR in frequency domain perspective as well: the sequence of
activations within an INR should adapt based on the characteristics of the input signal.

A.4 EXPLANATIONS

A.4.1 PSEUDO CODE OF AINR

For enhanced understanding of AINR, we provide its pseudocode in algorithm 1. It’s important to
highlight that AINR offers the flexibility to both expand and condense its dictionary. This means
elements can be added to or removed from AINR’s dictionary as needed. For example, if we remove
all activation atoms except for the Gabor Wavelet, AINR transforms into WIRE (Without WIRE’s
pre-optimized parameters). This capability demonstrates that AINR act as the bridge between INRs,
and providing a unified, and versatile framework capable of emulating existing INRs through mini-
mal modifications to its dictionary.

A.4.2 SPATIAL DOMAIN VARIATION

In figure 11 , the seven activation atoms used in AINR are depicted, showcasing their spatial domain
variations. These activations include Sinc, Raised Cosine, Root Raised Cosine, Prolate Spheroidal
Wave Function (PSWF), Gabor Wavelet, Sinusoid, and Gaussian. The diversity of these filters
enables the AINR framework to capture a wide range of features, from sharp edges to smooth tran-
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sitions, periodic patterns, and localized details. This variety ensures the network can represent
different structures effectively, making the method highly adaptable.

Figure 11: Spatial domain activation function variation. AINR benefits from all types of activa-
tions, as each has unique spatial and frequency characteristics.

.

Algorithm 1 :Pseudo Code of AINR

1: Input: Explicit signal representation
2: Output: Implicit Neural Representation
3: Initialization:
4: Dictionary← Dictionary of activation functions
5: N ← number of hidden layers
6: Model←MLP (single hidden layer, matching I/O dimensions)
7: ∀j ∈ {1, . . . , N}, Model.activationj ← None
8: Minimum Lossj ←∞, Best Activationj ← None; for all j ∈ {1, . . . , N}
9: for j ∈ {1, . . . , N} do

10: for activation function in Dictionary do
11: Model.activationj ← activation function
12: for epoch ∈ {1, . . . , num epochs} do
13: Train the Model
14: Find Lossj
15: if Lossj < Minimum Lossj then
16: Minimum Lossj ← Lossj
17: Best Activationj ← activation function
18: end if
19: end for
20: end for
21: Model.add a hidden layer
22: Model.activationj ← Best Activationj
23: end for

A.4.3 HOW DOES AINR DIFFER FROM BASELINES?

The AINR’s dictionary consists of seven activation functions, three of which, sinusoidal, Gaussian,
and Gabor wavelet, have been previously introduced in other studies. This naturally raises the
question of how AINR differs from these baselines. The key distinction lies in the initialization
of activation function parameters. While earlier studies used these same activation functions, their
parameters (such as α and β in the sinusoidal function, as noted in section 3.2 of the main paper)
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were typically fine-tuned via exhaustive grid searches for each specific INR application. In contrast,
AINR initializes the parameters of every activation function randomly. As demonstrated in section
4.5 of the main paper, when baseline models (which use a single activation function throughout
the network) are initialized with random activation parameters, they fail to achieve comparable per-
formance. Therefore, unlike these baselines, AINR does not rely on any pre-optimized activation
function parameters, offering a more flexible and robust approach.

A.4.4 TOTAL EPOCHS AND LEARNING CURVES

Compared to other INRs, AINR’s total number of epochs is determined by the size of the dictionary.
Since AINR can accommodate any dictionary size, let us assume the dictionary contains k activa-
tions. For simplicity, consider a model with three hidden layers. If each activation is trained for
x1, x2, and x3 epochs in the first, second, and third layers respectively, the total number of epochs
is given by k × x1 + k × x2 + k × x3. In our experiments, we set x1 = 100, x2 = 100, and
x3 = 200. The training plot for the third image from the Kodak dataset is shown in figure 12. For
the image representation task, we used seven different activation functions, resulting in a total of
2800 epochs. To ensure a fair comparison, all other baselines were trained for k × (x1 + x2 + x3)
epochs. The convergence plot for the baselines is displayed in figure 13. Although AINR requires
total 2800 epochs when using seven activations in the dictionary, it achieves approximately 40 dB
by the 1600th epoch (see figure 12). In comparison, the baselines reach a maximum of around 37
dB, and even that is only achieved after approximately 2000 epochs.

Figure 12: PSNR variation of AINR with epochs: AINR’s training procedure is sequential. Ini-
tially, it optimizes a single hidden-layer INR, changing the activation function of the first layer every
100 epochs. Once the matched activation for the first hidden layer is found, a second hidden layer is
added. The network is then trained while changing the activation function of the second layer every
100 epochs. After determining the matched activation for the second layer, a third hidden layer is
added, and the network is retrained, changing the activation function of the third hidden layer every
200 epochs.

A.5 ADDITIONAL RESULTS

A.5.1 IMAGE REPRESENTATION

Unlike traditional INRs, which use the same activation function throughout the network with subop-
timal parameters that may not be ideal for the given signal, AINR offers a framework that allows the
network to adapt its internal configuration to better match the signal. This added flexibility enables
AINR to consistently outperform existing INR methods.

This is evident from our thorough evaluation of AINR on the Kodak image dataset, as shown in
figure 3. In addition to the radar plot, we have also provided decoded representations of the Kodak
dataset, which are presented in figure 14. Moreover, the average PSNR and SSIM metrics for AINR
and baseline models across the dataset are summarized in table 2.

A.5.2 IMAGE INPAINTING

A key difference between traditional signal representation mechanisms and INRs is that INRs at-
tempt to establish a continuous implicit functional relationship between normalized coordinates and
signal values. The generalizability of this relationship depends heavily on the type of activation
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Figure 13: PSNR variation of the baselines for the third Kodak image

Figure 14: Additional image representation results from the Kodak Dataset: As shown by the
results, AINR is the architecture that consistently delivers the cleanest image representation. More-
over, it not only excels in producing clean output but also achieves the highest accuracy metrics.

Table 2: Average metrics for image representation task across the entire Kodak dataset

Method PSNR (dB) SSIM
AINR 36.55 0.93
WIRE 32.30 0.90
SIREN 32.19 0.88
GAUSS 31.34 0.84
MFN 30.15 0.85

function used. AINR, by exploring its dictionary to find activation atoms that best match the given
signal and task, consistently outperforms all INR baselines, regardless of the specific task.

This is clearly demonstrated by the thorough evaluation we conducted on the image inpainting task
using the entire Kodak dataset. The PSNR variations across all methods are shown in figure 4.
As shown, AINR consistently achieves the highest accuracy metrics for every image in the dataset.
Sample inpainting outcomes are displayed in figure 15. The first column represents the ground truth
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image, while the second column shows the text-masked image. The text mask used contains different
fonts and sizes, with overlapping parts, and this same mask was applied to the entire dataset. This
presents a significant challenge for INRs to recover the original signal. However, as seen, AINR
recovers the original image with the highest accuracy. Unlike existing baselines such as WIRE,
AINR does not overfit the training data, nor does it tend to produce low-pass signal representations
lacking fast-varying components. AINR consistently delivers the highest accuracy metrics along
with the most visually coherent inpainting outcomes, as it is specifically tailored to the given signal
and task. The average PSNR across the dataset is presented in table 3. .

Figure 15: Additional image inpainting outcomes for the Kodak dataset: As demonstrated,
AINR is the only INR that consistently delivers the highest accuracy metrics along with the clean-
est image inpainting results, regardless of the image type. This can be attributed to its ability to
dynamically tailor the sequence of activations to the specific signal and task, rather than relying on
pre-optimized activation function parameters for every signal.

Table 3: Average metrics for image inpainting task across the entire Kodak dataset

INR PSNR (dB) SSIM
AINR 32.34 0.90
WIRE 29.82 0.85
SIREN 28.44 0.79
GAUSS 26.41 0.69
MFN 26.02 0.70

An additional image inpainting experiment has been conducted with a different text mask, and the
results obtained are shown in figure 16. In this experiment, a randomly generated text mask with
varying font sizes is used. As evident from the results, AINR is the only architecture that achieves
the highest PSNR and SSIM values, indicating the best recovery compared to existing INRs.

A.5.3 OCCUPANCY FIELDS

The complete decoded occupancy fields, along with the ground truth, are shown in figure 17. AINR
consistently delivers the occupancy field that is closest to the ground truth. This capability is at-
tributed to the ability of AINR to find the optimal activation sequence for each given signal.

A.5.4 NEURAL RADIANCE FIELDS

In addition to the novel views provided in section 4.4, novel views from different viewing angles
and positions are provided in the following figures for Chair and Hotdot datasets respectively,

A.6 ABLATION STUDIES

A.6.1 EFFECT OF NETWORK HYPERPARAMETERS

A study has been conducted to investigate the impact of varying the number of hidden nodes and
layers, and learning rate on performance. The results related to changes in the number of hidden
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Figure 16: Image inpainting capabilities of AINR. The top row presents the ground truth and the
masked image, where the text is random with varying font sizes. It is evident that AINR achieves
the highest PSNR and SSIM values while producing the most visually coherent inpainting outcome
among the considered INRs. This clearly demonstrates AINR’s superior generalization ability com-
pared to current INRs. Conversely, other architectures such as WIRE and MFN exhibit signs of
overfitting with the provided partial data.

nodes are shown in left plot of figure 20. It is evident that AINR surpasses all existing INRs regardless
of the number of hidden neurons employed. This superiority is attributed to AINR’s ability to self-
optimize based on the input signal, ensuring that the optimal sequence of activations yields superior
results compared to pre-optimized INRs.
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Figure 17: Complete decoded occupancy fields: It is evident from these representations that most
baselines showcase a low-pass decoded representation, primarily due to the inability of their acti-
vation functions to effectively capture the rapidly varying components across the INR. In contrast,
AINR delivers the occupancy field closest to the ground truth, achieving the highest IoU metric.

The middle plot of figure 20 depicts the effect of the number of layers on the PSNR. As can be
seen, AINR demonstrates exceptionally competitive PSNR metrics with merely one or two hidden
layers. This performance stands out in contrast to other INRs, which begin with activation parame-
ters already tailored for convergence. However, AINR starts with random parameter initializations,
highlighting its efficiency in self-optimization to reduce the loss between explicit and implicit rep-
resentations. When the model configuration expands to include three hidden layers, AINR’s ability
to adapt and tailor its approach for the specific signal allows it to outperform all existing INRs,
showcasing its robust optimization capabilities.

Lastly, the right side plot of figure 20 illustrates AINR’s performance with log scale learning rate.
As can be seen, AINR shows strong performance, maintaining a high PSNR around 40 dB at a low
learning rate of 10−3. Even when the learning rate is increased by an order of magnitude to 10−2,
AINR manages to sustain a relatively high PSNR. However, as the learning rate further increases to
10−1, there is a noticeable decrease in PSNR, although it still performs better than every baseline
except MFN. On the other hand, WIRE shows significant sensitivity to the learning rate. It reaches
its peak PSNR at a learning rate of 10−2, but its performance drastically drops as the learning rate
increases further. This demonstrates that WIRE’s optimal learning rate range is narrower, and its
performance quickly deteriorates outside this range. SIREN also demonstrates a decline in per-
formance, but its behavior is steadier compared to WIRE. As the learning rate increases, SIREN’s
PSNR decreases consistently, never reaching the peak values observed with AINR or even WIRE. It
can be concluded that, AINR stands out for its ability to maintain high PSNR values across a wider
range of learning rates, highlighting its robustness.
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Figure 18: AINR’s novel view synthesis capabilities on the Chair dataset: A closer inspection
of the novel views generated by AINR reveals that its synthesized images capture finer details, such
as the intricate carvings on the top of the chair and its legs, to a much greater extent than the base-
lines. Additionally, AINR successfully preserves the gold pattern on the chair’s cushion without
excessively smoothing it, unlike the baselines, which tend to produce low-pass representations. This
ability to retain both fine details and texture while avoiding over-smoothing highlights AINR’s supe-
rior performance in generating realistic novel views.

Figure 19: AINR’s novel view synthesis capabilities on the Hotdog dataset: Upon closer in-
spection of the novel views generated by AINR, it is evident that AINR produces more realistic and
detailed representations compared to the baselines. Specifically, AINR captures the fine texture of
the hotdog bun and the subtle lighting effects on the plate and condiments, which are much closer to
the ground truth. In contrast, the baseline methods, such as WIRE and SIREN, tend to over-smooth
the details, losing the sharpness in the condiments and the realistic shadows around the plate. AINR
not only preserves the structure and texture of the hotdog but also handles the complex lighting con-
ditions more effectively, resulting in the most visually accurate and high-fidelity novel views.
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Figure 20: Effect of the MLP architecture’s hyperparameters on AINR’s performance

A.6.2 EFFECT OF WEIGHT INITIALIZATION

In most recent INR literature, it has been shown that INRs which are equipped with space-frequency
compact activation functions performance do not degrade with the weight initialization mechanism
unlike sinusoidal activations (Ramasinghe & Lucey, 2022; Saragadam et al., 2023), . All the pre-
sented experimental results in this study is obtained through Pytorch’s default weight initialiation
scheme. In this weight initialization process, the standard deviation stdv is defined as the reciprocal
of the square root of the number of input units nin. Specifically, stdv = 1√

nin
, where nin represents

the number of features or input dimensions in the linear layer. The weights of the layer are then
initialized by drawing each element of the weight matrix W from a uniform distribution in the range
[−stdv, stdv], i.e.,

Wij ∼ U
(
− 1
√
nin

,
1
√
nin

)
This initialization strategy helps in keeping the weights small enough to ensure stable learning by
preventing large gradients during the early stages of training. However, as different weight initializa-
tions often lead to different training dynamics of the network, we checked AINR’s performance and
the obtained activation sequences for different weight initialization schemes. For this experiment
we utilized the Parrot image in the main paper. The obtained resuls are shown in table 4.

Table 4: Comparison of weight initialization mechanisms

Weight Initialization Mechanism Sequence PSNR (dB)

Pytorch Default PSWF, Gaussian, Gabor 39.04

Xavier Normal PSWF, Gaussian, Gaussian 37.55

Orthogonal RRC, Gaussian, Gaussian 37.15

SIREN-like (α ̸= 30) PSWF, PSWF, Gaussian 36.57

SIREN-like (α = 30) PSWF, Sinc, PSWF 36.73

As shown in table 4, the sequence of activations changes when the weight initialization mechanism
of the network is altered. This can be attributed to the fact that AINR optimizes the network start-
ing from the given weight initialization scheme, attempting to navigate the loss landscape toward
a local minimum. When the distribution of initial weights is significantly changed, it affects the
optimization trajectory. The network’s parameters are adjusted based on gradients calculated from
this starting point, and the training dynamics follow different paths depending on the initial condi-
tions. Since the loss landscape may contain multiple local minima, the optimization path taken by
the network can vary. This explains why different activation function sequences are optimal for dif-
ferent weight initializations—each initialization leads the network to explore a different part of the
loss landscape, and the network adapts its activations accordingly to minimize the loss. Therefore,
due to the variability in the loss landscape and the dependence on the starting point W0, the training
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process may converge to different local minima, resulting in variations in the matched activation se-
quences for each weight initialization scheme. Therefore, it can be concluded that PyTorch’s default
weight initialization is the most effective for AINR.

A.7 EFFECT OF POSITIONAL ENCODING

Positional embedding schemes are often utilized in INRs as a method of coordinate transformation.
This technique functions similar to a frequency modulation mechanism, enabling the embedding
of high frequencies within the signal. In our study, we assessed the performance of AINR when
incorporating this coordinate transformation.

The left side of figure 21 displays the decoded representations obtained from AINR with positional
embedding, while the right side shows those from AINR without the positional embedding. Given
that AINR adopts a sequential training approach as outlined in algorithm 1, it allows for the obser-
vation of the decoded image at each layer. These images, referred to as ’Layer 1’, ’Layer 2’, and
’Layer 3’ in figure 21, demonstrate the outcomes at each stage.

The comparison reveals that the integration of positional embedding within AINR results in im-
proved performance for both the first and second layers, in contrast to the standard AINR without
any positional embedding. However, upon determining the best activations for the initial two layers,
the introduction of the third layer shows that the standard AINR, devoid of positional embedding,
optimizes the MLP in a manner that it outperforms the AINR with positional embedding.

Consequently, these findings suggest that when the optimal sequence of activations is identified for
an INR that does not utilize positional embeddings, it can achieve better outcomes than an INR
which relies on positional embedding to discover the optimal sequence of activations. This insight
showcases the potential for INRs to encode high-frequency components effectively, even in the
absence of positional embedding mechanisms, by meticulously selecting the sequence of activations.
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Figure 21: Effect of positional embedding on AINR: The first column displays images obtained
under AINR’s sequential training with positional embedding, while the second column depicts results
without using positional embedding. It is evident that for the first two layers, AINR with positional
embedding scheme yields better results compared to the AINR without positional embedding. How-
ever, upon introducing the third layer, AINR without positional embedding surpasses the AINR with
positional embedding
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