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Table 2: The distribution of the number of triangles in our
collected dataset.

Tris Count Min Max Median
0 ~ 50k 52 30.0k 50.0k 37.2k
50k ~ 100k 213 50.0k 100.0k 82.9k
100k ~ 150k 216 100.0k 149.7k 100.3k
150k ~ 200k 88 150.0k 200.0k 174.4k
200k ~ 400k 173 200.0k 400.0k 257.4k
400k ~ 800k 71 405.7k 800.0k 561.5k
> 800k 71 800.0k 4359.4k 1174.5k

6 THE PROOF OF THE CURVATURE BASED
QEM

We adopt the approach proposed in Hoppe [1999] to represent the
projected ¢&; as a linear equation for vj:

2 T

Gi=gVvitq
where g and g can be solved as follows. Firstly, for a given face
f = (v1, va, v3), the corresponding attributes ¢ = (¢, ¢2, ¢3) can be
expressed using the aforementioned formula. Then, for any at-
tribute ¢ belonging to a point v € R3, it is equal to the attribute ¢’

of its projection onto the plane of f, which can be expressed as NTg
= 0. Thus, g and g can be computed by:

VI 1 c1
vg 1 g | _| e
vi o1 | e
st 0 q 0

The quadric of the curvature of v;, Qc(vj, fj), can be written as:
Oc(vif) = (& — ¢p)? = (gJT.vi +dj — ¢;)%. Similar to the original
QEM, we can express it as follows:

gaT S0 —g o
98
0 2
Qc(vi fi) = 0. ao. 0. ) —q |7
_gT ceiQ--- ..0-- 0
-.‘0--‘ ...0... 0 -..0..

The final Qtota1 (vis fi) = Q(vi, £i) + Qe (vy, fi), where «a is a hy-
perparameter used to balance the weights of the original QEM and
the curvature constraint.

7 THE DISTRIBUTION OF THE NUMBER OF
TRIANGLES IN OUR DATASET

Table 2 shows the distribution of the number of triangles in our
dataset.

8 EXPERIMENTAL SETUP

We utilize nvdiffrast [Laine et al. 2020] as the differentiable render-
ing framework. For the first 100 iterations, we only optimize the 3D
structure, while after 100 iterations, we concurrently optimize both
the 3D structure and texture maps. In total, the framework is trained
for 3,000 iterations. The initial learning rate is set to 3e-5, which
is reduced to le-5 and 3e-6 at the 1,000th and 2,000th iterations,
respectively.

The training resolution is set to 512x512, and the texture size is
set to 1024x1024. To improve texture quality with a fixed rendering
resolution, we normalize the mesh within a sphere of radius 1. Then
the following camera motion strategy is introduced: we randomly
sample camera coordinates on a sphere with a radius of 1.5 for
the first 1,000 iterations. In the subsequent 2,000 iterations, we
uniformly sample radius between 0.5 and 1.5 and then randomly
sample camera coordinates on the corresponding spheres. This
approach enables us to enhance the quality of the learned textures
without increasing the rendering resolution.

We train Nvdiff for 100,000 iterations with a training rendering
resolution of 512x512. The resolution of the texture is 1024x1024,
and the learning rate is set to 0.03. For QEM, QEM++, Blender and
simplygon, we use their default parameters.
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