
Published as a conference paper at ICLR 2025

SLMREC: DISTILLING LARGE LANGUAGE MODELS
INTO SMALL FOR SEQUENTIAL RECOMMENDATION

Wujiang Xu1, Qitian Wu2, Zujie Liang3, Jiaojiao Han4,
Xuying Ning5, Yunxiao Shi6, Wenfang Lin3, Yongfeng Zhang1∗

1 Rutgers University 2 Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard
3 Ant Group 4 Dian Diagnostics Group Co.
5 University of Illinois Urbana-Champaign 6 University of Technology Sydney

ABSTRACT

Sequential Recommendation (SR) task involves predicting the next item a user
is likely to interact with, given their past interactions. The SR models examine
the sequence of a user’s actions to discern more complex behavioral patterns and
temporal dynamics. Recent research demonstrates the great impact of LLMs on
sequential recommendation systems, either viewing sequential recommendation as
language modeling or serving as the backbone for user representation. Although
these methods deliver outstanding performance, there is scant evidence of the
necessity of a large language model and how large the language model is needed,
especially in the sequential recommendation scene. Meanwhile, due to the huge
size of LLMs, it is inefficient and impractical to apply a LLM-based model in real-
world platforms that often need to process billions of traffic logs daily. In this paper,
we explore the influence of LLMs’ depth by conducting extensive experiments on
large-scale industry datasets. Surprisingly, our motivational experiments reveal
that most intermediate layers of LLMs are redundant, indicating that pruning
the remaining layers can still maintain strong performance. Motivated by this
insight, we empower small language models for SR, namely SLMREC, which
adopt a simple yet effective knowledge distillation method. Moreover, SLMREC
is orthogonal to other post-training efficiency techniques, such as quantization and
pruning, so that they can be leveraged in combination. Comprehensive experimental
results illustrate that the proposed SLMREC model attains the best performance
using only 13% of the parameters found in LLM-based recommendation models,
while simultaneously achieving up to 6.6x and 8.0x speedups in training and
inference time costs, respectively. Besides, we provide a theoretical justification
for why small language models can perform comparably to large language models
in SR. The source code and datasets are available at the URL 1.

1 INTRODUCTION

Learning temporal interest information is fundamental for sequential recommendation models. Tra-
ditional sequential recommendation (TSR) methods (Wu et al., 2017; Hidasi et al., 2015; Kang &
McAuley, 2018; Sun et al., 2019) focus on the development of intricate sequential encoders, evolving
from LSTM and GRU architectures to the self-attention layers and Transformer models. However,
the state-of-the-art performance in TSR has hit a plateau, limited by model sizes that usually feature
fewer than 0.1 billion parameters.

Recently, Large Language Models (LLMs) (Achiam et al., 2023; Touvron et al., 2023; Anil et al.,
2023) have made significant advancements in various aspects by scaling the size of the training data
or the model’s architecture. Building upon the scaling laws delineated in prior research (Kaplan
et al., 2020; Hoffmann et al., 2022), it endows LLMs with enhanced expressivity, culminating in
superior performance benchmarks. Naturally, a burgeoning trend among contemporary LLM-based
recommendation architectures has raised concerns. The current LLM-based recommender system
∗Corresponding author.
1https://github.com/WujiangXu/SLMRec

1

https://github.com/WujiangXu/SLMRec

Published as a conference paper at ICLR 2025

Embedding Encoder

…

Input tokens

Sequence

s1 s2 s3 sn

Candidate item

Sn+1

Seq Encoder

.

ℎ!

ℎ"
LLM LoRA

Adapter2Next Token Prediction
l E-LLMRecl G-LLMRec

Sn+1

Prompt
What is the top recommended

item for {user_id} who
interacted with {history} ?

Candidate item
Sn+1

Adapter1

Embedding Encoder

…

Input tokens

Sequence

s1 s2 s3 sn

. .

ℎ"

ℎ! �̅� = ℎ!⨀	ℎ"�̅� = ℎ!⨀	ℎ"

(a) TSR methods (b) G-LLMRec, E-LLMRec methods

Figure 1: This overview compares traditional sequential recommendation (TSR) methods with
LLM-based recommendation (LLMRec) methods. Here, hu and hi represent the user and item
representations, respectively. In contrast to G-LLMRec methods, E-LLMRec approaches adhere to
the TSR prediction framework. These methods leverage LLMs as feature extractors in the manner of
BERT, diverging from the generative focus of G-LLMRec.

can be classified as 1) generation-based approaches, e.g., P5 (Geng et al., 2022; Xu et al., 2023a),
CoLLM (Zhang et al., 2023b) and LLaRa (Liao et al., 2023); 2) embedding-based approaches such as
E4SRec (Li et al., 2023a), CLLM4Rec (Zhu et al., 2023) and Lite-LLM4Rec (Wang et al., 2024). As
shown in Fig. 1, generation-based approaches (G-LLMRec) encode an item as a token and formulate
the sequential recommendation as the next token prediction task. By contrast, embedding-based
approaches (E-LLMRec) regard the last hidden representation as user representation and learn an
external adapter to compute user-item preference. The adoption of LLMs has vastly driven the
development of sequence recommendation tasks, bringing an improvement of nearly 20% against the
TSR model on the benchmark (Li et al., 2023a; Liao et al., 2023; Wang et al., 2024). This arouses the
following research motivation for this work.

• Some researchers (Ardalani et al., 2022; Zhang et al., 2023a; 2024) have attempted to investigate the
scaling laws in the recommendation domain. However, the largest model examined in these studies is
less than 1 billion parameters, significantly smaller than the 175 billion parameters of GPT-3 (Brown
et al., 2020). Additionally, the focus has been primarily on test loss rather than on ranking-based
evaluation metrics, which limits the practical applicability of their findings. Recent studies (Liang
et al., 2023; Gromov et al., 2024; Men et al., 2024) on the NLP domain suggest a high degree of
redundancy in the LLMs’ model architecture. Since the ID information of the recommendation
domain has not been explicitly learned during the LLMs’ training process, we also aim to find out
whether increasing the model size of LLMs is beneficial for the SR task.

• Despite the large performance gain, the LLMRec methods also escalate the model size significantly,
e.g., nearly 70 times greater parameters compared with TSR models (from 0.1B to 7B+). Even within
the parameter-efficient training technique (Hu et al., 2021a), the paradigm still poses a significant
challenge for real-world sequential recommendation use cases, where billions of traffic logs every
day and potential new items need to be processed constantly. This disparity imposes strict hardware
demands and makes it both inefficient and infeasible to deploy the LLMRec model.

Our contributions. This paper presents an initial attempt to reassess the need for LLMs in sequential
recommendation. To explore the reasons for the significant improvement of LLMRec methods, we
conduct a series of experiments on large-scale industry datasets to investigate the effects of reducing
the number of parameters during the training and inference stages on overall performance. From the
empirical results, we found some profound insights that the improvement of the rise of the model
parameters is not consistent. Meanwhile, it reveals that some layers of LLMs are redundant in the
recommendation task, similar to findings in NLP domains (Men et al., 2024; Gromov et al., 2024).

Motivated by these findings, we empower small language models for the sequential recommendation,
named SLMREC. We adopt the vanilla knowledge distillation approaches to align the representation
knowledge. Moreover, multiple supervision signals are crafted to steer the student model toward
acquiring task-aware knowledge within its hidden representations. Additionally, our model oper-
ates without the need for any supplementary model design elements and is compatible with other
quantization and pruning techniques utilized within LLMs.

2

Published as a conference paper at ICLR 2025

24 26 28 30 32
Layer Number

0.12

0.14

0.16

0.18

0.20

0.22 E4SRec HR@10
SASRec HR@10

(a) Cloth (Infer) - HR@10

24 26 28 30 32
Layer Number

0.08

0.10

0.12

0.14

0.16

0.18
E4SRec NDCG@10
SASRec NDCG@10

(b) Cloth (Infer) - NDCG@10

24 26 28 30 32
Layer Number

0.075

0.100

0.125

0.150

0.175
E4SRec MRR
SASRec MRR

(c) Cloth (Infer) - MRR

0 10 20 30
Layer Number

0.205

0.210

0.215

E4SRec HR@10
SASRec HR@10

(d) Cloth (Train) - HR@10

0 10 20 30
Layer Number

0.16

0.17

0.18

0.19
E4SRec NDCG@10
SASRec NDCG@10

(e) Cloth (Train) - NDCG@10

0 10 20 30
Layer Number

0.16

0.17

0.18

E4SRec MRR
SASRec MRR

(f) Cloth (Train) - MRR

Figure 2: We present the relationship between the number of decoder layers and the final recommen-
dation performance, with the performance of SASRec plotted as a baseline. Figures (a)-(c) show the
results of directly using representations from the middle layers for inference without training, while
(d)-(f) prune the later layers and train a model using only the specified number of layers. From the
results, we observe that deeper decoder layers introduce redundancy in recommendation tasks, with
models utilizing fewer layers (8-layer) achieving performance nearly equivalent to (24-layer) models.

Extensive experiments have revealed that SLMRec, with a model size of less than 1 billion parameters,
can deliver performance that is remarkably competitive with baselines using LLMs sized over 7
billion parameters. Furthermore, SLMRec achieves up to 6.6x/8.0x speedup in terms of training/in-
ference time costs against LLM-based recommendation models. Besides, we present the results
of SLMRec employing online knowledge distillation, demonstrating its competitive performance.
Beyond empricial experiment results, we provide a theoretical justification for why small language
models can perform comparably to large language models in SR.

2 MOTIVATIONAL EXPERIMENTS

As described above, here we try to explore the effectiveness of LLMs in recommendation via
decreasing the parameters of popular LLMs (i.e., LLaMa-7B) and observe the change in performance.

Evaluation Protocol. In the motivational experiment, we select SASRec as a traditional sequential
recommendation baseline due to its performance (Klenitskiy & Vasilev, 2023). We adopt2 embedding-
based method (Li et al., 2023a) as the baseline, named E4SRec, to easily generate the ranking for the
full/sampled list of items. As shown in Fig. 2, a pre-trained embedding layer learned from SASRec
is used to obtain the sequential item embedding. Then we concatenate the item embeddings with
the prompt embeddings obtained after the tokenization. After encoding of stacked attention blocks
of LLM, we regard the representation of the last layers as the user representation. Then, we follow
the TSR methods to calculate the inner product of user embeddings and item embeddings from the
pre-trained embedding layer to serve as the score for the user-item pair. Also, cross-entropy loss and
fully candidate item are utilized for the optimization to achieve best results (Xu et al., 2024a; Petrov
& Macdonald, 2023). To reduce both computational demands and processing time, LoRA (Hu et al.,
2021a) is used to update a comparatively smaller set of parameters. Besides, to generate an unbiased
evaluation for fair comparison (Krichene & Rendle, 2020; Zhao et al., 2020), we randomly sampled
999 negative items, which were items not interacted with by the user, along with 1 positive item that
served as the ground-truth interaction. To obtain large-scale industry data, we use the Amazon 18
version3 dataset in this paper. More details are shown in Section 5.

2To accelerate and align with the prediction head of traditional SR methods, we remove the original softmax
layer and instead use the dot product of the user and item representations to compute the prediction score.

3https://nijianmo.github.io/amazon/index.html

3

Published as a conference paper at ICLR 2025

ID Embedding

LLM（LLaMa）

Adapter

…

Distillation

Distillation

Teacher Model Student Model

Prompt
What is the top recommended
item for user who interacted

with {sequence}?

…

Sequence IDs
s1 s2 s3 sn

Decoder Layer 2Decoder Layer 2Decoder Layer 21st Block

De
co
de
r

La
ye
rs

Decoder Layer 2Decoder Layer 2Decoder Layer 2i-th Block

De
co
de
r

La
ye
rs

Decoder Layer 2Decoder Layer 2Decoder Layer 2b-th Block

De
co
de
r

La
ye
rs

LLM（LLaMa）

Adapter

…

Decoder Layer 2Decoder Layer 2Decoder Layer 2i-th BlockDecoder
Layers

ℎ!

Adapter

Pretrained ID Embedding Layer

…

Sequence IDs
s1 s2 s3 sn

Candidate item
Sn+1

.

Distillation

ℎ"# ℎ$%
ℒ!"(Θ#)

�̅� = ℎ!.	ℎ"

𝒟!$#, 𝒟%$&'

𝒟!$#, 𝒟%$&' ℒ'#(Θ#,𝑊()
Adapter

ℎ&

Decoder Layer 2Decoder Layer 2Decoder Layer 21st BlockDecoder
Layers

Decoder Layer 2Decoder Layer 2Decoder Layer 2b-th BlockDecoder
Layers

ℎ&

Prompt
What is the top recommended
item for user who interacted

with {sequence}?

𝒟!$#, 𝒟%$&'

LoRA

LoRA

LoRA
… …

ℎ"' ℎ$(
Adapter

.

.

Figure 3: The overview of SLMREC. A layer-wise knowledge distillation approach is applied to
align the representation knowledge by grouping the layer into serveral blocks. The teacher and student
model share a similar E-LLMRec model architecture. Multiple supervision signals are introduced to
steer the student model toward acquiring fine-grained task-aware knowledge.

Evaluation Strategy. To examine the connection between the number of parameters and the
performance of LLM-based methods (E4SRec), we have truncated the original LLM architecture—in
this case, a 32-layer decoder from the LLaMa 7B model—by pruning the decoder layers during
both the inference and the training stages. As a direct inference method, we refrain from additional
training using new labels and instead directly employ the output from the final ten layers as user
representations to gauge recommendation performance. Instead of direct inference, we focus on
conserving the initial layers of the decoder and proceed to train a more lightweight E4SRec model
while adhering to the original training protocol. The models resulting from varying levels of layer
retention are designated as E4SRecl, with the variable l indicating the number of layers retained.
The chosen values of l encompass a spectrum, specifically {1, 2, 4, 8, 16, 24, 32}. Results from both
experimental approaches are graphically depicted in Figure 2, providing insight into how the models’
depth influences their recommendation capabilities.

Insights. From Figure 2 (a)-(b), we can observe that directly utilizing the representation of other
layers without training cannot obtain a comparative performance. Compared to TSR baseline SASRec,
Figure 2 (c)-(d) yield the following insightful findings: (1) As the number of layers increases, the
performance of the model also improves. Furthermore, even when the model has the same layer
number (i.e., l=2) as SASRec, its performance is still superior to that of SASRec. We assume the
gains observed in LLM-based methods could likely be attributed to the larger hidden representation
size ((i.e., 4096 V.S. 128), the initialization from LLMs, and the introduction of PEFT (Hu et al.,
2021a). (2) When l is set ranging from 8-24, the model’s improvement is slight. It reveals that
an 8-layer E4SRec8 can obtain nearly as informative user representations as a 24-layer E4SRec24.
Considering the two findings above, it naturally inspires us to explore better training methods to
obtain a smaller-size LLM-based SR model that is comparable with large models. If we want to
learn a E4SRecM that perform similar as E4SRecN (M < N), we should make sure the intermediate
representations in E4SRecM to be as closer to those in E4SRecN as possible. Knowledge distillation
(KD) is a straightforward idea in this case. Thus, we design a simple yet effective knowledge
distillation method to train a tiny LLM-based model with similar performance. For the motivation
experiment results in Movie domain, it can be found in Appendix B.1. In Section 6, we provide a
theoretical justification that aligns with these empirical insights.

3 PRELIMINARIES

In this study, rather than constructing complex additional structures, we slightly modify existing
E-LLMRec methods for our purposes. Initially, we delineate the E-LLMRec model that we employ
for sequential recommendation tasks.

4

Published as a conference paper at ICLR 2025

Model structure. The E-LLMRec models capitalize on an ID embedding layer from TSR models
such as BERT4Rec, SASRec, and GRU4Rec, which is pre-trained on a designated dataset (Sun et al.,
2019; Kang & McAuley, 2018; Hidasi et al., 2015). The objective of sequential recommendation is
to forecast subsequent items utilizing the user action sequence S = (i1, i2, ..., iT), a sequence that is
either truncated or padded to maintain uniform length. Through truncation and padding, we derive
the user’s action sequence mask, serving as the attention mask in LLMs (Large Language Models).
The fixed-length sequence S ∈ RT is translated into a sequential representation S ∈ RT×d0 via the
pre-trained ID embedding layer. A linear transformation is then applied to upscale the representation
from a lower dimension d0 to a higher dimension d1 suitable for the hidden layers within the LLMs.

Upon defining the prompt template, the tokenization layer within the LLMs processes the natural
language input into corresponding text embeddings and their associated attention masks. These
embeddings and attention masks, derived from both the ID sequence and the text, are then introduced
into the LLM decoder. The final temporal output hM from the last layer of the decoder is inferred as
the user representation and subsequently mapped through a linear layer to condense the dimensionality
from d1 back to d0. Finally, user-item interaction predictions p̄ are inferred by executing a dot product
between the user and item representations. The learning process of the model is refined through the
application of a cross-entropy loss.

p̂i =
ep̄i∑

j∈I
ep̄j

; Lce(Θs) = −
∑

u∈U,i∈I
y(ui)log(p̂i). (1)

where U and I denote the whole user set and item set. yui denotes user-item interaction label.

Knowledge Distillation. Knowledge distillation is a technique aimed at transferring knowledge from
a sophisticated teacher model to a more streamlined student model (Hinton et al., 2015). We represent
the teacher by ft(Θt) and the student by fs(Θs). We aim to solve the following optimization problem:

min
Θs

[Lce(Θs) +Dkd(Θt,Θs)]. (2)

Here, Dkd(Θt,Θs) signifies the knowledge distillation loss, which quantifies the discrepancies
between the teacher and the student models. A prevalent method involves employing the KL
divergence to evaluate the divergence between the logits produced by both models. One well-
established training schema is known as offline distillation, wherein the teacher is fully trained
beforehand and remains unchanged, while the student is refined based on the criteria outlined in
Eq. 6. In the offline knowledge distillation manner, the teacher model Θt is initially trained in a
designated training set by minimizing the cross-entropy loss Lce.

4 SLMREC

In this work, we do not adopt logits-based knowledge distillation, as our goal is for the student
model to learn how to encode hidden representations similar to the teacher model, rather than merely
replicating its predictions. To achieve this, we perform feature distillation across multiple layers.
Specifically, considering that the teacher model consists of M stacked decoder layers and the student
model has N stacked decoder layers, we design several feature regularizers to guide the distillation
process at regular intervals between the hidden representations of both models. We divide the layers
of the teacher and student models into blocks by grouping every m layers of the teacher and every
n layers of the student. The number of resulting blocks is B, calculated as B =

⌊
M
m

⌋
=

⌊
N
n

⌋
. Let

the hidden representations from the teacher model be denoted as: Ht = {hm
t , . . . ,hM

t }, where hm
t

represents the final temporal dimension of the hidden representation from the m-th layer of the teacher.
Similarly, the hidden representations from the student model are denoted as: Hs = {hn

s , . . . ,h
N
s }.

In this study, we use a deeper LLM as the teacher model and a shallower LLM as the student model,
both sharing the same hidden dimension d, such that Ht,Hs ∈ RB×d.

Feature Similarity. To regulate the alignment of feature directions between the teacher and student
models, we employ a cosine similarity-based loss term. Formally, it is described by the equation:

5

Published as a conference paper at ICLR 2025

Dcos(Θt,Θs) =
1

B

B∑
k=1

h
(km)
t · h(kn)

s

∥h(km)
t ∥2 · ∥h(kn)

s ∥2
. (3)

Feature Norm Regularization. In addition, we introduce a straightforward regularization term
designed to minimize the L2 distance between the hidden representations of the teacher and student
models. It is mathematically formulated as:

Dnorm(Θt,Θs) =
1

B

B∑
k=1

∥h(km)
t − h(kn)

s ∥22. (4)

Multiple Supervision. Furthermore, we employ multiple supervision strategies to steer the student
model toward assimilating specific aspects of recommendation-related knowledge. For each represen-
tation, we learn additional adapters (Wa) to reduce the dimension. The modified prediction (p̂(km)

t
) can be acquired as described by Eq. 1:

Lms(Θs,Wa) =
1

B − 1

B−1∑
k=1

Lce(y, p̂
(km)
t). (5)

Total Loss. Integrating the aforementioned distillation losses, the composite objective function for
training the student model is given by:

min
Θs,Wa

[Lce(Θs) + λ1(1−Dcos(Θt,Θs)) + λ2Dnorm(Θt,Θs) + λ3Lms(Θs,Wa)]. (6)

where λ1, λ2 and λ3 are hyperparameters that control the contribution of each term.

5 EXPERIMENTS

In this section, we present extensive experiments to demonstrate the effectiveness of SLMREC,
aiming to answer the following four research questions (RQs).

• RQ1: How does the performance of our proposed SLMREC model compare to LLM-based
recommendation models when evaluated on a large-scale industry dataset?

• RQ2: What is the comparative efficiency and runtime of our SLMREC model against the G-
LLMRec and E-LLMRec models?

• RQ3: Whether the proposed three knowledge regularizers work?

• RQ4: Is it feasible to train our model, SLMREC, simultaneously with an untrained teacher model?

5.1 EXPERIMENT SETUP

Table 1: Statistics of the Amazon datasets. |U|,
|V|, and |E| denote the number of users, items, and
ratings, respectively.

Dataset |U| |V| |E| Density

Cloth 1,219,678 376,858 11,285,464 0.002%
Movie 297,529 60,175 3,410,019 0.019%

Music 112,395 73,713 1,443,755 0.017%
Sport 332,447 12,314 146,639 0.008%

For our experimental evaluation, we utilize data
from the clothing, movies, music, and sports
categories within the extensive, industry-scale
Amazon18 dataset4. Statistics of the datasets are
shown in Table 1. In all datasets, we interpret
any rating above 3 as positive feedback, indicat-
ing user interaction with the item, and employ
timestamps to establish the chronological order
of actions. We eliminate users and items that
have fewer than 5 associated actions to ensure
sufficient data density. The historical sequence
of interactions for each user is divided into three segments: (1) the most recent interaction is reserved
for testing, (2) the second most recent for validation, and (3) all preceding interactions are used
for training. Based on the ranking results, we utilize the typical top-N metrics hit rate (HR@{1,
5, 10}), normalized discounted cumulative gain (NDCG@{5,10}) (Järvelin & Kekäläinen, 2002)

4https://nijianmo.github.io/amazon/index.html

6

https://nijianmo.github.io/amazon/index.html

Published as a conference paper at ICLR 2025

Table 2: Experimental results (%) on the Cloth and Movie dataset. The missing MRR value of
Open-P5 is unavailable due to the time complexity constrictions. The number on the left of the arrow
is the layers N of the student model. The left number on the right of the arrow is the layers M of the
teacher model. For Open-P5, we adopt LLaMa as their backbone. We highlight the methods with the
best and second-best average performances. We also give the average ranking of each evaluation
metric. Moreover, E4SRec4, which has the same number of layers as our SLMREC, is also marked.

Model Cloth Movie RankHR@1 HR@5 NDCG@5 MRR HR@1 HR@5 NDCG@5 MRR
Caser 9.66 15.18 12.66 13.03 4.27 14.96 9.57 10.36 13.50
GRU4Rec 13.79 15.46 14.64 15.15 10.56 19.47 15.11 15.46 9.25
BERT4Rec 13.60 14.66 14.14 14.59 9.68 14.91 12.40 12.74 11.63
SASRec 13.08 16.94 15.01 15.76 5.57 16.80 11.17 12.08 11.63
HGN 15.96 18.70 17.30 18.27 7.54 19.20 13.42 14.73 6.50
LightSANs 14.12 20.32 17.30 16.86 6.08 17.54 11.81 12.82 8.00

S3-Rec 14.10 18.67 16.10 16.95 7.75 20.39 15.69 14.34 7.50
DuoRec 13.06 18.29 15.79 15.42 10.07 20.37 17.96 16.61 7.88
MAERec 13.29 18.35 15.68 16.13 8.89 20.24 16.03 15.28 8.38

Open-P5 14.13 17.68 17.02 - 12.66 21.98 17.13 - 5.67
E4SRec 16.71 19.45 18.09 18.77 14.74 23.79 19.45 19.74 1.75
E4SRec8 15.30 18.54 16.91 17.60 13.32 22.49 17.99 18.46 4.00
E4SRec4 14.58 18.05 16.32 17.01 11.80 21.54 16.73 17.20 5.75
SLMRec4←8 16.69 19.47 18.07 18.74 15.29 24.25 19.90 20.36 1.50

and Mean Reciprocal Rank (MRR) (Sarwar et al., 2001) to evaluate the model performance. For
all the metrics, higher values indicate better performance. Models that achieve the highest MRR
performance on the validation set, including ours and other baseline models, will be preserved for
subsequent performance evaluation on the test set. In order to ensure an unbiased evaluation, we adopt
the methodology employed in previous works (Krichene & Rendle, 2020; Zhao et al., 2020), wherein
we randomly select 999 negative items (i.e., items that the user has not interacted with) and combine
them with 1 positive item (i.e., a ground-truth interaction) to form our recommendation candidates
for the ranking test. Detailed hyperparameters of our model in each dataset are in Appendix B.2.

5.2 PERFORMANCE COMPARISONS

Compared Methods. We compare our method with three classes of baselines: (1) Traditional
sequential recommendation methods, i.e., GRU4Rec (Hidasi et al., 2015), Caser (Tang & Wang,
2018), HGN (Ma et al., 2019), BERT4Rec (Sun et al., 2019), SASRec (Kang & McAuley, 2018)
and LightSANs (Fan et al., 2021). (2) Self-supervised sequential recommendation methods, i.e.,
S3-Rec (Zhou et al., 2020), DuoRec (Qiu et al., 2022) and MAERec (Ye et al., 2023). (3) G-LLMRec
method: Open-P5LLaMa

5 (Xu et al., 2023a). (4) E-LLMRec method: E4SRec (Li et al., 2023a). A
detailed introduction to these baselines can be found in Appendix B.3. It should be noted that we
did not select various G-LLMRec methods or E-LLMRec methods as baselines. This is because the
differences between each LLM-based method are minimal, and our model is a universal approach that
is not confined to a specific model type. Our primary focus is to improve the efficiency of language
model utilization. Hence, we opted to select one G-LLMRec method (Open-P5) and one E-LLMRec
method (E4SRec) as baselines.

Quantitative Results (RQ1). Tables 2–3 showcase the quantitative comparison of four large-scale
sequential recommendation datasets. From our analysis, we have several insightful observations: (1)
LLM-based recommendation methods exhibit substantial improvements over traditional sequential
recommendation (TSR) methods, primarily due to their enhanced modeling capacity which adeptly
extracts informative sequential interest patterns. (2) Our model, SLMRec4←8, outperforms the
teacher model E4SRec8 by leveraging knowledge distillation within the hidden layers. By refraining
from applying this constraint prior to the prediction phase, we enable the final representation to
organically gravitate towards the label—yielding an approximate 8% enhancement in performance
in comparison to the teacher model. (3) Introducing vanilla knowledge distillation techniques into
LLMRec, without altering the model structure, allows SLMRec4←8 to achieve a marginally superior
performance compared to E4SRec32. This suggests that small language models equipped with

5For Open-P5, we adopt the version of LLaMa as the foundation model in their code repository implementa-
tion to ensure the best results are achieved.

7

Published as a conference paper at ICLR 2025

Table 3: Experimental results (%) on the Music and Sport dataset.

Model Music Sport RankHR@1 HR@5 NDCG@5 MRR HR@1 HR@5 NDCG@5 MRR
Caser 0.71 3.28 1.96 2.29 1.05 3.75 2.39 2.84 13.50
GRU4Rec 1.89 3.22 2.57 3.08 5.26 7.75 6.52 7.08 10.13
BERT4Rec 2.10 3.16 2.64 3.11 4.81 6.70 5.79 6.26 10.63
SASRec 1.82 5.72 3.79 4.51 4.70 8.43 6.59 7.24 8.75
HGN 2.01 5.49 3.82 4.17 3.42 6.24 4.83 5.30 10.50
LightSANs 1.05 4.06 2.54 3.00 5.18 8.94 7.07 7.72 8.25

S3-Rec 2.48 7.37 4.94 4.68 4.14 8.49 6.89 7.35 6.88
DuoRec 1.84 4.50 3.19 3.04 4.13 8.81 7.03 6.64 9.13
MAERec 2.19 6.35 4.67 3.96 4.01 8.35 6.65 6.98 8.63

Open-P5 4.35 8.12 6.74 - 5.49 8.50 6.92 - 5.33
E4SRec 5.62 9.29 7.50 7.98 6.40 9.67 8.05 8.70 1.75
E4SRec8 5.46 8.86 7.21 7.74 5.48 8.63 7.06 7.76 3.63
E4SRec4 5.33 8.75 7.08 7.59 5.41 8.65 7.04 7.72 4.50
SLMRec4←8 5.72 9.15 7.48 8.03 6.62 9.83 8.25 8.89 1.25

Table 4: Experiment results (%) of ablation study.

SLMREC
Cloth Movie

HR@1 HR@5 NDCG@5 MRR HR@1 HR@5 NDCG@5 MRR
+Dcos 16.10 18.85 17.48 18.17 14.83 23.08 19.08 19.45
+Dcos,Dnorm 16.28 19.12 17.69 18.40 14.86 23.89 19.36 19.84
+Dcos,Lms 16.85 19.05 17.96 18.59 15.05 23.48 19.40 19.76
+Dcos,Dnorm,Lms 16.69 19.47 18.07 18.74 15.29 24.25 19.90 20.36

Table 5: Efficiency comparison of Open-P5, E4SRec, and our SLMREC in terms of epoch-wise
training time (hours), inference time (hours), number of training parameters (B) and inference
parameters (B). These comparisons were conducted on a machine with an A100 GPU. The training
batch size for all models was standardized at 256. During inference, E4SRec and SLMREC utilized a
batch size of 512, whereas Open-P5’s inference was performed with a batch size of 1.

Method Tr time(h) Inf time(h) Tr params (B) Inf params (B)
Open-P5LLaMa 0.92 4942 0.023 7.237
E4SRec 3.95 0.415 0.023 6.631
SLMREC4←8 0.60 0.052 0.003 0.944

efficacious training strategies can rival, or even exceed, larger language models in the sequential
recommendation task. This phenomonon is also matched with our therotical justification in Section 6.

Model Efficiency (RQ2). We report the time efficiency and parameters of comparative baselines and
our model in Table 5. All time and parameter metrics represent the average across the four datasets
reported. Inference time evaluates the prediction ranking among 1,000 candidate items for each user.
Detailed training and inference times for each dataset are provided in Appendix B.4. The Open-P5, an
LLMRec model based on generative methods, offers a reasonable training duration. Yet, during the
inference phase, it becomes considerably time-consuming (4942 hours) as it necessitates generating a
substantial pool of candidate items (for instance, 1000). Owing to the intrinsic workings of generative
LLMs, employing generation-based LLMRec models for the comprehensive ranking of extensive
item sets is not advised. Our model outperforms E4SRec with enhanced efficiency, maintaining
only 13% and 14% in E4SRec’s parameters for training and inference, respectively. Moreover, our
SLMREC demonstrates a remarkable gain in speed, being 6.6 times faster during training and 8.0
times quicker in inference than E4SRec.

Ablation Study (RQ3). As shown in Table 4, SLMREC, when enhanced with various knowledge
regularizers (namely Dcos,Dnorm and Lms), demonstrates improved performance. The regularizers
Dcos and Dnorm aid SLMREC in aligning its intermediate representations with those of the teacher
model, thereby endowing it with more potent representational extraction capabilities. Meanwhile,
Lms steers the model to assimilate domain knowledge pertinent to recommendation systems within
its preliminary layers. The ablation study in Music and Sport domain can be found in Appendix B.5.

8

Published as a conference paper at ICLR 2025

HR@1 HR@5
12

13

14

15

16

17

18

19

20
SASRec
E4SRec
SLMRec
SLMReconline

(a) Online KD
NDCG@5 MRR

14

15

16

17

18

19

20
SASRec
E4SRec
SLMRec
SLMReconline

(b) Online KD
HR@1 HR@5

14

15

16

17

18

19

20
B = 1
B = 2
B = 4

(c) Block Number

NDCG@5 MRR
Metric

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0
B = 1
B = 2
B = 4

(d) Block Number
Figure 4: Experiment results (%) of online KD and block number B in the Cloth dataset.

5.3 MODEL STUDY

Study of Online KD (RQ4). In our methodology, we first train the teacher model on downstream
recommendation tasks and then train the student model through knowledge distillation, which is an
offline knowledge distillation technology. In this section, we demonstrate that we can train both the
teacher model and SLMREC together on downstream recommendation tasks, which constitutes an
online knowledge distillation. Under this setting, we are able to achieve comparative results.
Study of block number B. We also conducted experiments to investigate the effect of block number
B. As shown in Figure 4, when B is set to 4, our model achieves the best performance. When B is
set to 1 or 2, the feature constraint imitation for each block within SLMREC is diminished relative to
the teacher model, resulting in a decline in performance.

6 THEORETICAL JUSTIFICATIONS

Beyond empirical experiments, we aim to provide insights into why small language models can
perform as effectively as large language models in learning desirable user representations. Specifically,
we focus on the feature propagation process within a single layer of an LLM, as outlined below:

H(k) = H(k−1) +A(k)H(k−1), (7)
where H(k) represents the hidden representation of the k-th layer, and A(k) is the attention matrix.
In LLaMa, the attention matrix is defined as A = softmax

(
Q′K′⊤
√
dk

)
, where Q′ and K′ incorporate

rotational encoding (Su et al., 2024). Our analysis is hinged on interpreting the stack of propagation
layers of Transformers as optimization dynamics for minimizing energies of certain forms (Shuman
et al., 2013; Kalofolias, 2016; Fu et al., 2022; Wu et al., 2024).
Proposition 1. Given the updating matrix Â(k) = A(k) + I, Eqn. 7 is equivalent to a gradient
descent step with respect to the following optimization problem:

min
H

∥∥∥H− Â(k)H(k−1)
∥∥∥2
2

(8)

As A(k) changes across layers, multi-layer attention models can be interpreted as a series of iterative
descent steps, each focusing on layer-specific denoising objectives. We will show that this multi-layer
structure can be simplified into a single-layer model while retaining the same denoising effectiveness.
Proposition 2. For any K-layer attention model (where K is an arbitrary positive integer) with the
layer-wise updating rule defined by Eqn. 7, there exists C∗ such that one gradient descent step for
the optimization problem (from the initial embeddings H(0))

min
H

∥∥∥H−C∗H(0)
∥∥∥2
2
, (9)

where C∗ associated with A, can yield the output embeddings H(K) of the K-layer model.

These findings indicate that for any multi-layer stacked decoder, an equivalent single-layer decoder
can be constructed to encode hidden representations in a similar way. Moreover, while the multi-layer
model optimizes distinct objectives at each layer, this may introduce redundancy when compared
to a single-layer model that achieves its objective in a single step. Consistent with the motivation
underlying our framework design, we employ knowledge distillation (KD) to guide the one-layer
network, enabling it to streamline the learning process and replicate the feature extraction capabilities
of a multi-layer network.

9

Published as a conference paper at ICLR 2025

7 RELATED WORK

In this section, we introduce the most related background and scientific investigations to this work,
which are roughly divided into five categories, i.e., 1) Sequential Recommendation, 2) Knowledge
Distillation (KD), 3) Depth-wise Knowledge of LLMs, 4) Model Pruning, and 5) Parameter-Efficient
Fine-Tuning (PEFT). For details on sections three through five, please refer to Appendix C.

Sequential Recommendation. Traditional Sequential Recommendation (TSR) methods (Wu et al.,
2017; Hidasi et al., 2015; Kang & McAuley, 2018) primarily focus on developing various temporal
encoders to capture short- and long-term user interests. The evolution of temporal sequential encoders
has progressed from LSTM units (Wu et al., 2017) and GRU units (Hidasi et al., 2015), to more
advanced architectures such as graph neural networks (He et al., 2020; Xu et al., 2023b; 2024c;
Zhao et al., 2023), self-attention layers (Kang & McAuley, 2018; Xu et al., 2024b), and Transformer
models (Sun et al., 2019). Following the triumph of large language models (LLMs), researchers
have begun leveraging open-source LLMs (Touvron et al., 2023) to construct their recommendation
systems (Zhao et al., 2024; Bao et al., 2023; Wei et al., 2024). G-LLMRec methods (Geng et al.,
2022; Xu et al., 2023a; Zhang et al., 2023b; Liao et al., 2023; Mei & Zhang, 2023) generate the
next item based on historical sequences, while E-LLMRec approaches (Li et al., 2023a; Zhu et al.,
2023; Wang et al., 2024) use LLMs as feature extractors to learn user representations for prediction.
More recently, (Zhai et al., 2024) introduces a generative sequential framework scalable up to GPT-3
dimensions. LLM-based recommendation systems frequently outperform TSR models by a margin of
20% (Li et al., 2023a; Liao et al., 2023; Wang et al., 2024), also increasing the parameters by nearly
100 times compared to TSR models. Therefore, the deployment of LLMRec models in real-world
platforms is heavily constrained by computational resources.

Knowledge Distillation (KD). Training a smaller “student" model on the distribution predicted by a
large “teacher" model is known as a powerful knowledge distillation technique (Hinton et al., 2015).
The fundamental insight behind this is to transform the knowledge and capabilities of the teacher
into more compact, compressed, and possibly skill-specific representations (Jiao et al., 2020; Gu
et al., 2024). For those cases when the student only has access to the output tokens generated by the
teacher, another way of KD is data distillation (Eldan & Li, 2023; Li et al., 2023b; Fu et al., 2023;
Hsieh et al., 2023). This technique first generates high-quality synthetic data by prompting the larger
teacher model. The synthetic data are then used to enhance the student’s capabilities by fine-tuning.

8 CONCLUSIONS

This paper explores the effectiveness of large language models (LLMs) in sequential recommendation.
Our motivational experiments reveal that intermediate layers in LLMs are redundant for achieving
optimal recommendation performance. Motivated by empirical insights, we adopt vanilla knowledge
distillation methods to improve the performance of small language models. Achieving only 13% of
the parameters compared to the LLMRec baseline, our SLMREC model yields an 8x acceleration and
slightly better performance. On top of our technical contributions, we believe the results in this paper
could shed light on a new promising direction for building effective and efficient recommenders based
on LLMs, which is largely under-explored. Additionally, we provide theoretical justifications showing
that while multi-layer models optimize distinct objectives at each layer, this can introduce redundancy
compared to a single-layer model that achieves its objective in one step. These theoretical insights
align with the motivation behind our framework design, where we employ knowledge distillation
(KD) to guide the one-layer network, enabling it to streamline the learning process and replicate the
feature extraction capabilities of a multi-layer network.

Future Work. This work concentrates on enhancing the efficiency of Large Language Model (LLM)
utilization in the sequential recommendation. A notable limitation is the model’s inability to adapt
to new scenarios through few-shot learning. When confronted with a fresh dataset or new traffic
logs from the platform, the model requires retraining from the entire dataset. In contrast, LLMs have
demonstrated promising results in adapting to downstream language tasks using few-shot learning
approaches. Looking ahead, we intend to investigate the incorporation of incremental learning
into LLM-based recommendations to bolster the model’s transferability. Additionally, integrating
auxiliary linguistic and visual information of users and items into the LLMRec model may offer
further improvements in its adaptability to new scenarios.

10

Published as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Newsha Ardalani, Carole-Jean Wu, Zeliang Chen, Bhargav Bhushanam, and Adnan Aziz. Under-
standing scaling laws for recommendation models. arXiv preprint arXiv:2208.08489, 2022.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
effective and efficient tuning framework to align large language model with recommendation. In
Proceedings of the 17th ACM Conference on Recommender Systems, pp. 1007–1014, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
in pretrained transformers. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 8493–8502, 2022.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent
english? arXiv preprint arXiv:2305.07759, 2023.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019.

Xinyan Fan, Zheng Liu, Jianxun Lian, Wayne Xin Zhao, Xing Xie, and Ji-Rong Wen. Lighter
and better: low-rank decomposed self-attention networks for next-item recommendation. In
Proceedings of the 44th international ACM SIGIR conference on research and development in
information retrieval, pp. 1733–1737, 2021.

Guoji Fu, Peilin Zhao, and Yatao Bian. p-Laplacian based graph neural networks. In Kama-
lika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 6878–6917. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/fu22e.html.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Specializing smaller language
models towards multi-step reasoning. In International Conference on Machine Learning, pp.
10421–10430. PMLR, 2023.

Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation as
language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5). In
Proceedings of the 16th ACM Conference on Recommender Systems, pp. 299–315, 2022.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. MiniLLM: Knowledge distillation of large
language models. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=5h0qf7IBZZ.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform editing?
surprising differences in causality-based localization vs. knowledge editing in language models.
Advances in Neural Information Processing Systems, 36, 2024.

11

https://proceedings.mlr.press/v162/fu22e.html
https://openreview.net/forum?id=5h0qf7IBZZ

Published as a conference paper at ICLR 2025

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain surgeon.
Advances in neural information processing systems, 5, 1992.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval,
pp. 639–648, 2020.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic
bert with adaptive width and depth. Advances in Neural Information Processing Systems, 33:
9782–9793, 2020.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger
language models with less training data and smaller model sizes. arXiv preprint arXiv:2305.02301,
2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021a.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021b.

Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM
Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pp. 4163–4174, 2020.

Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng Zeng, Zhenting Wang, Wenyue Hua, Haiyan
Zhao, Kai Mei, Yanda Meng, Kaize Ding, Fan Yang, Mengnan Du, and Yongfeng Zhang. Exploring
concept depth: How large language models acquire knowledge and concept at different layers?
In Proceedings of the 31st International Conference on Computational Linguistics, pp. 558–
573, Abu Dhabi, UAE, January 2025. Association for Computational Linguistics. URL https:
//aclanthology.org/2025.coling-main.37/.

Vassilis Kalofolias. How to learn a graph from smooth signals. In Artificial Intelligence and Statistics,
pp. 920–929. PMLR, 2016.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM), pp. 197–206. IEEE, 2018.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

12

https://aclanthology.org/2025.coling-main.37/
https://aclanthology.org/2025.coling-main.37/

Published as a conference paper at ICLR 2025

Young Jin Kim and Hany Hassan Awadalla. Fastformers: Highly efficient transformer models for
natural language understanding. arXiv preprint arXiv:2010.13382, 2020.

Anton Klenitskiy and Alexey Vasilev. Turning dross into gold loss: is bert4rec really better than
sasrec? In Proceedings of the 17th ACM Conference on Recommender Systems, pp. 1120–1125,
2023.

Walid Krichene and Steffen Rendle. On sampled metrics for item recommendation. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
1748–1757, 2020.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2021.

Xinhang Li, Chong Chen, Xiangyu Zhao, Yong Zhang, and Chunxiao Xing. E4srec: An elegant
effective efficient extensible solution of large language models for sequential recommendation.
arXiv preprint arXiv:2312.02443, 2023a.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023b.

Chen Liang, Simiao Zuo, Qingru Zhang, Pengcheng He, Weizhu Chen, and Tuo Zhao. Less is more:
Task-aware layer-wise distillation for language model compression. In International Conference
on Machine Learning, pp. 20852–20867. PMLR, 2023.

Jiayi Liao, Sihang Li, Zhengyi Yang, Jiancan Wu, Yancheng Yuan, Xiang Wang, and Xiangnan
He. Llara: Aligning large language models with sequential recommenders. arXiv preprint
arXiv:2312.02445, 2023.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp.
61–68, 2022.

Chen Ma, Peng Kang, and Xue Liu. Hierarchical gating networks for sequential recommendation. In
Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 825–833, 2019.

Kai Mei and Yongfeng Zhang. Lightlm: a lightweight deep and narrow language model for generative
recommendation. arXiv preprint arXiv:2310.17488, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances in
neural information processing systems, 32, 2019.

Aleksandr Vladimirovich Petrov and Craig Macdonald. gsasrec: Reducing overconfidence in
sequential recommendation trained with negative sampling. In Proceedings of the 17th ACM
Conference on Recommender Systems, pp. 116–128, 2023.

Ruihong Qiu, Zi Huang, Hongzhi Yin, and Zijian Wang. Contrastive learning for representation degen-
eration problem in sequential recommendation. In Proceedings of the fifteenth ACM international
conference on web search and data mining, pp. 813–823, 2022.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect of dropping layers of
pre-trained transformer models. Computer Speech & Language, 77:101429, 2023.

13

Published as a conference paper at ICLR 2025

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th international conference on World Wide
Web, pp. 285–295, 2001.

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst.
The emerging field of signal processing on graphs: Extending high-dimensional data analysis to
networks and other irregular domains. IEEE signal processing magazine, 30(3):83–98, 2013.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequential
recommendation with bidirectional encoder representations from transformer. In Proceedings of the
28th ACM international conference on information and knowledge management, pp. 1441–1450,
2019.

Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional sequence
embedding. In Proceedings of the eleventh ACM international conference on web search and data
mining, pp. 565–573, 2018.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Hanbing Wang, Xiaorui Liu, Wenqi Fan, Xiangyu Zhao, Venkataramana Kini, Devendra Yadav, Fei
Wang, Zhen Wen, Jiliang Tang, and Hui Liu. Rethinking large language model architectures for
sequential recommendations. arXiv preprint arXiv:2402.09543, 2024.

Wei Wei, Xubin Ren, Jiabin Tang, Qinyong Wang, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin,
and Chao Huang. Llmrec: Large language models with graph augmentation for recommendation.
In Proceedings of the 17th ACM International Conference on Web Search and Data Mining, pp.
806–815, 2024.

Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing. Recurrent recom-
mender networks. In Proceedings of the tenth ACM international conference on web search and
data mining, pp. 495–503, 2017.

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and
Junchi Yan. Simplifying and empowering transformers for large-graph representations. Advances
in Neural Information Processing Systems, 36, 2024.

Cong Xu, Zhangchi Zhu, Jun Wang, Jianyong Wang, and Wei Zhang. Fairly evaluating large
language model-based recommendation needs revisit the cross-entropy loss. arXiv preprint
arXiv:2402.06216, 2024a.

Shuyuan Xu, Wenyue Hua, and Yongfeng Zhang. Openp5: Benchmarking foundation models for
recommendation. arXiv preprint arXiv:2306.11134, 2023a.

Wujiang Xu, Shaoshuai Li, Mingming Ha, Xiaobo Guo, Qiongxu Ma, Xiaolei Liu, Linxun Chen, and
Zhenfeng Zhu. Neural node matching for multi-target cross domain recommendation. In 2023
IEEE 39th International Conference on Data Engineering (ICDE), pp. 2154–2166. IEEE, 2023b.

Wujiang Xu, Xuying Ning, Wenfang Lin, Mingming Ha, Qiongxu Ma, Qianqiao Liang, Xuewen
Tao, Linxun Chen, Bing Han, and Minnan Luo. Towards open-world cross-domain sequential
recommendation: A model-agnostic contrastive denoising approach. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pp. 161–179. Springer, 2024b.

14

Published as a conference paper at ICLR 2025

Wujiang Xu, Qitian Wu, Runzhong Wang, Mingming Ha, Qiongxu Ma, Linxun Chen, Bing Han, and
Junchi Yan. Rethinking cross-domain sequential recommendation under open-world assumptions.
In Proceedings of the ACM on Web Conference 2024, pp. 3173–3184, 2024c.

Yaowen Ye, Lianghao Xia, and Chao Huang. Graph masked autoencoder for sequential recom-
mendation. In Proceedings of the 46th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 321–330, 2023.

Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao, Leon Gao, Zhaojie Gong, Fangda
Gu, Michael He, et al. Actions speak louder than words: Trillion-parameter sequential transducers
for generative recommendations. arXiv preprint arXiv:2402.17152, 2024.

Buyun Zhang, Liang Luo, Yuxin Chen, Jade Nie, Xi Liu, Daifeng Guo, Yanli Zhao, Shen Li, Yuchen
Hao, Yantao Yao, et al. Wukong: Towards a scaling law for large-scale recommendation. arXiv
preprint arXiv:2403.02545, 2024.

Gaowei Zhang, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, and Ji-Rong Wen. Scaling law
of large sequential recommendation models. arXiv preprint arXiv:2311.11351, 2023a.

Minjia Zhang and Yuxiong He. Accelerating training of transformer-based language models with
progressive layer dropping. Advances in Neural Information Processing Systems, 33:14011–14023,
2020.

Yang Zhang, Fuli Feng, Jizhi Zhang, Keqin Bao, Qifan Wang, and Xiangnan He. Collm: Integrat-
ing collaborative embeddings into large language models for recommendation. arXiv preprint
arXiv:2310.19488, 2023b.

Wayne Xin Zhao, Junhua Chen, Pengfei Wang, Qi Gu, and Ji-Rong Wen. Revisiting alternative
experimental settings for evaluating top-n item recommendation algorithms. In Proceedings of the
29th ACM International Conference on Information & Knowledge Management, pp. 2329–2332,
2020.

Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu Pan, Kaiyuan Li,
Yujie Lu, Hui Wang, Changxin Tian, et al. Recbole: Towards a unified, comprehensive and
efficient framework for recommendation algorithms. In proceedings of the 30th acm international
conference on information & knowledge management, pp. 4653–4664, 2021.

Ziwei Zhao, Xi Zhu, Tong Xu, Aakas Lizhiyu, Yu Yu, Xueying Li, Zikai Yin, and Enhong Chen.
Time-interval aware share recommendation via bi-directional continuous time dynamic graphs. In
Proceedings of the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 822–831, 2023.

Ziwei Zhao, Fake Lin, Xi Zhu, Zhi Zheng, Tong Xu, Shitian Shen, Xueying Li, Zikai Yin, and
Enhong Chen. Dynllm: When large language models meet dynamic graph recommendation. arXiv
preprint arXiv:2405.07580, 2024.

Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, Zhongyuan
Wang, and Ji-Rong Wen. S3-rec: Self-supervised learning for sequential recommendation with
mutual information maximization. In Proceedings of the 29th ACM international conference on
information & knowledge management, pp. 1893–1902, 2020.

Yaochen Zhu, Liang Wu, Qi Guo, Liangjie Hong, and Jundong Li. Collaborative large language
model for recommender systems. arXiv preprint arXiv:2311.01343, 2023.

15

Published as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

2 Motivational Experiments 3

3 Preliminaries 4

4 SLMRec 5

5 Experiments 6

5.1 Experiment Setup . 6

5.2 Performance Comparisons . 7

5.3 Model Study . 9

6 Theoretical Justifications 9

7 Related Work 10

8 Conclusions 10

A Proof 17

A.1 Proof for Proposition 1 . 17

A.2 Proof for Proposition 2 . 17

B Experiments 18

B.1 Motivation Experiment Results . 18

B.2 Training Details . 18

B.3 Compared methods . 18

B.4 Model Efficiency . 20

B.5 Ablation Study . 21

C Extended Related Work 22

C.1 Depth-wise Knowledge of LLMs . 22

C.2 Model Pruning . 22

C.3 Parameter-Efficient Fine-Tuning (PEFT) . 22

16

Published as a conference paper at ICLR 2025

A PROOF

A.1 PROOF FOR PROPOSITION 1

Proposition 1. Given the matrix Â(k) = A(k) + I, Eqn. 7 is equivalent to a gradient descent step
with step size 1 for the following optimization problem:

min
H

∥∥∥H− Â(k)H(k−1)
∥∥∥2
2

(10)

Proof. The cost function at the k-th layer is denoted by

E(H;H(k − 1)) = min
H

∥∥∥H− Â(k)H(k−1)
∥∥∥2
2

(11)

Then, the gradient of E(H;H(k − 1)) is computed as

∂E(H;H(k − 1))

∂H
= 2

(
H− Â(k)H(k−1)

)
(12)

With the step size 1 of the gradient descent, it minimizes the cost function E(H;H(k − 1)) at the
current layer is

H(k) = H(k−1) − ∂E(H;H(k − 1))

∂H
|H=H(k−1) (13)

= H(k−1) −
(
H(k−1) − Â(k)H(k−1)

)
(14)

= Â(k)H(k−1) (15)

= H(k−1) +A(k)H(k−1) (16)

A.2 PROOF FOR PROPOSITION 2

Proposition 2. For any K-layer attention model (where K is an arbitrary positive integer) with the
layer-wise updating rule defined by Eqn. 7, there exists C∗ such that one gradient descent step for
the optimization problem (from the initial embeddings H(0))

min
H

∥∥∥H−C∗H(0)
∥∥∥2
2
, (17)

where C∗ associated with A, can yield the output embeddings H(K) of the K-layer model.

Proof. Similar to Theorem 1, we define Â(k) to simpify the Eqn. 7.

Â(k) = I+A(k), (18)

Then Eqn. 7 can be equivalently written as

H(k) = Â(k)H(k−1), (19)

By stacking K layers of propagation, we can denote the output embeddings as

H(K) = Â(K)H(K−1) = Â(K)Â(K−1)H(K−2) = · · · = Â(K) · · · Â(1)H(0) = A∗H(0), (20)

where A∗ defined as multiple matrix production.

We can show that solving the denoising problem with gradient step size µ∗

2 w.r.t. the objective

min
H

∥∥∥H−C∗H(0)
∥∥∥2
2
, (21)

17

Published as a conference paper at ICLR 2025

24 26 28 30 32
Layer Number

0.05

0.10

0.15

0.20

0.25

0.30

E4SRec HR@10
SASRec HR@10

(a) Movie (Infer) - HR@10

24 26 28 30 32
Layer Number

0.05

0.10

0.15

0.20
E4SRec NDCG@10
SASRec NDCG@10

(b) Movie (Infer) - NDCG@10

24 26 28 30 32
Layer Number

0.05

0.10

0.15

0.20 E4SRec MRR
SASRec MRR

(c) Movie (Infer) - MRR

0 10 20 30
Layer Number

0.270

0.275

0.280

0.285

0.290 E4SRec HR@10
SASRec HR@10

(d) Movie (Train) - HR@10

0 10 20 30
Layer Number

0.16

0.18

0.20

E4SRec NDCG@10
SASRec NDCG@10

(e) Movie (Train) - NDCG@10

0 10 20 30
Layer Number

0.12

0.14

0.16

0.18

0.20
E4SRec MRR
SASRec MRR

(f) Movie (Train) - MRR

Figure 5: We present the relationship between the number of decoder layers and the final recommen-
dation performance, with the performance of SASRec plotted as a baseline. Figures (a)-(c) show the
results of directly using representations from the middle layers for inference without training, while
(d)-(f) prune the later layers and train a model using only the specified number of layers. From the
results, we observe that deeper decoder layers introduce redundancy in recommendation tasks, with
models utilizing fewer layers (8-layer) achieving performance nearly equivalent to (24-layer) models.

Defining C∗ = 1
µ∗ (A∗ − (1− µ∗)I), H(k) = A∗H(0) will induce the output embeddings H(K),

by noticing that

H(K) =H(0) − µ∗

2

∂E(H;H(0))

∂H

∣∣∣∣
H=H(0)

(22)

=H(0) − 2
µ∗

2
(H(0) −C∗H(0)) (23)

=H(0) − 2
µ∗

2
[H(0) − 1

µ∗
(A∗ − (1− µ∗)I)H(0)] (24)

=H(0) − µ∗H(0) +A∗H(0) −H(0) + µ∗H(0) (25)

=A∗H(0) (26)

B EXPERIMENTS

B.1 MOTIVATION EXPERIMENT RESULTS

B.2 TRAINING DETAILS

In Table 6, we provide hyper-parameters in our training stage. Our implementation is based on
Huggingface Transformers 6. The input and intermediate hidden dimension in the feed-forward
network is 4096. We use mixed precision training and train on 1*80G Nvidia A100 GPU.

B.3 COMPARED METHODS

Tranadtional sequential recommendation methods:
6https://github.com/huggingface/transformers

18

https://github.com/huggingface/transformers

Published as a conference paper at ICLR 2025

Table 6: Hyper-parameter (HP) settings of our method on each dataset.

HP Cloth Movie Music Sport

adam_beta1 0.9 0.9 0.9 0.9
adam_beta2 0.999 0.999 0.999 9.999
adam_epsilon 1e-8 1e-8 1e-8 1e-8
learning_rate 0.003 0.001 0.002 0.002
logging_steps 1 1 1 1
lr_scheduler_type cosine cosine cosine cosine
max_grad_norm 1.0 1.0 1.0 1.0
max_steps 1500 -1 800 2000
optimizer adamw_torch adamw_torch adamw_torch adamw_torch
save_strategy steps steps steps steps
save_steps 50 100 100 100
eval_steps 50 100 100 100
warmup_steps 50 50 100 50
λ1 1.0 1.0 1.0 1.0
λ2 0.1 0.1 0.1 0.1
λ3 1.0 1.0 0.01 0.1
b 4 4 4 4

Caser (Tang & Wang, 2018) introduces a novel approach to sequential recommendation systems by
modeling user-item interactions as sequences, which is designed to predict the next item a user may
interact with by capturing both short-term and long-term dependencies in user behavior.

GRU4Rec (Hidasi et al., 2015) tackles the issue of modeling sparse sequential data while also
adapting RNN models to the recommender system. To achieve this, the authors propose a new
ranking loss function that is specifically designed for training these models. The implementation of
GRU4Rec in PyTorch can be found at the URL 7.

BERT4Rec (Sun et al., 2019) designs a bidirectional self-attention network to model user behavior
sequences. To prevent information leakage and optimize the training of the bidirectional model, a
Cloze objective is used to predict the randomly masked items in the sequence by considering both
their left and right context. The implementation of BERT4Rec in PyTorch can be found at the URL 8.

SASRec (Kang & McAuley, 2018) is a self-attention based sequential model that addresses the
challenge of balancing model parsimony and complexity in recommendation systems. By using an
attention mechanism, SASRec identifies relevant items in a user’s action history and predicts the next
item based on relatively few actions, while also capturing long-term semantics like an RNN. This
enables SASRec to perform well in both extremely sparse and denser datasets. The implementation
of SASRec in PyTorch can be found at the URL 9.

HGN (Ma et al., 2019) propose a novel hierarchical gating mechanism to effectively capture both
short-term and long-term user preferences in sequential recommendation tasks. Their model dynami-
cally selects relevant interaction history at multiple temporal levels, improving next-item prediction
accuracy. This approach outperforms state-of-the-art methods while maintaining efficiency and
scalability for large-scale recommendation systems.

LightSANs (Fan et al., 2021) introduces a low-rank decomposition technique for self-attention
networks, reducing their computational complexity while maintaining strong performance. This
approach makes the model more efficient and scalable for large-scale recommendation tasks without
compromising accuracy.

For the code implementation of Caser, HGN and LightSANs, we run the experiment based on the
RecBole (Zhao et al., 2021) 10.

7https://github.com/hungpthanh/GRU4REC-pytorch
8https://github.com/jaywonchung/BERT4Rec-VAE-Pytorch
9https://github.com/pmixer/SASRec.pytorch

10https://github.com/RUCAIBox/RecBole/tree/master

19

https://github.com/hungpthanh/GRU4REC-pytorch
https://github.com/jaywonchung/BERT4Rec-VAE-Pytorch
https://github.com/pmixer/SASRec.pytorch
https://github.com/RUCAIBox/RecBole/tree/master

Published as a conference paper at ICLR 2025

Self-supervised sequential recommendation methods

S3-Rec (Zhou et al., 2020) introduces self-supervised learning into a sequential recommendation by
utilizing mutual information maximization (MIM) to learn better representations from user sequence
data. The model incorporates four auxiliary self-supervised objectives: item cropping, item masking,
item reordering, and segment prediction, to enhance the quality of learned item representations. By
pre-training the model with these self-supervised tasks and then fine-tuning in the recommendation
task, it achieves strong performance even with limited training data. The method demonstrates that
self-supervised learning can effectively leverage the inherent supervisory signals within sequential
data to improve recommendation quality.

DuoRec (Qiu et al., 2022) addresses the representation degeneration problem in sequential recom-
mendation where item embeddings tend to be similar and occupy a narrow cone. Instead of traditional
data-level augmentation (like masking or cropping), it introduces model-level augmentation using dif-
ferent Dropout masks to generate sequence representations. They also propose using sequences with
the same target item as positive samples, which provides more meaningful contrasts. Through this
contrastive regularization approach, DuoRec encourages a more uniform distribution of embeddings
in the representation space, leading to better recommendation performance. The key innovation is
tackling representation degeneration through model architecture rather than data augmentation while
maintaining semantic consistency in the contrasting process.

MAERec (Ye et al., 2023) addresses limitations in sequential recommendation systems where
other methods struggle with limited labels and noisy user behavior. Unlike previous approaches
using manual contrastive learning strategies, MAERec implements a graph masked autoencoder
framework that automatically identifies and focuses on meaningful item relationships. The model
uses adaptive masking and task-specific regularization to ensure the learned representations align
with recommendation goals while filtering out noise. By dynamically reconstructing masked item
transitions rather than relying on hand-crafted data augmentation, MAERec achieves more robust
performance across different recommendation scenarios without requiring manual heuristics. The
approach demonstrates strong results in handling both data sparsity and noise while maintaining
computational efficiency. The implementation of MAERec in PyTorch can be found at the URL 11.

For the code implementation of S3-Rec and DuoRec, we run the experiment based on the
RecBole (Zhao et al., 2021) 12 13.

LLM-based recommendation methods:

Open-P5 (Xu et al., 2023a) is an open-source platform introduced to catalyze research in LLM-based
generative recommender systems. It supports key model architectures like T5 and Llama-2 across
diverse public datasets, focusing on sequential and straightforward recommendation tasks. The
platform emphasizes the role of item IDs through various indexing methods and offers a customizable,
efficient, and standardized environment for developing and assessing recommender systems. The
implementation of Open-P5 in PyTorch can be found at the URL 14.

E4SRec (Li et al., 2023a) integrate of Large Language Models (LLMs) into sequential recommen-
dation systems, offering a significant leap in handling item IDs and personalization. In the original
paper, they use Softmax layer to output each user-item prediction score. The implementation of
E4SRec in PyTorch can be found at the URL 15.

B.4 MODEL EFFICIENCY

We show the running time of Open-P5, E4SRec, and our SLMREC in each dataset. These compar-
isons were conducted on a machine with an A100 GPU. The training batch size for all models was
standardized at 256. During inference, E4SRec and SLMREC utilized a batch size of 512, whereas
Open-P5’s inference was performed with a batch size of 1.

11https://github.com/HKUDS/MAERec/tree/main
12https://github.com/RUCAIBox/RecBole/tree/master
13https://github.com/RuihongQiu/DuoRec/tree/master
14https://github.com/agiresearch/OpenP5
15https://github.com/HestiaSky/E4SRec

20

https://github.com/HKUDS/MAERec/tree/main
https://github.com/RUCAIBox/RecBole/tree/master
https://github.com/RuihongQiu/DuoRec/tree/master
https://github.com/agiresearch/OpenP5
https://github.com/HestiaSky/E4SRec

Published as a conference paper at ICLR 2025

Table 7: Detailed efficiency comparison of Open-P5, E4SRec, and our SLMREC, in terms of
training and inference time, on each dataset.

Method Cloth Movie Music Sport
Tr time (h) Inf time (h) Tr time (h) Inf time (h) Tr time (h) Inf time (h) Tr time (h) Inf time (h)

Open-P5LLaMa 1.36 3554.43 0.36 3504 0.35 3692 1.60 9017

E4SRec 5.27 0.578 1.90 0.208 1.88 0.216 6.75 0.660

SLMREC4←8 0.97 0.070 0.15 0.030 0.30 0.030 0.98 0.078

Table 8: Efficiency comparison of SASRec, MAERec and our SLMREC in terms of epoch-wise
inference time (hours). These comparisons were conducted on a machine with an A100 GPU. During
inference, models leverage parallel processing with a batch size of 512.

Method Inf time(h) Improv. (%)
SASRec 0.015 0.00
MAERec 0.061 11.96

SLMREC4←8 0.052 45.26

Table 9: Experiment results (%) of ablation study.

SLMREC
Music Sport

HR@1 HR@5 NDCG@5 MRR HR@1 HR@5 NDCG@5 MRR
+Dcos 5.62 8.78 7.23 7.81 6.25 9.25 7.76 8.41
+Dcos,Dnorm 5.95 9.26 7.65 8.23 6.61 9.82 8.24 8.87
+Dcos,Lms 5.69 8.94 7.36 7.91 6.51 9.39 7.96 8.62
+Dcos,Dnorm,Lms 5.72 9.15 7.48 8.03 6.62 9.83 8.25 8.89

To evaluate deployment efficiency in real-world scenarios, we compare the inference time between tra-
ditional recommendation approaches and LLM-based methods. Our experimental results demonstrate
that SLMRec achieves comparable computational efficiency to traditional methods while delivering a
substantial performance improvement of nearly 50% over SASRec.

B.5 ABLATION STUDY

We present the remaining ablation study results in Table 9. SLMREC, when enhanced with various
knowledge regularizers (namely Dcos,Dnorm and Lms), demonstrates improved performance. The
regularizers Dcos and Dnorm aid SLMREC in aligning its intermediate representations with those
of the teacher model, thereby endowing it with more potent representational extraction capabilities.
Meanwhile, Lms steers the model to assimilate domain knowledge pertinent to recommendation
systems within its preliminary layers.

21

Published as a conference paper at ICLR 2025

C EXTENDED RELATED WORK

C.1 DEPTH-WISE KNOWLEDGE OF LLMS

The recent community interest stems from how linguistic properties and knowledge are encoded in
language models. (Meng et al., 2022; Dai et al., 2022; Jin et al., 2025) emphasize that knowledge
localizes within the middle or final layers. On the other hand, (Hase et al., 2024) attempts to perform
knowledge editing and concludes that information may be stored non-locally across layers. What’s
more, (Men et al., 2024; Gromov et al., 2024) share a similar view that current pretraining methods
are not properly leveraging the parameters in the deeper layers of the network or that the shallow
layers play a critical role in storing knowledge. By contrast, we are the first to investigate which part
of knowledge on the LLMs plays a key role, especially in the sequential recommendation scene.

C.2 MODEL PRUNING

Model Pruning is a fundamental approach for reducing the size of a well-trained large model by
removing unimportant parameters (Hassibi & Stork, 1992). Recent work has focused on applying
pruning methods to the Transformer architecture (Vaswani et al., 2017). These works have studied
different components of the model architecture for pruning, including dropping attention heads (Voita
et al., 2019; Michel et al., 2019), dropping layers (Fan et al., 2019; Zhang & He, 2020; Kim &
Awadalla, 2020; Sajjad et al., 2023), dropping hidden xistates (Hou et al., 2020), replacing sparse
weight matrices with smaller dense ones (Ashkboos et al., 2024), and combinations of these solutions.
By contrast, our work performs layer removal through simple knowledge distillation, rather than
more complex pruning techniques.

C.3 PARAMETER-EFFICIENT FINE-TUNING (PEFT)

PEFT emerges as a novel technique for tailoring Large Language Models (LLMs) to specific tasks
while ensuring minimal computational and memory costs (Houlsby et al., 2019; Lester et al., 2021;
Hu et al., 2021b; Liu et al., 2022). In this work, we combine our method with the Low-Rank Adapters
(LoRA) (Hu et al., 2021b) to reduce the memory and computation of the knowledge distillation
process. Specifically, we freeze the pre-trained model and only tune a small set of additional trainable
parameters.

22

	Introduction
	Motivational Experiments
	Preliminaries
	SLMRec
	Experiments
	Experiment Setup
	Performance Comparisons
	Model Study

	Theoretical Justifications
	Related Work
	Conclusions
	Proof
	Proof for Proposition 1
	Proof for Proposition 2

	Experiments
	Motivation Experiment Results
	Training Details
	Compared methods
	Model Efficiency
	Ablation Study

	Extended Related Work
	Depth-wise Knowledge of LLMs
	Model Pruning
	Parameter-Efficient Fine-Tuning (PEFT)

