
A Appendix

A.1 Additional Experiments

Table 8: Effects of different transition
periods of MeTA on node classification.
Transition Period MOOC Reddit Wikipedia

T = 2 78.62 67.81 89.30
T = 5 79.25 68.22 89.78
T = 10 79.41 68.37 90.03
T = 20 79.33 68.39 89.97

We analyze the sensitivity of MeTA to the hyper-parameter:
T to control the period of memory transitions and p1, p2 to
control the DA magnitudes. The results on T are presented
in Table 8. When T is larger, more recent edges are as-
signed small DA magnitudes, so that the essential semantic
information is preserved. Too large T places too many
edges on the first level, which may not effectively augment
the input features. Note that in all of our experiments, we
set T = 10 by default, which generally achieves satisfactory performance.

A.2 Proof for Analysis and Discussion

We analyze how our MeTA and DA techniques work for temporal graph learning. Recall that if an
edge is more distant to a target node on either topology or time, it is less important or informative to
predict the target node’s activities and thus we are expected to apply a higher DA magnitude to it.
Next, we provide therotical analysis to show that our methods meet this expectation.

Proposition 4 (Effects of topology). If edge e
(l)
km(τ) contribute to the node state s

(1)
i (t), and the

distances from nodes k and m to i are equal to or larger than h hops in graph G, we have the level of
edge e

(l)
km(τ): l ≥ min(h+ 1, L) and the time τ < t, where L is the number of levels.

Proof. Denote l1 = l and τ1 = τ . Since edge e(l)km(τ) conributes to the node state si(t), from Alg. 1,
there exists a temporal path [e

(l1)
km (τ1), . . . , e

(lN )
oi (τN )] connecting e

(l1)
km (τ) and node i to propagate

the feature of e(l1)km (τ) to node i at time t, where N is the length of this path. Because of Eq. (2) and
Eq. (3), lx > lx+1 and τx < τx+1 < t holds. Because the distances from nodes k and m to i are
equal or larger than h hops in graph G and our DA techinique do not connect any node pairs that
are not connected in G, N ≥ h + 1 holds. Because lN ≥ 1, N ≥ h + 1, lx > lx+1 holds, there is
l = l1 ≥ h+ 1. Because τx < τx+1 < t holds, there is τ = τ1 < t

Proposition 1 implies that the edges more distant to the target node on the topology must be on levels
of higher l, and thus of higher DA magnitudes. In addition to the topology, we provide the following
proposition to illustrate the effects of the temporal distances.

Proposition 5 (Effects of time). If edges e(l1)ij (τ1) and e
(l2)
ik (τ2) connects node i and directly con-

tribute to the node state si(t) as Eq. (2), we have l1 ≥ l2, τ1 < τ2 < t when τ1 < τ2 holds, and
l1 ≤ l2, τ2 < τ1 < t holds with τ1 > τ2.

Proof. Based on Alg. 1, because edges e(l1)ij (τ1) and e
(l2)
ik (τ2) directly contribute to the node state

si(t) as Eq. (2), l1 = l2 holds if no memory transition of node i happens between τ1 (inclusive)
and τ2 (inclusive). If memory transition of node i happens between τ1 (inclusive) and τ2 (inclusive),
there is l1 > l2 with τ1 < τ2 and l1 < l2 with τ1 > τ2. Because edges e

(l1)
ij (τ1) and e

(l2)
ik (τ2)

directly contribute to the node state si(t) as Eq. (2), τ1 < t, τ2 < t holds. Overall, there is
l1 ≥ l2, τ1 < τ2 < t when τ1 < τ2 holds, and l1 ≤ l2, τ2 < τ1 < t holds with τ1 > τ2.

Proposition 2 shows that the earlier edges tend to be on levels of higher l, and thus of higher DA
magnitudes. Then, we analyze how our DA strategies retain the original temporal graph characteristics
to model the realistic noise. Many social and natural activities follow the poisson process [19, 13].
Denote the time range of the training data as [0, Tmax]. If nodes’ interactions follow the poisson
process, we have the following lemma for the distribution of the interactions’ happening time [6]:

Lemma 1. If interactions follow a homogenous poisson process, the happening time of an interaction
follows the uniform distribution on the time range [0, Tmax].

14



Our data augmentation includes the perturbations on the edge time. We provide the following theorem
to show that our DA techniques do not change the distribution of edge time.
Theorem 2. If the edges before data augmentation follow a homogeneous Poisson process, our data
augmentation does not change the distribution of any edge’s occurrence time.

Proof. From Lemma 1, we have the probability density function of the happening time of an edge as:
f(t) = 1

Tmax
,∀t ∈ [0, Tmax]. Denote the probability density function of the happening time of an

event after the data augmentation as fDA(t), the probability density function of the noise on edge
time applied by our DA as fnoise(t), and dt as an infinitely small value. Given an observed edge, we
have the probability of the edge happening between t and t+ dt after our data augmentation as

fDA(t)dt =

∫ Tmax

0

f(τ) · fnoise(t− τ)dtdτ +

∫ 0

−∞
f(t) · fnoise(τ − t)dtdτ+ (6)∫ ∞

Tmax

f(t) · fnoise(τ − t)dtdτ (7)

=

∫ Tmax

0

1

Tmax
fnoise(t− τ)dtdτ +

∫ 0

−∞

1

Tmax
fnoise(τ − t)dtdτ+ (8)∫ ∞

Tmax

1

Tmax
fnoise(τ − t)dtdτ (9)

=

∫ Tmax

0

1

Tmax
fnoise(τ − t)dtdτ +

∫ 0

−∞

1

Tmax
fnoise(τ − t)dtdτ+ (10)∫ ∞

Tmax

1

Tmax
fnoise(τ − t)dtdτ (11)

=
1

Tmax
dt[

∫ Tmax

0

fnoise(τ − t)dτ +

∫ 0

−∞
fnoise(τ − t)dτ +

∫ ∞
Tmax

fnoise(τ − t)dτ ]

(12)

=
1

Tmax
dt

∫ ∞
−∞

fnoise(τ − t) =
1

Tmax
dt (13)

Therefore, we have:

fDA(t) =
1

Tmax
,∀t ∈ [0, Tmax], (14)

which is still a uniform distribution on the time range [0, Tmax].

This theorem guarantees that our DA techiniques do not break the original edge time distribution.
Otherwise, if the original distribution is broken, e.g., all the edge time decrease to 0, the augmented
edges cannot reflect the practical condition and may degrade the models’ generalization.

In addition to the time distribution, we provide the following proposition to show the expected edge
number does not change after our DA. Denote the edge set of the original graph G as E and that of
the augmented graph G(l) as E(l).
Proposition 6. After our data augmentation, the expected edge number is the same as that before
data augmentation for any data augmentation magnitude, i.e., E[#E(l)] = #E ,∀pl ∈ [0, 1] holds.

Proof. Denote the original graph as G, and the corresponding edge set as E . Our time perturbation
DA technique does not change the number of edges. After removing edges, the augmented graph Ĝ
has the expected number of edges as

E[#Ê1] =

#E∑
i=1

1− p = (1− p)#E (15)

After adding edges with the budget p#E , the number of edges in the augmented graph is:

E[#Ê ] = E[#Ê1 + p#E ] = (1− p)#E + p#E = #E (16)

15



This proposition shows that our data augmentation does not change the density of interactions in
expectation, which meets the practical condition and does not induce extra computation load.

A.3 More Details about Experiments for Reproducibility

In this section, we describe more detailed settings about the experiments to help in reproducibility.

A.3.1 Datasets and Software Versions

We download the MOOC dataset from the website1, the Reddit dataset from the website2, and the
Wikipedia dataset from the website3.

The Reddit dataset consists of one month of posts made by users on subreddits4. The collectors select
the 1,000 most active subreddits as items and the 10,000 most active users. This results in 672,447
interactions. The collectors convert the text of each post into a feature vector representing their LIWC
categories. The Reddit dataset holds ground-truth labels of banned users from Reddit5. This gives
366 true labels among 672,447 interactions (= 0.05%). The Wikipedia dataset consists of one month
of edits made by edits on Wikipedia pages6. The collectors select the 1,000 most edited pages as
items and editors who made at least 5 edits as users (a total of 8,227 users). This generates 157,474
interactions. Similar to the Reddit dataset, the collectors convert the edit text into an LIWC-feature
vector. The MOOC dataset consists of actions, e.g., viewing a video, submitting an answer, etc., done
by students on a MOOC online course7. This dataset consists of 7,047 users interacting with 98 items
(videos, answers, etc.) resulting in over 411,749 interactions. There are 4,066 drop-out events (=
0.98%). The MOOC dataset was originally collected for the KDD 2015 challenge8.

For the transductive setting, we examine embeddings of the nodes that have been observed in training,
via the future edge prediction task and the node classification. In the inductive setting, we examine
the inductive learning capability using the inferred representations of unseen nodes, by predicting the
future links between unseen nodes and classify them based on their inferred embedding dynamically.
For the inductive experiments, as suggested by [25] and [39], we randomly sample 10% of nodes,
mask them during training and treat them as unseen nodes by only considering their interactions in
validation and testing period. As such, an appropriate number of future edges among the unseen
nodes will show up during validation and testing.

Regarding software versions, we install CUDA 10.0 and cuDNN 7.0. TensorFlow 1.12.0 and PyTorch
1.0.0 with Python 3.6.0 are used. Note that all the experiments are running a Linux Server with the
Intel(R) Xeon(R) E5-1650 v4 @ 3.60GHz CPU, and the GeForce GTX 1080 Ti GPU.

A.3.2 Settings of Baseline

CTDNE. For the temporal network embedding model CTDNE, the walk length for the temporal
random walk is selected among {60, 80, 100}, where setting walk length to 80 gives slightly better
validation outcome. The original paper considers several temporal edge selection (sampling) methods
(uniform, linear and exponential) and finds uniform sampling with best performances [21]. Since our
setting is similar to theirs, we adopt the uniform sampling approach.

TGAT. As suggested by the authors, we fix the node embedding dimension and the time encoding
dimension to be the original feature dimension for simplicity, and then select the number of TGAT
layers from {1, 2, 3}, the number of attention heads from {1, 2, 3, 4, 5}, according to the link predic-
tion AP score in the validation dataset. Although TGAT does not put restriction on the neighborhood
size during aggregations, to speed up training, especially when using the multi-hop aggregations, we
use neighborhood dropout (selected among p = {0.1, 0.3, 0.5}) with the uniform sampling. During
training, we use 0.0001 as the learning rate for all datasets, with Glorot initialization and the Adam

1http://snap.stanford.edu/jodie/mooc.csv
2http://snap.stanford.edu/jodie/reddit.csv
3http://snap.stanford.edu/jodie/wikipedia.csv
4http://files.pushshift.io/reddit/
5https://www.reddit.com/
6https://meta.wikimedia.org/wiki/Data_dumps
7https://www.mooc.org/
8https://biendata.com/competition/kddcup2015/data/

16



SGD optimizer. Based on the validation results, using two TGAT layers and two attention heads
with dropout rate of 0.1 gives the best performance. For inference, we inductively compute the
embeddings for both the unseen and observed nodes at each time point that the graph evolves, or
when the node labels are updated. We then use these embeddings as features for the future link
prediction and dynamic node classifications with multilayer perceptron.

JODIE, DyRep, and TGN. When implementing JODIE, DyRep, and TGN as the benchmark, we
use the Adam optimizer with a learning rate of 0.0001, a batch size of 200 for both training, validation
and testing, and early stopping with a patience of 5. We sample an equal amount of negatives to the
positive interactions, and use average precision as reference metric. Additional hyper-parameters
used for both future edge prediction and dynamic node classification are as following: memory
dimension as 172, node embedding dimension 100, time embedding dimension 100, number of
attention heads as 2, dropout ratio as 0.1. For all the graph embedding modules, as suggested by
[25], we use neighbors sampling [10] (i.e. only aggregate from k neighbors) since it improves the
efficiency of the model without decreasing accuracy. As suggested by [25], the sampled edges are the
k most recent ones, rather than the traditional approach of sampling them uniformly, since we found
it to perform much better on the validation set. For JODIE we simply use the time embedding module,
while for DyRep we augment the messages with the result of temporal graph attention performed on
the destination’s neighborhood. For both we use a vanilla RNN as the memory updater module.

We refer to the following websites when implementing the above mentioned models:

1. CTDNE: https://github.com/LogicJake/CTDNE
2. TGAT: https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-

temporal-graphs
3. JODIE: https://github.com/srijankr/jodie
4. DyRep: https://openreview.net/forum?id=HyePrhR5KX
5. TGN: https://github.com/twitter-research/tgn

A.4 Broader impact

This article mainly discusses data augmentation on temporal graphs. One of the most popular
scenarios in this field is the social network. Our methods support adaptively augmenting the temporal
graph data. The proposed data augmentation method is simple, fast, and efficient. It is possible that
the proposed algorithms provide an effective solution on how to augment the temporal graphs for
better effectiveness on temporal graph models. Temporal graph learning is generally being applied to
more and more tasks and applications, since many practical scenarios can be modeled as evolving
topology data. Some of the examples include recommendation systems, financial investments, and
transportation analysis, etc. However, the study of risks of applying temporal graph learning methods,
such as adversarial attacks, privacy protection, ethics and biases are still at an early stage. In practice,
we should be warned about such risks and devise testing and monitoring framework carefully to avoid
undesirable outcomes.

17


