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A Datasets used for experiments

This section provides additional background information about the five datasets we use to train and
evaluate the baseline and our approach in the main paper.

CUB-200-2011. The Caltech-UCSD Birds-200-2011, aka CUB-200-2011 or simply ‘CUB’, is
focused on fine-grained image classification tasks. It was proposed by Wah et al.|(2011)) and contains
11,788 images of 200 subcategories. We follow previous works like|Chen et al.|(2019) and use the
evaluation protocol introduced by Hilliard et al.| (2018), splitting the dataset into 100 classes for
training, 50 for validation and 50 for testing.

minilmageNet. The minilmageNet dataset has been initially proposed by (Vinyals et al.,2016) and
the specific few-shot settings have been further refined in later work by (Ravi & Larochelle, [2017)). It
consists of a 100 class subset selected from the ImageNet dataset (Russakovsky et al., 2015)) with 600
images for each class. The dataset is split into 64 training, 16 validation and 20 test classes.

tieredImageNet. The fieredlmageNet (Ren et al.| 2018)) dataset is equally a subset of classes selected
from the bigger ImageNet (Russakovsky et al.|[2015]) dataset, however with a different structure and
substantially larger set of classes. It is composed of 34 super-classes with a total of 608 categories
that are split into 20, 6 and 8 super-classes totalling in 779,165 images. This unique split aims at
achieving better separation between training, validation and testing, respectively.

CIFAR-FS. The CIFAR-FS dataset (Bertinetto et al.,|2019) contains essentially the data from the
CIFAR100 (Krizhevsky et al.,[2009) dataset and splits the 100 categories of 600 images each into 64
training, 16 validation and 20 test classes.

FC-100. The FC-100 dataset (Oreshkin et al.,[2018) is similarly derived from CIFAR100 (Krizhevsky:
et al.| [2009) and split into 60 training, 20 validation and 20 test classes, but follows a splitting
approach more similar to tieredImageNet to increase separation between classes and difficulty.

B Effect of increased network depth

All experiments are conducted with equal contribution of all adaptation steps to the conditioning loss
(as defined in Equation (9) of the main paper), with the conditioning constraint enforced with respect
to the parameters of the classifier. To provide insights into the effect of increasing the depth and
number of parameters onto the conditioning performance, we evaluate the following architectures
on all five popular few-shot classification benchmarks for 5-shot and 1-shot settings: Convolutional
networks with 4 layers (Conv4) and 6 layers (Conv6), as well as the two residual networks ResNet10
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and ResNetl8. While a selection of the results has been discussed in the main paper, the test

accuracies on all datasets across all architectures are presented in Table[AT]

Table Al: Increasing the network’s depth and number of parameters. Evaluations are conducted
on all five popular FSL datasets: CUB-200-2011 (Wah et al.| 2011)), minilmageNet (Vinyals et al.,
2016), tieredlmageNet (Ren et al., 2018)), CIFAR-FS (Bertinetto et al.,[2019) and FC100 (Oreshkin
et al.L|2018)). Reported are the classification accuracies on the unseen test set, averaged over 600 tasks
following previous works like|Chen et al.|(2019).

5-shot 1-shot
Network Method | step 11 step 21 step 31 step 41 step 51 | step 11 step 21 step 31 step 41 step 51
Convd MAML |20.04+0.02 24.16+0.38 64.30+0.84 74.71+0.78 77.06+0.69 | 50.53+0.92 57.94+0.97 60.40+0.98 60.90+0.98 61.09+0.98
ours 61.78+0.75 73.28+0.71 75.64+0.71 76.75+0.68 77.24+0.67|55.93+0.92 61.62+0.96 62.82+0.98 63.20+0.99 63.26+0.98
@ Convé MAML |20.00+0.00 34.14+0.62 73.58+0.82 79.40+0.70 80.52+0.65 | 20.06+0.04 25.85+0.48 62.54+1.02 66.78+0.98 67.67+0.98
8 ours 75.42+0.72 79.21+0.65 80.01+0.65 80.44+0.63 80.65+0.63 | 65.15+1.06 68.28+1.06 68.54+1.07 68.76+1.06 68.87+1.06
ResNet10 MAML |20.00+0.00 20.00+0.00 20.60+0.13 76.65+0.79 82.13+0.64 | 20.00+0.00 33.55+0.79 67.41+1.08 72.20+0.97 73.04+0.96
. ours 68.71+0.79 81.36+0.64 82.98+0.61 83.53+0.60 83.82+0.59 |63.53+1.05 71.56+1.02 73.87+1.08 74.72+0.97 74.99+0.96
ResNet18 MAML |20.00+0.00 20.48+0.13 43.96+0.86 79.56+0.74 83.56=+0.61|20.02+0.02 25.57+0.54 72.20+0.98 74.06+0.95 74.52+0.94
ours 81.57+0.61 84.00+0.55 84.47+0.54 84.63+0.54 84.66+0.54 | 66.55+1.03 72.93+0.98 74.38+0.97 74.96+0.97 75.22+0.97
Convd MAML |20.00+0.01 20.00+0.00 52.87+0.75 61.12+0.75 64.50+0.69 | 38.76+0.73 42.33+0.74 45.99+0.77 47.67+0.81 48.15+0.80
2 ours 56.09+0.66 62.28+0.70 64.01+0.67 64.89+0.67 65.26+0.67 | 43.68+0.74 47.65+0.79 48.50+0.79 48.76+0.79 48.94+0.80
:aZc)n Convé MAML |20.19+0.07 24.17+0.30 57.25+0.72 64.24+0.73 65.96+0.71 | 21.40+0.23 30.85+0.66 45.91+0.87 50.30+0.88 51.22+0.88
g ours 62.31+0.72 66.66+0.71 67.63+0.72 68.21+0.71 68.43+0.71 | 50.92+0.85 52.98+0.89 53.18+0.89 53.28+0.89 53.34:+0.89
E ResNet1o MAML | 20.06+0.05 20.030.04 41.74+074 63.28+0.72 69.4340.71|20.02+0.04 22.14%0.30 50.99+0.84 56.47+0.82 57.35+0.80
g ours 53.93+0.75 68.96+0.72 71.40+0.70 72.18+0.69 72.46+0.67 | 50.44+0.82 55.86+0.84 57.44+0.84 57.97+0.85 58.20+0.85
ResNet18 MAML |20.12+0.06 20.00+0.00 36.64+0.69 65.01+0.74 71.06+0.74 | 20.02+0.03 20.79+0.17 52.81+0.86 56.42+0.90 56.84+0.90
- ours 68.60+0.71 72.05+0.70 72.93+0.69 73.10+0.69 73.28+0.68 | 54.46+0.90 57.01+0.91 57.31+0.91 57.52+0.91 57.64+0.91
Convd MAML |20.00+0.00 22.30+0.28 51.64+0.77 59.76+0.83 63.26+0.77 | 40.25+0.80 45.17+0.85 46.49+0.80 47.03+0.89 47.33+0.90
% ours 55.68+0.75 61.78+0.77 63.49+0.77 64.49+0.75 64.77+0.75 |42.23+0.83 45.97+0.88 46.90+0.88 47.22+0.88 47.34+0.88
& Conv6 MAML |20.29+0.10 24.73+0.42 58.56+0.79 65.33+0.82 66.78+0.79|43.29+0.01 48.13+0.92 49.59+0.95 50.20+0.94 50.40+0.96
E ours 60.27+0.78 65.68+0.79 66.76+0.79 67.24+0.79 67.60+0.79 |46.10+0.88 49.59+0.93 50.44+0.95 50.72+0.95 50.87+0.95
g ResNet10 MAML |20.01+0.01 20.27+0.10 36.18+0.76 67.61+0.90 73.03+0.85|20.00+0.00 24.68+0.50 52.25+0.92 57.34+0.94 57.80+0.94
-2 h ours 58.15+0.83 71.83+0.75 74.40+0.74 75.40+0.72 75.77+0.71 | 52.88+0.97 58.09+0.96 59.19+0.96 59.54+0.96 59.65+0.96
ResNet18 MAML |20.00+0.01 20.1040.05 38.93+0.79 68.57+0.88 73.90+0.79|20.02+0.02 21.19+0.23 51.30+0.95 56.80+1.00 57.71+1.00
S ours 70.13+0.78 73.60+0.74 74.31+0.74 74.55+0.74 74.67+0.74|54.79+0.96 57.44+0.97 57.64+0.97 57.71+0.98 57.80+0.98
Convd MAML |20.00+0.01 20.00+0.00 56.12+0.85 67.08+0.81 69.97+0.75 | 34.71+0.75 42.34+0.91 48.57+0.96 51.10+0.95 51.84+0.93
v ours 60.77+0.82 67.55+0.79 69.04+0.77 69.90+0.77 70.32+0.76 | 46.59+0.92 50.84+0.98 51.59+0.98 51.92+0.98 52.01+0.99
gj,-‘ Convé MAML |20.22+0.08 24.66+0.40 65.34+0.85 72.33+0.82 74.00+0.79 | 24.83+0.47 43.05+0.82 54.90+0.95 57.11+0.95 57.83+0.95
f‘t ours 67.12+0.79 72.63+0.79 73.75+0.77 T4.24x0.77 T4.47+0.78 | 54.07+0.92 57.11+0.94 57.68+0.96 57.92+0.96 58.12+0.96
% ResNet10 MAML |20.04+0.03 20.00+0.00 40.23+0.87 71.29+0.87 77.12+0.77 | 20.00+0.00 57.47+0.97 63.57+1.01 64.93+1.00 65.42+0.98
ours 60.93+0.87 75.65+0.76 77.67+0.72 78.45+0.72 78.90+0.70 | 57.58+0.96 63.97+0.94 65.63+0.94 66.07+0.94 66.17+0.95
ResNet18 MAML |20.01+0.01 20.0440.03 45.75+0.83 75.69+0.81 79.59+0.70 | 20.00+0.00 23.41+0.39 63.34+0.99 67.05+0.97 67.44+0.99
ours 77.31+0.71 79.49+0.67 79.96+0.66 80.09+0.65 80.1840.65 |65.73+1.03 68.39+1.04 68.75+1.04 69.04+1.03 69.09+1.03
Convd MAML |20.00+0.00 20.00+0.00 38.03+0.66 42.96+0.74 47.61+0.72|20.04+0.03 27.98+0.57 31.12+0.68 35.17+0.76 36.08+0.76
ours 40.46+0.68 44.43+0.72 46.90+0.72 47.51+0.73 48.01+0.73 | 33.84+0.72 36.16+0.75 36.68+0.76 36.77+0.76 36.82+0.76
S Conv MAML |20.00+0.00 20.70+0.14 39.62+0.50 42.72+0.71 46.48+0.70 | 30.31+0.66 32.49+0.69 34.67+0.74 35.23+0.76 35.64+0.76
S ours 41.16+0.62 45.25+0.68 46.57+0.70 47.13+0.71 47.45+0.72 | 33.55+0.64 35.55+0.65 36.15+0.67 36.36+0.66 36.40+0.67
= ResNet10 MAML |20.00+0.00 20.00+0.01 30.54+0.58 42.68+0.71 47.03+0.73 | 20.00+0.00 20.74=0.16 33.19+0.66 34.99+0.73 36.33+0.73
ours 42.66+0.68 48.58+0.70 49.94+0.69 50.65+0.69 50.86+0.70 | 32.17+0.63 35.63+0.71 36.78+0.72 37.31+0.73 37.50+0.73
ResNet18 MAML |20.00+0.00 20.00+0.00 20.00+0.00 48.46+0.73 48.56+0.76 | 20.00+0.00 20.04+0.02 32.30+0.64 34.37+0.69 35.19+0.70
: ours 47.11x0.73 50.16+0.73 50.82+0.74 51.08+0.74 51.22+0.74 | 33.24+0.69 36.05+0.71 36.70+0.72 36.90+0.72 37.02x0.72

C Adaptation beyond the training horizon

In this section, we provide further details regarding the behaviour of the baseline trained without
(‘MAML) and with the proposed condition loss £, (‘ours’) when the models are provided with the
possibility to perform an increased number of adaptation steps beyond the training horizon at test
time only — in our evaluated case up to 100 update steps. The training was in contrast performed
with five adaptation steps. Results obtained on the test datasets for 5-way 5-shot and 5-way 1-shot
scenarios are presented in Table[A2]and follow the trends that have been discussed in the main paper.



Table A2: Adaptation beyond the training horizon. Evaluations are conducted on all five
popular FSL datasets: CUB-200-2011 (Wah et al.l 2011}, minilmageNet (Vinyals et al., [2016),
tieredlmageNet (Ren et al.| 2018]), CIFAR-FS (Bertinetto et al., | 2019) and FC100 (Oreshkin et al.,
2018)). Models have been trained with 5 inner-loop update steps, but are evaluated using additional
update steps at inference time.

5-shot 1-shot

Network  Method ‘ step 5T step 101 step 257 step 501 step 1007 \ step 51 step 107 step 257 step 507 step 1007
Convé MAML | 77.06+0.69 77.84+0.66 77.87+0.65 T77.78+0.66 77.83+0.65 | 61.09+0.98 61.33+0.99 61.50+0.99 61.61+0.98 61.65+0.98

ours T7.24x0.67 T77.48+0.6s T7.74+0.67 77.88+0.6s T78.06+0.68 | 63.26+0.98 63.42+0.99 63.44x1.00 63.54x1.00 63.47=1.00

@ Convé MAML | 80.52+0.65 80.89+0.63 81.00+0.63 81.00+0.63 81.01+0.64 | 67.67+0.98 68.03+0.98 68.39+0.98 68.48+0.98 68.56+0.98
8 ours 80.65+0.63  80.90+0.63 81.15+0.62 81.25+0.62 81.35+0.62 | 68.87x1.06 69.12+1.06 69.19+1.06 69.16+1.06 69.15+1.06
ResNet10 MAML | 82.13+0.64 83.90+0.59 83.99+0.59 84.09+0.59 84.08+0.50 | 73.04+0.96 73.56+0.96 73.80+0.96 73.97+0.96 74.01+0.96

ours 83.82+0.59 84.09+0.58 84.11+0.59 84.26+0.57 84.28+0.57 | 74.99+0.96 74.99+0.97 75.19+0.97 75.24+0.97 75.33+0.97

ResNet18 MAML | 83.56+0.61 84.52+0.55 84.56+0.55 84.65+0.54 84.59+0.56 | 74.52+0.94 74.97+0.95 75.23x0.95 75.30+0.95 75.34+0.94

ours 84.66+0.54 84.83+0.53 84.94+0.53 85.01+0.53 85.01+0.53 | 75.22+0.97 75.52+0.95 75.66+0.95 75.74+0.95 75.81+0.95

Convé MAML | 64.50+0.69 65.35+0.70 65.71+0.70  65.90+0.70  66.07+0.70 | 48.15+0.80 48.52+0.80 48.75+0.79 48.86+0.79 48.90+0.79

% ours 65.26+0.67  65.84+0.67 66.26+0.67 66.46+0.67 66.58+0.66 | 48.94+0.80 49.16x0.80 49.31x0.81 49.45+0.80 49.53+0.80
S Convé MAML | 65.96+0.71  66.55+0.71  66.63+0.72  66.72+0.71  66.80+0.71 | 51.22+0.88 51.42+0.87 51.48+0.87 51.52+0.87 51.53+0.87
g ours 68.43+0.71  68.84+0.71  69.11x0.70 69.28+0.70 69.39+0.70 | 53.34x0.89 53.42+0.89 53.51x0.89 53.55+0.89 53.55+0.89
:é ResNet10 MAML | 69.43+0.71  71.90+0.6s 72.29+0.66 72.28+0.67 72.21+0.67 | 57.35+0.80 57.80+0.83 57.86+0.84 57.91+0.84 58.17+0.85
s ours 72.46+0.71  73.10+0.67 73.33+0.68 T73.28+0.68 73.35+0.68 | 58.20+0.85 58.28+0.87 5H8.27+0.87 5H8.29+0.87 58.38+0.88
ResNet18 MAML | 71.06+0.74 73.37+0.68 73.57+0.69 73.56+0.60 73.53+0.69 | 56.84+0.90 57.11+0.91 56.97+0.91 56.96+0.91  57.00+0.91

ours 73.28+0.68 73.46x0.6s T73.57+0.68 73.57+0.68 T73.62+0.68 | 57.64+0.91 57.82x0.90 57.92x0.91 58.02+0.91 58.05+0.91

Convé MAML | 63.26+0.77 63.87+0.77  64.26+0.77  64.52+0.76  64.65+0.76 | 47.33+0.00 47.74+0.90 47.93+0.91 48.04x0.91 48.08+0.91

23 ours 64.77+0.75  65.56+0.74 65.91+0.74 66.01+0.74 66.05+0.74 | 47.34+0.88 47.74x0.90 48.07+0.90 48.21+0.90 48.29+0.90
& Convé MAML | 66.78+0.79  67.26+0.79 67.40+0.79 67.42+0.79 67.51+0.79 | 50.40+0.96 50.74+0.95 50.96+0.95 51.00+0.95 51.07+0.96
E ours 67.60x0.79  68.22+0.78  68.56+0.78 68.77+0.78 68.92+0.78 | 50.87+0.95 51.18+0.95 51.42+0.96 51.50£0.96 51.62+0.97
§ ResNet10 MAML | 73.03+0.85 75.14+0.79  75.22+0.79  75.19+0.79  75.20+0.80 | 57.80+0.94 57.95+0.96 58.07+0.95 58.16+0.96 58.22+0.96
-2 ours 75.77+0.71  76.29+0.70 76.45+0.70 T74.42+0.70 76.45+0.70 | 59.65+0.96 59.94+0.95 60.22+0.94 60.42+0.93 60.53+0.93
ResNet18 MAML | 73.90+0.79  74.88+0.76 74.98+0.77 74.89+0.77  74.94+0.77 | 57.71+1.00 57.88+1.00 57.90+1.01 57.92+1.01  57.99+1.01

ours 74.67x0.74  74.86x0.75 T74.96+0.74 75.02+0.74 75.01+0.74 | 57.80+0.98 57.97x0.98 58.09+0.99 58.14+0.99 58.10+0.98

Convé MAML | 69.97+0.75 70.54+0.76 71.04+0.76  71.20+0.76 71.32+0.76 | 51.84+0.93 52.31+0.93 52.52+0.94 52.7420.94 52.89+0.94

ours 70.32+0.76  71.08+0.77  71.52+0.75 71.68+0.75 71.86+0.76 | 52.01+0.99 52.46+0.98 52.68+0.98 52.84+0.99 53.02+0.99

ﬁ, Convé MAML | 74.00+0.79  74.56+0.78  T4.75+0.77 T4.78+0.77  T4.80+0.77 | 57.83+0.95 58.10+0.95 58.29+0.96 58.38+0.96 58.47+0.96
% ours T4.47x0.18  T4.99+0.7s  75.24+0.78  75.38+0.78  75.52+0.77 | 58.12+0.96 58.43+0.96 58.58+0.97 58.70+0.97 58.76+0.97
% ResNet10 MAML | 77.12+0.77  78.75+0.69 78.77+0.69 78.72+0.70 78.69+0.71 | 65.42+0.98 65.82+0.99 65.81+0.99 65.98+0.98 66.03+0.97
ours 78.90x0.70  79.30+0.6s 79.39+0.68 79.34x0.69 T79.37+0.69 | 66.17+0.95 66.04x0.96 66.07+0.97 66.16+0.96 66.24=0.96

ResNet18 MAML | 79.59+0.70  80.63+0.66 80.68+0.65 80.60+0.65 80.62+0.65 | 67.44+0.99 67.73+0.99 67.62+1.00 67.67+1.01 67.66+1.02

ours 80.18+0.65 80.37+0.65 80.48+0.64 80.60+0.64 80.71x0.64 | 69.09+1.03 69.35+1.03 69.49+1.03 69.52+1.03 69.56+1.03

Convé MAML | 47.61+0.72 48.40+0.71  48.79+0.73 49.14+0.73  49.25+0.73 | 36.08+0.76  36.45+0.76  36.66+0.77  36.82+0.77  36.89+0.76

ours 48.01+0.73  48.59+0.72  49.01+0.72  49.30+0.72  49.52+0.72 | 36.82+0.76 37.08+0.76 37.24+0.76 37.31x0.76 37.45+0.75

S Convé MAML | 46.48+0.70 47.30+0.70 47.48+0.71  47.69+0.71  47.82+0.71 | 35.64+0.76  35.86+0.76  35.99+0.75  36.04x0.76  36.05+0.75
5 ours 47.45x0.72  48.08+0.73 48.56+0.72 48.77+0.72  48.90x0.72 | 36.40+0.67 36.51+0.67 36.72+0.67 36.74+0.67 36.80+0.67
= ResNet10 MAML | 47.03+0.73 49.23+0.71  49.11+0.72  49.06+0.72  49.10+0.71 | 36.33+0.73  36.32+0.73  36.47+0.73  36.63+0.74  36.76+0.74
ours 50.86+0.70  51.08+0.70  51.15+0.71  51.17x0.70  51.16+0.70 | 37.50+0.73 37.52x0.74 37.36x0.74 37.50+0.74 37.55+0.74

ResNet18 MAML | 48.56+0.76  50.25+0.76  50.29+0.76  50.16+0.75  50.18+0.76 | 35.19+0.70 35.36+0.72 35.44+0.72  35.48+0.72  35.57+0.72

ours 51.22+0.74 51.41+0.7a 51.55+0.74 51.52+0.74 51.63+0.74 | 37.02+0.72 37.27x0.72 37.26x0.72 37.37T+0.72 37.40+0.72

D Ablating the proposed condition loss function

We introduced in the main paper that computing the condition number as defined in Equation (4)
would ignore the distribution of all but two eigenvalues and thus unnecessarily weaken the training
signal if directly used as conditioning objective. In this section, we back up this intuition with
empirical insights. In detail, we contrast both versions 1) using our loss defined via the variance of the
logarithmic eigenvalues of the approximated Hessian as proposed in the main paper in Equation (9)
to 2) simply using the logarithmic condition number computed via the maximum and minimum
eigenvalues (Table[A3). We find that while using the logarithmic condition number does still lead
to a significant improvement of adaptation performance especially during the first few steps when
compared to its unconstrained counterpart (MAML), it is notably outperformed by our proposed loss
using the variance of the eigenvalues.

Table A3: Ablating the condition loss function. Reported are the step-wise classification accuracies
on the validation set of minilmageNet (Vinyals et al.,|2016)) for a 5-way 5-shot scenario (Conv6).

5-shot
Loss L, step 11 step 21 step 31 step 41 step 51
var(log(ev)) 63.93+1.76 68.44+1.70 69.15+1.70 69.78+1.69 69.83+1.73
log(k) 55.3042.04 62.03+1.87 63.95+1.82 64.98+1.87 65.36+1.86




E Preconditioning — Number of parameters and performance

As discussed in the main paper, we compare our approach to other recently published methods that
aim to achieve better convergence via preconditioning. Table outlines the different parameter
update procedures and highlights the additionally introduced parameters of other methods (blue).
Note that these parameters are required at both training and inference time, and lead to a significant
increase in parameter count ranging from 96% up to 2235%. In contrast, our proposed approach does
not require any additional parameters to achieve preconditioning and thus allows to use more powerful
backbones if increased parameter counts can be tolerated — enabling our method to outperform others
across the entire parameter-accuracy spectrum. While we show a visualization outlining the interplay
between the total number of parameters and achieved accuracies within the main paper, we provide
extended details regarding the explicit parameter counts and accuracy values in Table[A5]

Table A4: Preconditioned parameter updates. Detailed are the different ways of updating the
parameters for recently published preconditioning methods. Additionally introduced parameters are
highlighted in blue, and are required at both training and inference time (cf. Table .

Method Inner Loop Param. Update

MAML (Finn et al.|[2017) 9<k =0%Y _ oV, L(OF)

Ours 0" =01 _ oV 0 L(OFD)

Meta-SGD (Li et al.| 2017) 0" = 0%~V _ o diag(¢)Vgu-n L(OF )

MC (Park & Oliva|2019) 6% = 9= _ o M0 )V s L(OFD)
ModGrad (Simon et al.|[2020) 0% = 0= _ o MF (W)Y sy L)

Warp-MAML (Flennerhag et al.|2019) %) = (k=) _ avewq)ﬁ(eg"_l), <)

Table AS: Preconditioning methods, number of parameters and accuracies. Obtained for 5-
way 5-shot evaluated on the minilmageNet test set. Reported are results for MAML (Finn et al.|
2017), Meta-SGD (L1 et al.,[2017), MC (Park & Olival, |2019), ModGrad (Simon et al., 2020) and
Warp-MAML (Flennerhag et al., 2019). Tdenotes reimplemented versions (cf. Table 1, main paper).

Backbone Parameter Test Rel. Acc. #Total #Backbone
Method Architecture increase] Accuracy increasel Parameters Parameters
MAML Conv4 (32) - 63.11+0.92 - 32,901 32,901
ours Conv4 (32) + 0% 63.33+0.72 +0.3% 32,901 32,901
Meta-SGD Conv4 (32) +100%  64.0340.94 +1.5% 65,802 32,901
ours Conv6 (32)  57% 64.47+0.71 +2.2% 51,525 51,525
MAML Conv4 (64) = 64.50-+0.69 = 121,093 121,093
ours Conv4 (64) + 0% 65.26+0.67 F1.2% 121,093 121,093
ModGrad Conv4 (64) +873% 69.17x0.60 + 7.2% 1,178,019 121,093
ours Conv6 (64) + 61% 68.43+0.71  + 6.1% 195,205 195,205
ours Conv6 (128) +527% 71.00+0.6s +10.1% 759,045 759,045
MAML Conv4 (128) - 66.060.71 - 463,365 463,365
ours Conv4 (128) + 0% 68.07+0.70 +3.0% 463,365 463,365
Warp-MAML  Conv4 (128) + 96% 68.4 +o0.92 +3.5% 906,885 463,365
MC Conv4 (128) +2235%  68.01+0.73 +3.0% 10,818,928 463,365
ours Conv6 (128) - 64% 71.00+0.68 +7.5% 759,045 759,045

F Algorithm for better conditioned meta-learning

Algorithm |1{ shows the concise form of how the conditioning loss presented in the main paper is
used in the context of gradient-based few-shot meta-learning. The algorithm follows the concept
introduced by [Finn et al.|(2017) for MAML, with the addition of using our reformulated problem
setting and in this way computing the condition information for each stage of the parameters updated
during the inner loop (Lines [8|and [0). The outer loop then incorporates the conditioning constraint



(Line[T2) as introduced in Equations (9) and (10) of the main paper and computes the overall task
loss (Line[T3). After completing all tasks in the current task batch, the network’s parameters are then
updated (Line[T5) by considering both the classification and condition objectives, encouraging the
model to learn a well-conditioned parameter space while solving the classification challenge.

Algorithm 1 Learning a Better Conditioned Parameter Space

Require: p(7); «, 5, > Distribution over tasks; Hyperparameters
1: 0" < Random initialization
2: while not done do
3: {r1,...,78} ~p(T) > Sample a batch of tasks
4: for all 7; do
5: 6) «— 6"
6: (Dirain Dyaly ~ 7 > Sample train and validation set
7: for kin {1,... , K} inner-loop update steps do > Inner-loop adaptation
8: ‘ Compute J*) via E(Dgai“, 0(715—1)) > Following Equations (5) - (8)
9: ‘ Compute and temporarily store A(J®)J(*)T) > Eigenvalues of approx. Hessian
10: ‘ ‘ ‘ 05’:) — B(Tf_l) - avegﬁ_l)ﬁ(l?gai“, 05’:_1)) > Inner-loop parameter update
11: ‘ ‘ end for
12 || L (809D 67)) = & U Var (logyg (A (IWI®T))) > Cond. loss
13| | Ln=L (D:jﬂ, 0%) (pLrain, 0*)) + 7Ly (agff ) (Dorain, 0*)) > Overall task loss
14: ‘ end for
15: ‘ 0" + 0" — BV~ Zil L, > Meta update overall parameter set
16: end while

G Details on many-way multi-shot scenarios

A detailed version of the results used for the visualization of different 5-way K-shot and N-way
5-shot scenarios depicted in the main paper are presented in Table[A6] including the 95% confidence
intervals. While enforcing a well-conditioned parameter space for the inner-loop optimization leads
to significantly better first-step adaptation results, it can also be observed that the conditioning seems
to additionally improve the overall results achieved after 5 updates. The results further indicate that
the adaptation of the baseline parameters during the initial steps (mainly 1-3) differs dependent on
the number of shots, and seems to be increasingly delayed to the last steps for settings with a higher
number of shots (e.g., 42.10% vs. 21.14% vs. 20.32% after 3 updates for k = 10, k = 15 and
k = 20, respectively).

H Constraining parameter subsets

As discussed in the main paper, we choose to apply our proposed conditioning constraint only to a
subset of the network’s parameters to increase efficiency and scalability. We demonstrated that the
development of the condition number calculated with respect to only the parameters of the classifier is
representative for the condition number calculated with respect to the full set of network parameters.
In this section, we provide the visualisations of the development of all evaluated subsets. It is to be
noted that for all depicted results, the condition constraint is enforced to the parameter subset denoted
in the respective legend. As can be observed in Figure[AT] all subsets except for the batchnorm of
the embedding layer ‘eBN’ demonstrate a development of the condition number that is very similar
to the one of the condition number w.rt. the full parameter set. For completeness, we additionally
provide the development of the condition number w.r.z. the full parameter set if the model is trained
without our proposed conditioning loss in Figure [AT|(h) (i.e., conventional MAML baseline like
proposed by [Finn et al.[(2017))) — demonstrating the significantly higher condition number and thus



Table A6: Many-way multi-shot experiments. Average test accuracy for various 5-way K-shot and
N-way 5-shot scenarios evaluated on the minilmageNet (Vinyals et al.,[2016)) test set using a Conv6
architecture.

Setting Method step 11 step 21 step 37 step 41 step 51

1-shot MAML | 21.40+0.23 30.85+0.66 45.91+0.87 50.30+0.88 51.22+0.88

sho ours 50.92+0.85 52.98+0.89 53.18+0.89 53.2840.89 53.34+0.89

5-shot MAML | 20.19+0.07 24.17+0.39 57.25+0.72 64.24+0.73 65.96+0.71

% ’ ours 62.31+0.72 66.66+0.71 67.63+0.72 68.214+0.71  68.43+0.71

3 10-shot MAML | 20.00+0.00 20.07+0.04 42.10+0.70 65.48+0.74 70.66+0.67

o SIOL Gurs 64.82+0.72  70.35+0.70 71.65+0.67 72.68+0.68 73.13+0.67

15-shot MAML | 20.00+0.00 20.00+0.00 21.14+0.18 68.00+0.67 71.22+0.63

’ ours 63.91+0.69 70.18+0.65 72.30+0.65 73.5840.63 74.01+0.63

20-shot MAML | 20.00+0.00 20.00+0.00 20.32+0.08 69.41+0.65 72.98+0.61

’ ours 64.83+0.66 T71.56+0.63 73.56+0.60 74.854+0.60 75.55+0.58

5-wa MAML | 20.19+0.07 24.17+0.39 57.25+0.72 64.24+0.73 65.96+0.71

- Y ours 62.31+0.72  66.66+0.71  67.63+0.72 68.21+0.71  68.43+0.71

% 10-wa MAML | 10.00+0.00 14.11+0.30 41.50+0.43 47.38+0.47 49.59+0.46

) Y ours 42.20+0.42  48.94+045 50.79+0.46 51.67+0.46 52.02+0.47

15 MAML ‘ 6.67+0.00 7.66+0.27  35.32+0.32  38.2940.31 41.08+0.31
-way

ours 32.55+0.30  39.81+0.32 41.83+0.32 42.84+0.32 43.30+0.21

worse-conditioned parameter space that is learned by the unconstrained method. In stark contrast,
it can further be observed that the trajectories of the methods actively enforcing conditioning are
very close for all subsets where the parameters of the classifier ‘cls’ are involved in the conditioning
constraint, and that the condition numbers of the actual network (‘all’) is particularly low for all these
cases, justifying our choice of using the ‘cls’ subset throughout all major experiments in the main

paper.

I Condition number and few-step performance

As discussed in the main paper, the development of the condition number and the validation accuracy
are directly related. While we presented the validation accuracies for a Conv4 and Conv6 architecture
together with the condition number of inner-loop update step 1 in the main paper, we herein show
the detailed development of all five inner-loop update steps. The corresponding visualisations of the
classification accuracy achieved on the validation set during training are presented in Figure [A2]for a
Conv4 and Convo6 architecture trained without (‘(MAML’) and with (‘ours’) the proposed conditioning
constraint enforced via L,,. We further show the development of the condition number with respect

to the parameters of the classifier using the support sets of the training data (left column, n(@éf;in))

and the validation data (right column, /1(952% q)) in Figurefor steps k =0upto k =4, 1ie.,all
parameter sets that will be updated during the course of the 5 inner-loop update steps. Note that the
condition property of the initial parameter space at step 0 is important to perform the first inner-loop
update (step 1), which is why we investigate the condition numbers of the parameter sets before each
update (i.e., sets at stages O - 4 for update steps 1 - 5). Both architectures have been trained on the

tieredlmageNet dataset (Ren et al.| 2018)).
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Figure Al: Constraining a reduced parameter set. Condition number with respect to the reduced
parameter subset denoted in the respective legend, and to all parameters of the model over 1600
iterations on the minilmageNet dataset with a Conv4 architecture for a 5-way 5-shot scenario. Models
in (@) - (g) are trained with £,; w.r.t. the respective subset, while (h) shows the development for the
model trained without the use of the proposed L.
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Figure A2: Validation accuracy over inner-loop update steps. Reported results obtained by training
the baseline without (‘(MAML’) and with our proposed conditioning constraint (‘ours’) with respect
to the parameters of the model’s classifier. Training has been conducted over 1600 iterations in a
5-way 5-shot scenario on the fieredlmageNet dataset with a Conv4 and Conv6 architecture.
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Figure A3: Condition numbers over inner-loop update steps. Reported results were obtained by
training the baseline without (‘MAML) and with our proposed conditioning constraint (‘ours’) with
respect to the parameters of the model’s classifier. Training has been conducted over 1600 iterations
in a 5-way 5-shot scenario on the tieredlmageNet dataset with a Conv4 and Conv6 architecture. For
each update step, we report the condition number computed via either the support set of the training
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