
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HIERARCHICAL SUBSPACES OF POLICIES FOR
CONTINUAL OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In dynamic domains such as autonomous robotics and video game simulations,
agents must continuously adapt to new tasks while retaining previously acquired
skills. This ongoing process, known as Continual Reinforcement Learning, presents
significant challenges, including the risk of forgetting past knowledge and the need
for scalable solutions as the number of tasks increases. To address these issues,
we introduce HIerarchical LOW-rank Subspaces of Policies (HILOW), a novel
framework designed for continual learning in offline navigation settings. HILOW
leverages hierarchical policy subspaces to enable flexible and efficient adaptation
to new tasks while preserving existing knowledge. We demonstrate, through
a careful experimental study, the effectiveness of our method in both classical
MuJoCo maze environments and complex video game-like simulations, showcasing
competitive performance and satisfying adaptability according to classical continual
learning metrics, in particular regarding memory usage. Our work provides a
promising framework for real-world applications where continuous learning from
pre-collected data is essential.

1 INTRODUCTION

Humans continuously acquire new skills and knowledge, adapting to an ever-changing world while
retaining what they have previously learned. Designing systems capable of replicating this lifelong
learning ability is a key challenge in the Continual Reinforcement Learning (CRL) (Khetarpal et al.,
2022) community. Traditional Reinforcement Learning (RL) (Sutton & Barto, 2018), while powerful,
often struggles with adaptive, cumulative learning. In CRL, a learning agent must sequentially solve
tasks, requiring to master new skills without degrading the knowledge gained from previous tasks.

Within this framework, we focus on a specific subset of problems that combines goal-conditioned
learning and offline training, with a particular emphasis on navigation. Goal-Conditioned RL (GCRL)
(Ding et al., 2019; Liu et al., 2022) involves learning policies that can be conditioned to reach specific
goal states, making it especially relevant for real-world applications in robotics and video games
where navigation is crucial. The offline setting (Levine et al., 2020; Prudencio et al., 2023)], which
relies on pre-collected datasets is particularly appealing when data collection is expensive, risky, or
impractical. However, alone, this setting is not sufficient in the context of changing environments:
agents need to continuously adapt to new tasks without forgetting the previous ones, while maintaining
scalability as the number of tasks increases (Graffieti et al., 2022; Shaheen et al., 2022).

Various CRL methods have been proposed to tackle these challenges : some use replay buffer or
generative models to replicate past tasks (Rolnick et al., 2019; Huang et al., 2021) ; others involve
architectural revisions to mitigate forgetting (Rusu et al., 2016; Veniat et al., 2020) ; and some
use regularization techniques to improve scalability (Kirkpatrick et al., 2017; Kumar et al., 2023).
Nevertheless, these approaches face limitations : Replay-based methods can be impractical due to
data storage constraints and privacy concerns, particularly in industries like video game development,
where data retention may be costly. Regularization techniques struggle with highly diverse changes,
and architecture modifications, such as expanding neural network structures, can become memory-
intensive thus limiting scalability. While entirely addressing all these limitations is challenging,
Continual Subspace of Policies (CSP) (Gaya et al., 2023) stands out within this literature as an
interesting balance between flexibility and efficiency. CSP introduces subspaces of neural networks
(Wortsman et al., 2021; Gaya et al., 2022), allowing new parameters to be added when necessary,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

which helps adapting without forgetting previous skills. However, CSP is primarily an online method,
leveraging Soft Actor-Critic (Haarnoja et al., 2018) as its backbone algorithm, and remains untested
in offline settings where it may face new challenges.

In this article, we propose HIerarchical LOW-Rank Subspaces of Policies (HILOW), a practical
offline adaptation of Continual Subspace of Policies (CSP) for hierarchical architectures, which is
particularly well suited for navigation tasks. HILOW relies on growing separate parameter subspaces,
for a high-level path-planner policy and a low-level path-follower policy, depending on the task
stream (see Figure 1). To properly assess the relevance of HILOW and catalyze further research, we
present a comprehensive study of existing methods, introducing new environments and tasks that
address the lack of established benchmarks for Continual Offline Reinforcement Learning regarding
Goal-Conditioned navigation tasks. While Section 2 reviews the relevant and related literature,
Section 3 present the theoretical background that contextualizes our research. In Section 4, we detail
our proposed approach. Sections 5.1 and 5.2 presents our experimental methodology, comparing
our approach in both novel video-game-like settings with human-authored datasets and classical
goal-conditioned environments. Finally, Sections 5.3 to 5.5 present experimental results, evaluating
performance across diverse task sequences with standard CRL metrics.

Our main contributions are :

• HILOW, a novel hierarchical framework for Continual Offline RL, leveraging low-rank subspaces
of policies for scalable low-memory adaptation for Goal-Conditioned navigation tasks.

• A large panel of Goal-Conditioned navigation tasks associated with datasets, encompassing both
robotics and video game scenarios with human-authored datasets. We hope this new open-source
benchmark will provide a comprehensive testing ground for future research in this domain.

• A comprehensive experimental evaluation of HILOW and state-of-the-art CRL methods using our
proposed benchmark. Our results demonstrate competitive scalability and adaptability of HILOW,
showcasing its ability to handle diverse and complex task sequences across various classical metrics.

Subspace Pruning : Anchor Weights Optimization

Subspace Extension : Orthogonal Low-Rank Adaptation

Constraints

Constraints

(a) Low-Rank Subspace of Policies.

Anchors N – Retrieval

Anchor
Weights

Environment N

High-Level Policy

Low-Level Policy

(b) HILOW Inference Process.

Figure 1: HIerarchical LOW-Rank subspaces of policies (HILOW). (a) Illustration of the pruning
and extension mechanisms. Pruning involves optimizing anchor weights α within a defined simplex,
allowing efficient exploration of the existing subspace. Extending introduces new low-rank anchors to
expand the subspace, facilitating the adaptation to new tasks while keeping a compact representation.
(b) The inference pipeline for task N-th leverages learned anchor weights. The high-level policy
generates sub-goals, which the low-level policy uses to produce specific actions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

The following section reviews related frameworks and methods to distinguish between various
approaches. While these frameworks share common ground, their settings differ in essential ways,
such as task availability, data access, and adaptation paradigms (see Table 1). By comparing them,
we position our work within this landscape to better highlight the unique challenges we address.

Transfer Learning is an adaptation technique where a model trained for a first task is repurposed as
the starting point for a second one (Zhan & Taylor, 2015; Da Silva & Costa, 2019; Zhu et al., 2023).
While state-of-the-art methods excel at leveraging previously acquired knowledge to enhance the
learning on new ones (Chijiwa, 2023; de Sá et al., 2023), they overlook the need to preserve past
knowledge. As a result, this framework is less suited for continual learning scenarios.

Multitask Learning is a paradigm in which a model learns simultaneously various tasks, sharing
representations among the tasks to improve learning efficiency and performance, leading to better
generalization (Zhang & Yang, 2018; Vithayathil Varghese & Mahmoud, 2020; Yu et al., 2020).
Despite its advantages, multitask learning typically requires access to all tasks at the same time and
does not inherently address the CRL challenge of sequentially learning tasks.

Meta-Learning, or learning to learn, focuses on training a model on a variety of tasks to develop a
meta-policy to efficiently learn new tasks (Schweighofer & Doya, 2003; Gupta et al., 2018; Beck et al.,
2023). While this approach may be effective, it generally relies on the availability of a pre-defined set
of tasks during training. This requirement limits their applicability in continual learning scenarios.

Learning Framework Tasks Availability Data Access Adaptation Paradigm

Transfer Learning Sequential Real-time interactions or Pre-collected datasets Learning new tasks, allowed to forget

Multitask Learning Simultaneous Real-time interactions or Pre-collected datasets Learning multiple tasks together

Meta Learning Sequential Real-time interactions or Pre-collected datasets Learning how to learn new tasks

Online CRL Sequential Real-time interactions Learning new tasks without forgetting

Offline CRL Sequential Pre-collected datasets Learning new tasks without forgetting

Table 1: Comparison of learning frameworks.

Online Continual Reinforcement Learning Online CRL methods enable agents to adapt to new
tasks, learning by sequentially and directly interacting with each of them (Kirkpatrick et al., 2017;
Wang et al., 2024). However, our focus is an offline setting, leveraging pre-collected datasets, which
is a promising setting regarding scalability and real-world applications. Nonetheless, some of the
online CRL algorithms could be adapted to an offline setting (Gaya et al., 2023; Kirkpatrick et al.,
2017).

Offline Continual Reinforcement Learning allows agents to learn from streams of task without
interacting with the environment (Rolnick et al., 2019; Isele & Cosgun, 2018; Liu et al., 2024). A
common approach in offline CRL is to reuse data from previous tasks to prevent forgetting, but this
leads to significant storage and privacy challenges, particularly in certain industrial domains. To
address this, we focus on an approach that avoids replaying past data, emphasizing models that learn
continuously without relying on stored experiences.

Hierarchical Policies structure the decision-making process into multiple levels, and have been
applied in various learning fields including CRL (Tessler et al., 2017; Ding & Zhu, 2022). However,
current works within CRL rely on heavy tools such as large language models (Pan et al., 2024), or are
more suited for meta-learning or multi-task learning scenarios (Shu et al., 2018; Chua et al., 2023).
Thus, there remains a need for approaches that can be integrated within an offline CRL framework.

Despite the aforementioned advancements, our work stands out by specifically addressing the unique
challenges of Offline CRL, without relying on data retention strategies. To the best of our knowledge,
no benchmarks exist for Offline CRL in Goal-Conditioned navigation settings, underscoring the
novelty of our framework and the importance of our introduced benchmark.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PRELIMINARIES

We consider a Markov Decision Process (MDP)M =
(
S, A, PS , PS

(0), R, γ
)
, which provides

a formal framework for RL, where S is a state space, A an action space, PS : S × A → ∆(S)
a transition function, PS

(0) ∈ ∆(S) an initial distribution over the states, R : S × A × S → R
a deterministic reward function, and γ ∈]0, 1] a discount factor. An agent’s behavior follows a
policy πθ : S → ∆(A), parameterized by θ ∈ Θ. The objective is to learn optimal parameters θ∗M
maximizing the expected cumulative reward JM(θ) or the success rate σM(θ).

Offline Goal-Conditioned RL We extend the MDP to include a goal space G, introducing PS,G
(0)

an initial state and goal distribution, ϕ : S → G a function mapping each state to the goal it represents,
and d : G×G → R+ a distance metric on G. The policy πθ : S×G → ∆(A) and the reward function
R : S ×A×S ×G → R are now conditioned on a goal g ∈ G. We consider sparse rewards allocated
when the agent reaches the goal within a range 0 ≤ ϵ : R(st, at, st+1, g) = 1

(
d(ϕ(st+1), g) ≤ ϵ

)
.

Given a dataset D =
{
(s, a, r, s′, g)

}
, the policy loss is optimized to reach the specified goals.

Continual Reinforcement Learning In CRL, an agent follows a sequence of tasks, or stream,
T =

(
T1, ..., TN

)
, with Tk =Mk or Tk = (Mk,Dk). We note θk the parameters of a policy after

learning on the k-th task. As the agent learns new skills, it must either preserve (to prevent forgetting)
or enhance (to encourage backward transfer) its performance on tasks already learned, while ideally
having a relatively low number of parameters. To quantitatively compare CRL methods, we adopt
standard metrics commonly used in the literature (Díaz-Rodríguez et al., 2018; Kemker et al., 2018) :

• Performance : PER = 1
N

∑N
k=1 σMk (θN) ;

• Backward Transfer : BWTN = 1
N

∑N
k=1

(
σMk (θN)− σMk (θk)

)
;

• Forward Transfer : FWT = 1
N

∑N
k=1

(
σMk (θk)− σMk (θ̃k)

)
;

• Relative Model Size : MEM =
|θN |
|θref| .

The performance metric measures the average success rate across all tasks. Backward transfer
indicates how learning a new task affects previous ones, while forward transfer measures the ability
to transfer knowledge to new tasks, using θ̃k as randomly initialized parameters. The relative model
size compares the memory load of the model to a reference model associated to parameters θref .

Subspace of Neural Networks A subspace of neural networks is a low-dimensional convex hull
within the space of all available parameters Wortsman et al. (2021); Gaya et al. (2022; 2023). Building
one involves finding, and eventually extending, a finite set of anchors that serve as a basis. In formal
terms, given a high-dimensional parameter space Θ, a subspace V(θ1, . . . , θn) ⊂ Θ is defined by
a set of anchor points {θ1, θ2, . . . , θk} ⊂ Θ. These points form the basis of the subspace, and any
point θ ∈ V(θ1, . . . , θn) can be represented as a linear combination of these anchors :

θ =

n∑
i=1

αiθi where α ∈ ∆k, i.e.
n∑

i=1

αi = 1 and αi ∈ R+ (1)

Exploring the subspace involves adjusting anchor weights αi within a lower-dimensional space. If
needed, new anchors extend the subspace, expanding its capacity while preserving prior knowledge.
Unlike previous methods, we use two subspaces : a high-level and a low-level one, offering flexibility
by avoiding unnecessary expansions (e.g. not extending the high-level subspace if only low-level
adjustments are needed). Additionally, we propose a new policy evaluation procedure – which
conditions subspace expansion – to better fit offline learning settings (see Section 4.3 for details).

Low-Rank Adaptation Low-Rank Adaptation (LoRA) efficiently extends neural networks for
new tasks by approximating updates to weight matrices using low-rank structures. Given a trained
weight W ∈ Rn×m, we adapt it by introducing an update W ′ = W +∆W , where ∆W is a low-rank
approximation. Specifically, ∆W is factored as A ∈ Rn×r and B ∈ Rr×m, with r ≪ min(m,n).
While LoRA has been successfully applied to transfer learning (Hu et al., 2021), multitask learning
(Liu et al., 2023), and continual learning in domains like supervised tasks and image processing

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(Chaudhry et al., 2020; Hyder et al., 2021; Wistuba et al., 2023), its use in continual reinforcement
learning is still relatively recent. Our work is among the firsts to explore this approach in CRL,
particularly for handling changes in navigation task streams in reinforcement learning contexts.

4 HIERARCHICAL SUBSPACE OF POLICIES

We now provide a detailed description of HIerarchical LOW-Rank Subspaces of Policies (HILOW).
Section 4.1 introduces the Hierarchical Imitation Learning algorithm, the backbone of our approach.
Next, Section 4.2 provides a high-level overview of the core learning steps involved in HILOW. We
then cover low-rank subspace extension in Section 4.3, and subspace exploration in Section 4.4. See
Algorithm 1 for a detailed pseudo-code about learning a subspace of policies in an offline setting.

4.1 HIERARCHICAL IMITATION LEARNING

Hierarchical Imitation Learning (Gupta et al., 2019) learns both high-level and low-level policies
using datasets of episodes D =

{
(sit, a

i
t, r

i
t, s

i
t+1, g

i)
}

. The overall policy is parameterized by
θ = (θh, θl), where θh governs the high-level policy and θl controls the low-level one. This structure
allows the agent to break down complex tasks into simpler ones, facilitating both long-term planning
and short-term action execution (Le et al., 2018; Shu et al., 2018; Park et al., 2023).

• High-Level Policy Training : The high-level policy is trained to predict a sub-goal ϕ(st+k), where
k is the waystep hyperparameter determining how far into the future the sub-goal is :

Lh
D(θh) = E(sit,s

i
t+k

,gi)∼D

[
− log(πh

θh(ϕ(s
i
t+k)|sit, gi))

]
• Low-Level Policy Training : The low-level policy πl is trained to execute actions that take the

agent towards the sub-goals proposed by the high-level policy :

Ll
D(θl) = E(sit,a

i
t,s

i
t+1,ϕ(s

i
t+k

))∼D

[
− log(πl

θl(at|sit, ϕ(sit+k)))
]

• Hindsight Experience Replay (HER) (Andrychowicz et al., 2017; Packer et al., 2021) : We
perform data augmentation using HER, which relabels the goal of a given transition with the goal
representation of a future state within the same trajectories considered.

4.2 HILOW LEARNING ALGORITHM

Let us consider a hierarchical policy π = (πh, πl), associated to two subspaces of parameters
Vh(θh1 , . . . , θ

h
Nh) and V l(θl1, . . . , θ

l
N l) built from learning on a sequence of tasks T = (T1, . . . , TN).

When learning a new task TN+1 from a dataset of trajectories DN+1, the subspaces Vh and V l will
be pruned or extended based on a comparison of losses between the pruned and extended subspaces,
selecting the best within an ϵ acceptance criterion. The learning algorithm proceeds as follows :

Initial Anchor Training : Train initial anchor parameters θh1 ∈ Θh and θl1 ∈ Θl on task T1.
Initialize anchor weights αh

1 ∈ ∆1 and αl
1 ∈ ∆1 to single vectors (1), indicating full reliance on θh1

and θl1 which serve as foundations for all subsequent tasks, establishing the initial subspaces.

Subspace Extension : For a new task Tk, we leverage previously trained anchor parameters
{θh1 , . . . , θhNh} and {θl1, . . . , θlN l}. New low-rank parameters θhNh+1 ∈ Θh

r and θlN l+1 ∈ Θl
r are

set, with r being a given rank, along with new learnable anchor weights αh
curr and αl

curr, that are
simultaneously learned from the dataset Dk, through hierarchical imitation learning.

Subspace Exploration : After training the new anchors, we explore the subspace by sampling
anchor weights from a Dirichlet distribution. Each sample is evaluated based on the loss computed
from Dk, and the ones yielding the smallest values are selected, namely αh

prev and αl
prev.

Subspace Evaluation : We evaluate the subspaces by comparing the previous losses Lh
prev, Ll

prev

with the current ones Lh
curr, L

l
curr. If both previous losses are within a tolerance parameter ϵ of their

current counterparts, the new anchors are pruned. Otherwise, we retain the new anchors.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Offline Learning of a low-Rank Subspace of Policies
Require: stream T ; number of epochs E ; learning rate η ; criterion ϵ ; rank r ; sample size S .

1: Train initial anchors :
2: Initialize anchor parameters θ1 ∼ Θ and anchor weights α1 ← (1)
3: for epoch = 1 to E do
4: Batched gradient descent : θ1 ← θ1 − η∇LB(α1,1 · θ1)
5: Train subsequent anchors :
6: for k = 2 to len(T) do
7: Consider N previously trained high anchor parameters θ1, . . . , θN
8: Train k-th anchor :
9: Initialize anchor parameters θN+1 ∼ Θr and anchor scores α̂curr ← (0, . . . , 0) = 0N+1

10: for epoch = 1 to E do
11: for mini-batch B in Dk do
12: Compute anchor weight : αcurr ← softmax(α̂curr)

13: Update θN+1 using gradient descent : θN+1 ← θN+1 − η∇LB(
∑N+1

i=1 αcurr,i · θi)
14: Update α̂curr using gradient descent : α̂curr ← α̂curr − η∇LB(

∑N+1
i=1 αcurr,i · θi)

15: Evaluate current subspace (Section 4.3) :
16: Compute current anchor weight : αcurr ← softmax(α̂curr)

17: Compute current loss : Lcurr ← LDk

(∑N+1
i=1 αcurr,i · θi

)
18: Find optimal weights for previous subspace (Section 4.4) :
19: Sample S anchor weights {α′(s)}Ss=1 ∼ Dirichlet(1N)

20: Set αprev ← argminα′(s) LDk

(∑N
i=1 α

′
i · θi

)
21: Compute Lprev ← LDk

(∑N
i=1 αprev,i · θi

)
22: Criterion based adaptation decision :
23: if Lprev ≤ (1± ϵ) · Lcurr then
24: Pruning : αk ← αprev, discard θN+1

25: else
26: Extending : αk ← softmax(α̂curr), keep θN+1

4.3 EXTENDING A SUBSPACE

Extending a subspace involves integrating a new anchor parameter θN+1 and its corresponding weight
αcurr into the existing set of anchors. This process allows the model to incorporate task-specific
variations while retaining the ability to leverage previously learned policies.

Initially, θN+1 is randomly initialized, and anchor scores α̂curr = (0, . . . , 0) are set to zeros. During
training, the softmax function is applied to the anchor scores, yielding the anchor weights αcurr.
This step ensures that the weights are positive and sum to one, providing smooth and differentiable
control over how much each anchor contributes to the final policy.

The learning process proceeds by updating both θN+1 and α̂curr using gradient descent 1. Specifically,
θN+1 and α̂curr are updated by minimizing the learning loss over the dataset using mini-batches B,
by considering the weighted contributions αcurr :

θN+1 ← θN+1 − η∇LB

(
N+1∑
i=1

αcurr,i · θi

)
, α̂curr ← α̂curr − η∇LB

(
N+1∑
i=1

αcurr,i · θi

)

In practice, whenever a new anchor is added, the anchor weights for previous tasks are extended
by appending a zero to the weight vector. This ensures that the dimensionality of weight vectors is
consistent across all tasks : αi ← (αi, 0), ∀i ∈ {1, . . . , N} .

This approach allows the model to efficiently reuse knowledge from previously learned tasks while
adjusting to the specific requirements of the new one. By adding the new anchor, the subspace is
expanded, enabling the model to handle a broader range of tasks without forgetting previous skills.

1In contrast to CSP (Gaya et al., 2023) which relies on sampling anchor weights for both policy pruning and
extension. Nevertheless, we do sample them when evaluating the previous subspace for better flexibility.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.4 EXPLORING A SUBSPACE

After training the new anchor, we evaluate whether the subspace should be extended or pruned. This
decision is based on a comparison between the loss of the current extended subspace (including the
new anchor) and the loss of the previous subspace (without the new anchor).

To compute the current subspace loss, we use the learned αcurr : Lcurr = LDk

(∑N+1
i=1 αcurr,i · θi

)
.

This loss measures how well the newly extended subspace performs on the task’s dataset. For
the previous subspace, we aim to find the weights αprev that minimize the loss over the previous
anchors θ1, . . . , θN , excluding the newly added anchor θN+1. In theory, this would involve finding
αprev = argminα LDk

(∑N
i=1 αi · θi

)
. However, in practice, performing a full optimization over

α can be computationally expensive. Instead, we sample S weight vectors α′ from a Dirichlet
distribution over the simplex ∆N and compute the corresponding loss for each sample:

α′ ∼ Dirichlet(∆N) , L′
prev = LDk

(
N∑
i=1

α′
i · θi

)
and Lprev = min

α′
L′

prev

This approach provides a computationally efficient approximation to the full optimization problem
by leveraging random sampling from the Dirichlet distribution.

Once both losses are computed, the decision to prune or extend the subspace is made based on a
predefined criterion. If the previous subspace loss Lprev is within an acceptable range of the current
subspace loss Lcurr, the new anchor θN+1 is pruned, and the anchor weights are reverted to the best
previous configuration αprev. Specifically : Lprev ≤ (1± ϵ) ·Lcurr . On the other hand, if the extended
subspace performs significantly better, the subspace is retained, and the weights αcurr are kept.

5 EXPERIMENTS

Our experiments aim to address the following questions : How does HILOW compare to relevant
baselines in terms of performance and memory metrics (Section 5.3) ? How does it perform in terms
of forgetting and generalization metrics (Section 5.4) ? Lastly, we explore through an ablation study
(Section 5.5) : How do the core design principles of HILOW affect its performance ?

5.1 ENVIRONMENTS & TASK STREAMS

We consider multiple scenarios designed to test the ability to adapt and transfer knowledge between
tasks. These experiments span two types of environments : classical maze benchmarks from the
Gymnasium framework and custom video game-like environments implemented in Godot (see Figure
2). Details about these environments and the considered streams are provided in the Appendix A.

(a) Point Agent. (b) Ant Agent. (c) MuJoCo Maze. (d) Godot Agent. (e) Godot Maze.

Figure 2: Point Agent is a point mass controlled by applying forces in two dimensions. Ant Agent
is a more complex 8-DoF articulated quadruped robot controlled by torques. Godot Agent is a 3D
character controlled by both continuous and discrete actions replicating video game controls.

The classical maze environments (Lazcano et al., 2023), PointMaze and AntMaze, are well-known in
deep learning but less explored in the CRL. We introduce a novel use of those by customizing datasets
and environments from Minari (Younis et al., 2024) to create task variations such as inverse actions
or permuted observations. We also introduce more complex maze-like 3D navigation environments
in Godot, SimpleTown and AmazeVille, which feature topological changes across task streams with
human-authored datasets, reflecting the evolving nature of game worlds in the video game industry.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We assess the performance of the different approaches on a diverse set of task streams, with randomly
generated sequences, which also tests the agent’s capacity to adapt across unpredictable transitions.

5.2 CONTINUAL REINFORCEMENT LEARNING BASELINES

We compare our method to several CRL strategies relevant to our setting, as described in Section
3. All baselines are built on the same Hierarchical Imitation Learning backbone and detailed in
Appendix A.4.

The Single Naive Strategy (SC1) trains a single policy from scratch on the latest dataset and applies
it to all tasks, while the Expanding Naive Strategy (SCN) trains and saves a new policy for each
task. The Single Finetuning Strategy (FT1) adapts a single policy across tasks but suffers from
catastrophic forgetting. In contrast, the Expanding Finetuning Strategy (FTN) retains a separate
policy for each task, preserving knowledge but increasing memory use. The Freeze Strategy (FZ)
trains a policy on the first task and applies it unchanged to all subsequent tasks. More advanced
methods include L2-Regularization (L2) (Kumar et al., 2023), which adds a penalty to the loss
function according to the previous weight changes between tasks, and Elastic Weight Consolidation
(EWC) (Kirkpatrick et al., 2017), which supposedly improves L2 by penalizing important weights
using the Fisher Information Matrix. Progressive Neural Networks (PNN) (Rusu et al., 2016) add
new layers for each task, using lateral connections to transfer useful representations while avoiding
interference. Finally, we adapt Continual Subspace of Policies (CSP) (Gaya et al., 2023), originally
designed for online learning, for offline use while maintaining Q-function learning.

5.3 PERFORMANCE AND RELATIVE MEMORY SIZE

The trade-off between performance and memory usage is critical in CRL. Figure 3 illustrates the
average Performance (PER) according to the Relative Memory Size (MEM) of the baseline strategies
and ours. HILOW consistently demonstrates high performance with moderate memory consumption,
outperforming or matching other methods in this balance.

AntMaze Streams

0 2 4 6 8 10 12

Relative Memory Size
0

20

40

60

80

100

Pe
rf

or
m

an
ce

PointMaze Streams

0 2 4 6 8 10 12

Relative Memory Size
0

20

40

60

80

100

Pe
rf

or
m

an
ce

Video Game Streams

0 2 4 6 8 10 12

Relative Memory Size
0

20

40

60

80

100

Pe
rf

or
m

an
ce

SC1 SCN FT1 FTN FZ EWC L2 PNN HILOW

Figure 3: Performance vs. Relative Memory Size. The figure shows the average performance w.r.t.
memory size of different CRL methods over sets of streams from our three considered environments.
HILOW (yellow star) demonstrates high performance with moderate memory usage.

In the AntMaze streams, our HILOW method approaches the top-performing one PNN while using
significantly less memory. The simple architectural strategies like FTN and SCN perform slightly
below HILOW with comparable memory consumption. In contrast, weight regularization and
naive methods (e.g., EWC, FT1, FZ) underperform in both metrics. These results demonstrate that
HILOW effectively balances performance and resource use2. In the PointMaze streams, HILOW
nearly matches the top-performing PNN, while maintaining significantly lower memory usage.

2For complex tasks like AntMaze, starting with a slightly larger model enhances HILOW’s low-rank adaptors,
resulting in a marginally larger final model than FTN and SCN.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 2 3 4
Number of Tasks

2

4

6

8

10

R
el

at
iv

e
M

em
or

y
S

iz
e

SC1 - FT1 - FZ - EWC - L2

SCN - FTN

PNN

HILOW

Figure 4: Evolution of the Relative
Memory Size metric according to
the number of tasks.

Simple architectural methods (FTN and SCN) show high task
performance but require more memory compared to HILOW.
The weight regularization and naive strategies, as in AntMaze,
fail to provide comparable performance, which highlights the
advantage of HILOW in memory-constrained environments.
In the Video Game streams, HILOW surpasses PNN both
in performance and relative memory size. It remains highly
competitive with FTN, which matches HILOW’s performance
but at the cost of more memory.

Overall, the HILOW method consistently demonstrates its
strong performance across diverse tasks while maintaining a
significantly lower memory usage, especially when compared
to memory-heavy methods like PNN, which has an exponential
memory cost (see figure 4). This balance makes HILOW a
highly efficient approach for continual reinforcement learning
in resource-constrained environments.

5.4 FORGETTING AND GENERALIZATION

Table 2: Performance Related Metrics. Backward Transfer (BWT) and Forward Transfer (FWT)
across methods and streams. Architectural approaches like FTN, SCN, PNN and HILOW excel in
BWT by preventing forgetting through parameter storage.

AntMaze Streams PointMaze Streams Video Game Streams
Method

PER ↑ BWT ↑ FWT ↑ PER ↑ BWT ↑ FWT ↑ PER ↑ BWT ↑ FWT ↑

SC1 24.2 -49.0 0.0 43.9 -55.1 0.0 58.8 -25.6 0.0
SCN 71.3 0.0 0.0 99.0 0.0 0.0 83.8 0.0 0.0
FT1 31.4 -47.2 5.5 53.0 -46.3 0.3 61.6 -27.6 4.9
FTN 72.0 0.0 5.5 99.3 0.0 0.3 89.1 0.0 4.9
FZ 24.2 0.0 -52.1 33.3 0.0 -65.7 50.2 0.0 -33.1
L2 25.3 -43.8 -4.0 56.3 -41.2 -1.4 64.1 -18.2 -2.1

EWC 30.3 -47.0 4.2 57.1 -42.0 0.1 61.9 -28.1 5.6
PNN 82.3 0.0 9.1 99.5 0.0 0.5 86.2 0.0 1.7

HILOW 75.3 0.0 2.2 98.7 0.0 -0.8 89.0 0.0 4.6

Table 2 summarizes the Backward Transfer (BWT) and Forward Transfer (FWT) metrics for the
different methods across AntMaze, PointMaze, and Video Game streams. In general, architectural
methods like FTN, SCN, PNN and HILOW perform well in terms of BWT, as they can store
task-specific parameters without overwriting previous ones, allowing them to avoid forgetting. On
the other hand, weight regularization methods (EWC, L2) can struggle when task changes are more
diverse, showing inconsistent BWT results. Regarding forward transfer (FWT), most methods
exhibit minimal or no forward transfer, highlighting the inherent challenge of knowledge transfer
between tasks. While methods such as FT1 and FTN demonstrate some positive forward transfer,
HILOW shows only modest improvements. This may indicate limitations in the low-rank adaptor’s
capacity for task generalization, particularly in dynamic environments. Although HILOW does not
excel in forward transfer metrics, it maintains a stable and balanced performance across tasks, making
it a robust option for effectively managing memory and performance in continual learning settings.

5.5 ABLATIONS

To understand the effectiveness of our proposed HILOW framework, we conduct a series of ablation
studies on PointMaze streams, featuring methods ranging from vanilla adaptations of CSP to HILOW
(see Table 3).

Adapting CSP to Offline CRL : CSP-O The original Continual Subspace of Policies (CSP) (Gaya
et al., 2023) leverages Soft Actor-Critic (SAC) and replay buffers to evaluate policies by learning a
Q-function. However, in an offline setting, replay buffers are impractical. To adapt CSP for offline

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

CRL, we replace SAC with Hierarchical Imitation Learning (HBC) and eliminate the reliance on
replay buffers, creating a single subspace that encapsulates both high-level and low-level policy
parameters. We refer to this approach as CSP in Table 3. Despite these modifications, we observe that
the Q-function’s predictions become nearly independent of actions due to the optimality of expert
data, limiting CSP’s effectiveness in offline scenarios. To address the limitations of the adapted
CSP, we develop CSP-O, an improved offline adaptation that employs a loss function-based selection
criterion instead of a Q-function. CSP-O maintains a single subspace but enhances policy evaluation
by directly minimizing the loss with respect to the expert behavior, thereby improving performance
in offline settings.

PointMaze StreamsCSP Method PER ↑ MEM ↓
CSP 64.3 ± 98.2 2.5 ± 0.5

CSP-O 99.1 ± 0.6 4.0 ± 0.0
HILOW (w/o LoRA) 98.8 ± 0.3 3.5 ± 0.5

HILOW 98.7 ± 0.1 2.1 ± 0.2

Table 3: HILOW ablations on Point-
Maze Streams.

Why Two Subspaces ? While CSP-O consolidates all
policy parameters into a single subspace, our HILOW di-
vides them into two distinct subspaces: one for high-level
and one for low-level policies. This separation enables
more fine-tuned updates, preventing unnecessary expan-
sions of the high-level subspace when only low-level ad-
justments are needed. Our experiments show that HILOW
outperforms CSP-O in PointMaze streams.

Benefits of Low-Rank Adaptation Low-Rank Adap-
tation (LoRA) enables efficient parameter updates by ap-
proximating changes with low-rank matrices. Comparing HILOW with and without LoRa subspaces,
we find that incorporating low-rank adaptors allows for smaller, more efficient updates when adapting
to new tasks.

6 DISCUSSION

In this work, we introduced HILOW, a framework that combines hierarchical imitation learning with
low-rank subspace adaptations for offline continual reinforcement learning. Our results show that
our framework effectively balances performance and memory usage across diverse environments,
including classical mazes and complex video games. By using separate subspaces for high-level and
low-level policies, it efficiently adapts to new tasks while mitigating forgetting. Compared to other
methods, HILOW offers a strong trade-off between adaptability and resource efficiency.

Future work could study to which extent HILOW can scale to more complex CRL settings, e.g.
with chaotic task streams. Additionally, while HILOW performs well with expert data, scenarios
with imperfect expert trajectories could pose challenges. Towards such settings, improved subspace
evaluations procedured could be studies, e.g. integrating Inverse Reinforcement Learning (IRL)
(Arora & Doshi, 2021; Ho & Ermon, 2016), to refine Q-function learning, providing better scoring of
sampled policies. Exploring adaptive ranks during subspace extension could enhance the framework’s
flexibility and scalability with task complexity. Overall, HILOW makes a significant step toward
addressing offline continual learning challenges.

7 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure that our work is fully reproducible. Detailed descriptions
of the environments, tasks streams, and training settings are provided in the Section 5, and the
Appendix A to C, including specifics for the different environments. We also include pseudo-code for
all algorithms, covering both our proposed HILOW framework and the baselines, with a thorough
explanation of Hierarchical Imitation Learning, the backbone of our approach. To further facilitate
replication, we will share the full source code with reviewers and release it publicly, alongside the
data, upon acceptance. This code include all necessary components for running experiments, training
models, and evaluating metrics. Additionally, all theoretical assumptions, parameters settings, and
decision processes, such as subspace pruning and regularization, are clearly documented to ensure
clarity and replicability.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Advances in neural information processing systems, 2017.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, methods
and progress. Artificial Intelligence, 297, 2021.

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shimon
Whiteson. A survey of meta-reinforcement learning, 2023.

Arslan Chaudhry, Naeemullah Khan, Puneet Dokania, and Philip Torr. Continual learning in low-rank
orthogonal subspaces. Advances in Neural Information Processing Systems, 2020.

Daiki Chijiwa. Transferring learning trajectories of neural networks. arXiv preprint arXiv:2305.14122,
2023.

Kurtland Chua, Qi Lei, and Jason Lee. Provable hierarchy-based meta-reinforcement learning. In
International Conference on Artificial Intelligence and Statistics. PMLR, 2023.

Felipe Leno Da Silva and Anna Helena Reali Costa. A survey on transfer learning for multiagent
reinforcement learning systems. Journal of Artificial Intelligence Research, 2019.

Jader Martins Camboim de Sá, Matheus Ferraroni Sanches, Rafael Roque de Souza, Júlio Cesar dos
Reis, and Leandro Aparecido Villas. Curricular transfer learning for sentence encoded tasks. arXiv
preprint arXiv:2308.01849, 2023.

Natalia Díaz-Rodríguez, Vincenzo Lomonaco, David Filliat, and Davide Maltoni. Don’t forget, there
is more than forgetting : new metrics for continual learning, 2018.

Fan Ding and Fei Zhu. Hliferl: A hierarchical lifelong reinforcement learning framework. Journal of
King Saud University-Computer and Information Sciences, 2022.

Yiming Ding, Carlos Florensa, Mariano Phielipp, and Pieter Abbeel. Goal-conditioned imitation
learning. Advances in Neural Information Processing Systems, 2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl : Datasets for deep
data-driven reinforcement learning, 2020.

Jean-Baptiste Gaya, Laure Soulier, and Ludovic Denoyer. learning a subspace of policies for online
adaptation in reinforcement learning. In International Conference of Learning Representations,
2022.

Jean-Baptiste Gaya, Thang Doan, Lucas Caccia, Laure Soulier, Ludovic Denoyer, and Roberta
Raileanu. Building a subspace of policies for scalable continual learning. In International
Conference of Learning Representations, 2023.

Dibya Ghosh, Chethan Anand Bhateja, and Sergey Levine. Reinforcement learning from passive
data via latent intentions. In International Conference on Machine Learning. PMLR, 2023.

Godot. Godot game engine, 2020. URL https://github.com/godotengine/godot.

Gabriele Graffieti, Guido Borghi, and Davide Maltoni. Continual learning in real-life applications.
IEEE Robotics and Automation Letters, 2022.

Abhishek Gupta, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine. Unsupervised meta-learning
for reinforcement learning, 2018.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic : Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning. PMLR, 2018.

11

https://github.com/godotengine/godot

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Yizhou Huang, Kevin Xie, Homanga Bharadhwaj, and Florian Shkurti. Continual model-based rein-
forcement learning with hypernetworks. In International Conference on Robotics and Automation
(ICRA). IEEE, 2021.

Rakib Hyder, Ken Shao, Boyu Hou, Panos Markopoulos, Ashley Prater-Bennette, and Salman Asif.
Continual learning via low-rank network updates, 2021.

David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2018.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan. Measuring
catastrophic forgetting in neural networks. In Proceedings of the AAAI conference on artificial
intelligence, 2018.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforcement
learning : A review and perspectives. Journal of Artificial Intelligence Research, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 2017.

Saurabh Kumar, Henrik Marklund, and Benjamin Van Roy. Maintaining plasticity in continual
learning via regenerative regularization, 2023.

Rodrigo De Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan
Terry. Gymnasium robotics, 2023. URL http://github.com/Farama-Foundation/
Gymnasium-Robotics.

Hoang Le, Nan Jiang, Alekh Agarwal, Miroslav Dudík, Yisong Yue, and Hal Daumé III. Hierarchical
imitation and reinforcement learning. In International conference on machine learning. PMLR,
2018.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning : Tutorial,
review, and perspectives on open problems, 2020.

Jiani Liu, Qinghua Tao, Ce Zhu, Yipeng Liu, Xiaolin Huang, and Johan AK Suykens. Low-rank
multitask learning based on tensorized svms and lssvms. arXiv preprint arXiv:2308.16056, 2023.

Jinmei Liu, Wenbin Li, Xiangyu Yue, Shilin Zhang, Chunlin Chen, and Zhi Wang. Continual offline
reinforcement learning via diffusion-based dual generative replay. 2024.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning : Prob-
lems and solutions. IJCAI, 2022.

Charles Packer, Pieter Abbeel, and Joseph E Gonzalez. Hindsight task relabelling : Experience replay
for sparse reward meta-rl. Advances in Neural Information Processing Systems, 2021.

Chaofan Pan, Xin Yang, Hao Wang, Wei Wei, and Tianrui Li. Hierarchical continual reinforcement
learning via large language model, 2024. URL https://arxiv.org/abs/2401.15098.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-conditioned
rl with latent states as actions. In Advances in Neural Information Processing Systems, 2023.

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on offline
reinforcement learning : Taxonomy, review, and open problems. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

12

http://github.com/Farama-Foundation/Gymnasium-Robotics
http://github.com/Farama-Foundation/Gymnasium-Robotics
https://arxiv.org/abs/2401.15098

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in neural information processing systems, 2019.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arxiv preprint,
2016.

Nicolas Schweighofer and Kenji Doya. Meta-learning in reinforcement learning. Neural Networks,
2003.

Khadija Shaheen, Muhammad Abdullah Hanif, Osman Hasan, and Muhammad Shafique. Continual
learning for real-world autonomous systems: Algorithms, challenges and frameworks. Journal of
Intelligent & Robotic Systems, 2022.

Tianmin Shu, Caiming Xiong, and Richard Socher. Hierarchical and interpretable skill acquisition
in multi-task reinforcement learning. In International Conference on Learning Representations,
2018.

Richard S Sutton and Andrew G Barto. Reinforcement Learning : An Introduction, Second Edition.
MIT Press, 2018.

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel Mankowitz, and Shie Mannor. A deep hierarchical
approach to lifelong learning in minecraft. In Proceedings of the AAAI conference on artificial
intelligence, 2017.

Tom Veniat, Ludovic Denoyer, and MarcAurelio Ranzato. Efficient continual learning with modular
networks and task-driven priors. In International Conference on Learning Representations, 2020.

Nelson Vithayathil Varghese and Qusay H Mahmoud. A survey of multi-task deep reinforcement
learning. Electronics, 2020.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning : Theory, method and application. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

Martin Wistuba, Prabhu Teja Sivaprasad, Lukas Balles, and Giovanni Zappella. Continual learning
with low rank adaptation, 2023.

Mitchell Wortsman, Maxwell C Horton, Carlos Guestrin, Ali Farhadi, and Mohammad Rastegari.
Learning neural network subspaces. In International Conference on Machine Learning, 2021.

Omar G. Younis, Rodrigo Perez-Vicente, John U. Balis, Will Dudley, Alex Davey, and Jordan K
Terry. Minari, September 2024. URL https://doi.org/10.5281/zenodo.13767625.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world : A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning. PMLR, 2020.

Yusen Zhan and Mattew E Taylor. Online transfer learning in reinforcement learning domains. In
2015 AAAI Fall Symposium Series, 2015.

Yu Zhang and Qiang Yang. An overview of multi-task learning. National Science Review, 2018.

Zhuangdi Zhu, Kaixiang Lin, Anil K Jain, and Jiayu Zhou. Transfer learning in deep reinforcement
learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

13

https://doi.org/10.5281/zenodo.13767625

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A TASK STREAMS DETAILS

A.1 ENVIRONMENTS

A.1.1 MUJOCO MAZE ENVIRONMENTS

We consider two sets of environments from the Gymnasium framework Lazcano et al. (2023) :
PointMaze and AntMaze. They are considered due to their complexity and the availability of datasets
from D4RL Fu et al. (2020), which provide a standardized set of tasks to evaluate CRL algorithms.

(a) Point Agent. (b) Ant Agent. (c) U Maze. (d) Medium Maze. (e) Large Maze.

Figure 5: All U (size = 5×5), M (size = 8×8), and L (size = 12×9) mazes provide a sparse
reward with a value of 1 when the agent is within a 0.5 unit radius to the goal. The Point Agent is a
point mass controlled by applying forces in two dimensions, allowing the agent to move freely across
the plane towards a goal location. In contrast the Ant Agent is a more complex articulated quadruped
robot. It is controlled through the application of torques to its joints.

A.1.2 VIDEO GAME NAVIGATION ENVIRONMENTS

While PointMaze and AntMaze environments were simple to setup and allowed us to quickly generate
datasets, as to our knowledge there are no CRL datasets for navigation, they are primarily focused
on assessing the impact of changes in agent dynamics, such as action transformations. These
environments are expressive but lack features needed to fully understand how topographic variations
affect an agent. To bridge this gap, We introduce a video-game like 3D navigation environments,
implemented on Godot (Godot (2020)), that offer diverse mazes with more explainable spatial
challenges. They allow us to explore the influence of environmental structures on agent performance.

There are two families of mazes : SimpleTown, which mazes are relatively simple, with a size of
30× 30 meters. The starting positions are randomly sampled on one side, and the goal positions are
on the other side ; AmazeVille, which mazes are more challenging, with a size of 60× 60 meters.
They have a finite set of start and goal positions, and include two subsets of maps : some with high
blocks, i.e. not jumpable obstacles ; others with low blocks, i.e. jumpable ones.

Observation Feature Size Type Observation Feature Size Type

Agent Position 3 float Goal Position 3 float

Agent Orientation 3 float Agent Velocity 3 float

RGB Image 3× 64× 64 float Depth Image 11× 11 float

Floor Contact 1 bool Wall Contact 1 bool

Goal Contact 1 bool Timestep 1 int

Up Direction 3 float - - -

Table 4: (Godot) Available observation features. The maximum number of features an observation
may have is 12440, if it were to use all the available ones. The position information correspond
to the (x, y, z) coordinates in meters. The agent orientation is its angle in radian according to the
vertical axis. The velocity is provided in meters per second. The RGB images corresponds to the
visualization of the environment from the agent’s point field of view. The depth image is obtained
using 11× 11 raycasts from the agent position to the visible nearest obstacles.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(a) S - BASE (b) S - OOX (c) S - OXO (d) S - XOO

(e) S - OOO (f) S - XXO (g) S - XOX (h) S - OXX

(i) A - HOOO (j) A - HOOX (k) A - HXOO (l) A - HXOX

(m) A - LOOO (n) A - LOOX (o) A - LXOO (p) A - LXOX

Figure 6: The SimpleTown (S) and the AmazeVille (AH, AL) environments : The naming indicate
whether specific doors are open (O) or not (X), and if movable green blocks are in high positions (H)
or low positions (L), providing a clear way to distinguish between different maze configurations.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Frame 0 Frame 5 Frame 10 Frame 15 Frame 20

Frame 25 Frame 30 Frame 35 Frame 40 Frame 45

Frame 50 Frame 55 Frame 60 Frame 65 Frame 70

Figure 7: Visualization of a Human-Generated Trajectory on A - LOOO.

A.2 TASKS

We design a variety of tasks within each environment to evaluate the agent’s adaptability to different
scenarios. For both PointMaze and AntMaze environments, we consider five task variations :

• Normal (N) : The standard task with no changes to actions or observations.
• Inverse Actions (IA) : Opposing values of the action features.
• Inverse Observations (IO) : Opposing values of the observation features.
• Permute Actions (PA) : clockwise permutation of the actions features.
• Permute Observations (PO) : Clockwise permutation of the observation features.

For the Godot-based environments (SimpleTown and AmazeVille), we simply use the mazes provided
without additional modifications. The inherent complexity of these mazes, including variations in
obstacle placement, already presents a significant challenge for the learning algorithms.

A.3 DATASETS

For the PointMaze and AntMaze environments, we employed datasets from D4RL, each comprising
500 episodes per task across different maze configurations. Due to the straightforward nature of the
task transformations, we effectively adapted the original datasets by applying these modifications and
developed corresponding environment wrappers for seamless integration within the Gym framework.

The trajectories visualized in Figures 8 and 9 illustrate not only the richness and diversity of the
collected data but also the complexity of the tasks that agents must navigate. These trajectories
highlight a range of behaviors, from straightforward goal-reaching paths to more intricate maneuvers
required to overcome environmental obstacles.

In the Godot-based environments, data was sampled manually over approximately 10 hours, resulting
in 100 episodes for each AmazeVille maze and 250 episodes for each SimpleTown maze.

A.4 TASK STREAMS

A task stream refers to a sequence of environments and corresponding datasets that an agent learns
from over time. Each task in the stream introduces new environmental variations, changes in
dynamics, or modifications to the observation and action spaces, simulating the possible evolving
challenges in real-world scenarios. They may build upon previously learned skills, testing both
short-term adaptability and long-term memory retention. We consider several classical metrics,
namely : Performance (PER), Backward Transfer (BWT), Forward Transfer (FWT), and Relative
Memory Size (MEM). These metrics enable us to assess the agent’s continual learning capabilities by
evaluating its ability to generalize across tasks, preserve learned knowledge, while being scalable.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 8: SimpleTown Trajectories (Staring Position are on the bottom).

Figure 9: AmazeVille Trajectories (Staring Position are on the bottom).

Here are the AntMaze streams (maze-task [nepisodes]) :

• 1 : U-N[500]→ L-N[500]→ U-PO[500]→ M-IO[500]

• 2 : U-PA[500]→ M-PO[500]→ M-N[500]→ M-N[500]

Here are the PointMaze streams (maze-task [nepisodes]) :

• 1 : L-N[500]→ M-PA[500]→ M-PO[500]→ U-N[500]

• 2 : U-N[500]→ U-PO[500]→ M-PO[500]→ L-PA[500]

Here are the Video Game streams (maze [nepisodes]) :

• 1 : HOOO[100]→ HXOO[100]→ LOOO[100]→ LOOX[100]

• 2 : LOOX[100]→ HXOO[100]→ HOOO[100]→ LXOX[100]

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B BASELINES DETAILS

B.1 GOAL-CONDITIONED OFFLINE REINFORCEMENT LEARNING ALGORITHMS

In both Imitation Learning and Hierarchical Imitation Learning algorithms, we will
consider a MDPM =

(
S, A, PS , PS,G

(0), R, γ, G, ϕ, d
)
, and a dataset of

trajectories D =
{
(sit, a

i
t, r

i
t, s

i
t+1, g

i)
}

sampled by one or many expert agents.

Imitation Learning (BC) Ding et al. (2019). The BC algorithm is a direct and simple
framework to leverage a dataset of transitions D by running a supervised regression
using a negative log-likelihood loss :

LD(θ) = E(sit,a,s
i
t,r,s

i
t,s

i
t+1,g

i)∼D

[
− log(πθ(a

i
t|sit, gi))

]
, and θ∗D = arg min

θ ∈ Θ

LD(θ) (2)

Moreover this algorithm benefit from using a HER (Figure 10) relabelling strategy.
Indeed, as the trajectories have been sampled by an expert, if we consider a transition
(sit, a

i
t, r

i
t, s

i
t+1, g

i) ∈ D then we can also consider (sit, a
i
t, r

i
t, s

i
t+1, ϕ(s

i
t+k)) as also

an expert generated transition. Thus, HER can be considered as a data augmentation
technique, which is particularly effective in low data regime.

(a) Original Trajectory. (b) New Trajectory.

Figure 10: Hindsight Experience Replay (HER) Illustration.

Hierarchical Imitation Learning (HBC) (Le et al., 2018; Gupta et al., 2019; Park et al., 2023).
HBC leverages hierarchical structures so as to effectively handle the challenges
associated with learning from offline datasets. This algorithm decomposes the
navigation task into manageable sub-tasks using a high-level and a low-level policy.

Now, an end-to-end policy πθ : S × G → ∆(A) is divided into two distinct
learnable components. First, a high policy πh

θh
: S × G → ∆(G) aiming at selecting

intermediate sub-goals that are strategically feasible stepping stones towards a final
goal, thus simplifying the path finding task. Then, a low policy πl

θl
: S ×G → ∆(A)

focused on generating the actions necessary to progress from the current state towards
the sub-goal selected by the high policy. The optimization follows :

Lh
D(θh) = E(sit,s

i
t+k

,gi)∼D

[
− log(πh

θh(ϕ(s
i
t+k)|sit, gi)))

]
, and θh

∗
D = arg min

θh ∈ Θ

Lh
D(θh) (3)

Ll
D(θl) = E(sit,a

i
t,s

i
t+1,s

i
t+k

,gi)∼D

[
− log(πl

θl(at|sit, ϕ(sit+k)))
]
, and θl

∗
D = arg min

θl ∈ Θ

Ll
D(θl) (4)

Hence, given way step hyperparameter k, which determines the desired temporal
distance of the sub-goals, the optimization for the high and low policies uses a
common loss structure, adapted to suit their specific roles.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B.2 CONTINUAL REINFORCEMENT LEARNING BASELINES

This section explores CRL baselines, designed to learn from a task stream T , where
each task Tk consists of a MDP Mk =

(
Sk, Ak, PSk , PS,G

(0)
k , Rk, γk, G, ϕk, dk

)
and a

dataset of trajectories Dk =
{
(sk,it , ak,i

t , rk,it , sk,it+1, g
k,i)

}
. Interestingly, these strategies

could be extended to a broader range algorithms, beyond goal-conditioned ones.

Naive Learning Strategy or From Scratch (SC1 & SCN). In SC1, a single policy is learned
from the latest dataset and then applied unchanged to all tasks. In SCN, a new policy
is trained for each task, improving performance at the cost of a memory load.

Algorithm 2 Naive Strategy

Require: learning rate η, number of epochs E, boolean StorePolicies
1: for k = 1 to N do
2: Initialize policy parameters θk
3: for epoch = 1 to E do
4: for mini-batch B in Dk do
5: Update θk using gradient descent: θk ← θk − η∇LB(θk)

6: if StorePolicies then Store θk
7: else θ1 ← θk

Freeze Strategy (FZ). In the Freeze Strategy, a single policy is trained only on the
first task and then applied without modification to all subsequent tasks.

Algorithm 3 Freeze Strategy

Require: learning rate η, number of epochs E
1: Initialize policy parameters θ1
2: for epoch = 1 to E do
3: for mini-batch B in D1 do
4: Update θ1 using gradient descent: θ1 ← θ1 − η∇LB(θ1)

Finetuning Strategy (FT1 & FTN). The Finetuning Strategy involves adapting a policy
learned from the initial task to each subsequent task, either by continuously updating
a single policy (FT1) or by copying and then updating the policy for each new task
(FTN), allowing for better task adaptation.

Algorithm 4 Finetuning Strategy

Require: learning rate η, number of epochs E, boolean StorePolicies
1: Initialize policy parameters θ1
2: for epoch = 1 to E do
3: for mini-batch B in D1 do
4: Update θ1 using gradient descent: θ1 ← θ1 − η∇LB(θ1)

5: for k = 2 to N do
6: if StorePolicies then θk ← θk−1

7: else θk ← θ1
8: for epoch = 1 to E do
9: for mini-batch B in Dk do

10: Update θk using gradient descent: θk ← θk − η∇LB(θk)

11: if StorePolicies then Store θk
12: else θ1 ← θk

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Elastic Weight Consolidation (EWC) Kirkpatrick et al. (2017). This strategy has been
designed to mitigate catastrophic forgetting in continual learning. It achieves this by
selectively slowing down learning on certain weights based on their importance to
previously learned tasks. This importance is measured by the Fisher Information
Matrix, which quantifies the sensitivity of the output function to changes in the
parameters.

EWC introduces a quadratic penalty to the loss function, constraining the parameters
close to their values from previous tasks, where the strength of the penalty is propor-
tional to each parameter’s importance. This allows the model to retain performance
on previous tasks while continuing to learn new tasks effectively.

However this method struggles for navigation tasks due to the penalty for updating
parameters, making it difficult to adapt to tasks like inverse actions. This rigidity is
problematic in complex environments where different tasks demand flexibility. As a
result, EWC is limited in effectively handling tasks requiring greater adaptation.

Algorithm 5 Elastic Weight Consolidation Strategy

Require: learning rate η, number of epochs E, elastic weight λ, Fisher Information Matrix F0

1: Initialize policy parameters θ
2: for k = 1 to N do
3: for epoch = 1 to E do
4: for mini-batch B in Dk do
5: Compute standard loss : LS

B(θ)

6: Compute EWC loss : LEWC
B (θ) = λ

2

∑k−1
i=1 Fi · (θi − θi,old)

2

7: Total loss : LB(θ) = LS
B(θ) + LEWC

B (θ)
8: Update θ using gradient descent: θ ← θ − η∇LB(θ)

9: Update Fisher Information Matrix Fk

10: Store current parameters to learn next ones θk,old ← θ

L2-Regularization Finetuning (L2) Kumar et al. (2023). This strategy also mitigates
catastrophic forgetting by adding an L2 penalty to the loss, discouraging large
weight changes during training. This helps preserve knowledge from previous tasks
by promoting stability in the learned representations.

As with EWC, L2-regularization struggles in CRL for navigation tasks, especially
when actions or dynamics change drastically. The method limits the network’s
flexibility by forcing small weight updates, making it difficult to adapt to tasks that
require distinct actions for similar states, which is critical in evolving environments.

Algorithm 6 L2-Regularization Finetuning Strategy

Require: learning rate η, number of epochs E, regularization strength λ
1: Initialize policy parameters θ with θ
2: for k = 1 to N do
3: for epoch = 1 to E do
4: for mini-batch B in Dk do
5: Compute task-specific loss : LS

B(θ)
6: Compute L2 regularization loss : LL2

B (θ) = λ∥θ − θold∥2
7: Total loss : LDk

(θ) = LS
B(θ) + LL2

B (θ)
8: Update θ using gradient descent: θ ← θ − η∇LB(θ)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Progressive Neural Networks (PNN) Rusu et al. (2016). This framework introduce a
new column layers for each task, freezing previous weights to preserve knowledge.
Lateral connections allow feature transfer, leveraging prior experience while avoiding
interference. PNNs effectively prevent catastrophic forgetting, but the model grows
with each task, limiting scalability for many tasks or limited memory contexts.

Algorithm 7 Progressive Neural Networks Strategy

Require: number of tasks N , learning rate η
1: Initialize first task column C1 with random weights
2: Train C1 on the dataset D1 for the first task
3: for k = 2 to N do ▷ For each new task
4: Create a new task-specific column Ck with random weights
5: Freeze weights in previous columns C1, C2, . . . , Ck−1

6: Add lateral connections from C1, . . . , Ck−1 to Ck

7: Load task-specific dataset Dk

8: for each mini-batch B in Dk do
9: Compute the outputs of previous columns C1, . . . , Ck−1

10: Pass outputs through lateral connections to Ck

11: Update the weights in Ck using gradient descent
12: Freeze the weights in column Ck after training

Continual Subspace of Policies (CSP) Gaya et al. (2023). This strategy handles continual
learning by maintaining a subspace of policy parameters that adapt as new tasks are
learned. For each new task, a new anchor is added, allowing the model to combine
parameters from previous tasks. CSP decides whether to extend or prune the subspace
based on a critic, Wϕ, that evaluates the performance of anchor combinations.

Algorithm 8 Continual Subspace of Policies (CSP)

1: Input: θ1, . . . , θj (previous anchors), ϵ (threshold)
2: Initialize: Wϕ (subspace critic), B (replay buffer)
3: Initialize: θj+1 ← 1

j

∑j
i=1 θi (new anchor)

4: for i = 1, . . . ,B do ▷ // Grow the Subspace
5: Sample α ∼ Dir(U(j + 1))

6: Set policy parameters θα ←
∑j+1

i=1 αiθi
7: for l = 1, . . . ,K do
8: Collect and store (s, a, r, s′, α) in B by sampling a ∼ πθα(s)

9: if time to update then
10: Update πθj+1 and Wϕ using the SAC algorithm and the replay buffer B
11:
12: Use B and Wϕ to estimate: ▷ // Extend or Prune the Subspace
13:

αold ← arg max
α∈Rn

+,∥α∥1=1

Wϕ(α)

αnew ← arg max
α∈Rn+1

+ ,∥α∥1=1

Wϕ(α)

14: if Wϕ(·, αnew) > (1 + ϵ) ·Wϕ(·, αold) then
15: Return: θ1, . . . , θj , θj+1, α

new ▷ // Extend
16: else
17: Return: θ1, . . . , θj , αold ▷ // Prune

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C IMPLEMENTATION DETAILS

C.1 ARCHITECTURES & HYPERPARAMETERS

We primarily followed prior work (Ghosh et al., 2023) for network architectures and
hyperparameters. All environments used MLPs with layer normalization on hidden
layers. Low-level policies had 256 hidden units, and high-level policies used 64. For
HILOW in AntMaze and Godot, we increased these to 300 and 70 respectively as,
experimentally, low-rank adaptors performed better with larger initial models on
more complex tasks. Dropout of 0.1 was applied to all hidden layers.

Input sizes were 31 for AntMaze (including position, goal, and features), 8 for
PointMaze, and 133 for Godot. Output sizes were 8 for AntMaze and Godot, and 2
for PointMaze. Outputs were continuous for AntMaze and PointMaze, while Godot
used both continuous and discrete outputs to simulate gamepad controls.

Hyperparameter AntMaze PointMaze AmazeVille SimpleTown
Batch Size 1024 1024 64 64

Learning Rate 3e-4
Umaze : 10 Umaze : 50

Way Steps (Sub-goal distance) Medium : 15 Medium : 25 10 3
Large : 15 Large : 25

Umaze : 100.0
HER Sampling Temperature 50.0 Medium : 75.0 100.0 15.0

Large : 100.0

Table 5: Hyperparameter settings for AntMaze, PointMaze, and Godot environments.

C.2 TRAINING DETAILS

For EWC and L2 strategies, we experimented with five regularization weights
λ ∈ { 1e-2, 1e-1, 1, 1e1, 1e2 } and selected the best model in terms of performance
for each task stream. Similarly, for HILOW, we tested different acceptance values
ϵ ∈ { 1e-2, 5e-2, 1e-1, 2.5e-1 } to decide whether to prune or extend a subspace.

When using Hierarchical Imitation Learning, we also employed Hindsight Experi-
ence Replay (HER) for all environments, using an exponential sampling strategy
guided by a temperature parameter to improve sample efficiency.

C.3 COMPUTE RESOURCES

Training was conducted on a shared compute cluster using CPUs for all experiments,
as the models are relatively small and the backbone algorithms do not require
highly intensive operations typically associated with GPU use. This choice also
allowed us to run more experiments in parallel, optimizing resource utilization. The
compute cluster featured Intel(R) Xeon(R) CPU E5-1650 and Intel Cascade Lake
6248 processors. For most models, 4 cores per training were sufficient, but due
to PNN’s growing memory requirements, we allocated 6 cores for its experiments.
Total training times across the defined streams of tasks ranged from 10 to 18 hours,
depending on the complexity of the task stream.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D ADDITIONAL & DETAILED RESULTS

D.1 HIERARCHICAL VS. NON-HIERARCHICAL POLICIES IN GOAL-CONDITIONED RL

Table 6 compares Imitation Learning and Hierarchical Imitation Learning across
the various maze environments. HBC consistently outperforms BC in both success
rate and episode length, especially in complex environments like AmazeVille, where
hierarchical decision-making is crucial for navigating diverse tasks and obstacles. In
simpler environments like SimpleTown, the performance difference is minimal, as
these tasks are easier to solve.

Success Rate ↑ Episode Length ↓
Environment Maze

BC HBC BC HBC

PointMaze
Umaze 99.2 ± 1.4 100.0 ± 0.0 68.4 ± 10.9 63.8 ± 6.2

Medium 94.1 ± 8.4 99.5 ± 1.1 199.5 ± 32.2 172.0 ± 33.1

Large 67.9 ± 9.7 95.0 ± 6.9 328.5 ± 33.3 282.5 ± 61.4

AntMaze
Umaze 76.7 ± 8.5 93.5 ± 5.4 422.0 ± 75.9 286.6 ± 48.8

Medium 43.3 ± 10.5 68.8 ± 5.0 688.0 ± 101.1 519.1 ± 61.4

Large 18.8 ± 11.4 32.8 ± 9.9 861.4 ± 88.9 816.8 ± 63.8

SimpleTown

BASE 94.8 ± 5.0 98.6 ± 2.0 52.7 ± 3.6 51.5 ± 2.6

OOO 95.9 ± 1.9 97.3 ± 1.9 55.8 ± 2.2 56.0 ± 2.5

OOX 92.6 ± 4.8 94.3 ± 3.2 60.6 ± 2.3 59.7 ± 4.0

OXO 89.5 ± 4.4 91.6 ± 4.2 61.7 ± 1.9 62.8 ± 1.2

XOO 94.0 ± 4.0 93.8 ± 3.7 59.3 ± 3.0 60.0 ± 2.4

XXO 89.8 ± 7.2 84.2 ± 5.3 70.2 ± 2.5 72.6 ± 1.7

XOX 90.1 ± 5.7 97.0 ± 2.3 61.4 ± 2.5 60.2 ± 1.8

OXX 93.4 ± 4.3 91.3 ± 3.0 67.5 ± 0.9 69.5 ± 1.6

AmazeVille

HOOO 70.5 ± 9.7 88.8 ± 6.3 211.0 ± 12.8 182.5 ± 9.3

HOOX 51.2 ± 13.0 78.6 ± 8.7 249.8 ± 18.9 226.0 ± 14.2

HXOO 60.4 ± 15.8 94.8 ± 4.7 228.3 ± 19.8 190.8 ± 9.1

HXOX 46.5 ± 9.9 75.9 ± 5.2 273.7 ± 11.9 240.8 ± 4.7

LOOO 49.6 ± 3.5 75.0 ± 7.1 221.9 ± 6.0 172.2 ± 18.0

LOOX 59.9 ± 7.2 82.9 ± 6.3 225.9 ± 12.2 174.8 ± 9.6

LXOO 47.0 ± 5.8 75.9 ± 6.3 222.8 ± 8.3 169.3 ± 13.6

LXOX 60.1 ± 8.8 95.6 ± 4.6 221.3 ± 14.8 159.9 ± 10.1

Table 6: Performance of BC and HBC across baseline environments (average over 8 seeds).
HBC consistently outperforms BC in both success rate and episode length metrics across most
environments. In some of the SimpleTown environments, the differences between HBC and BC are
negligible, as these tasks are easier to learn and provide limited room for improvement.

Given its efficiency in managing complex environments, HBC was chosen as the
backbone for the HILOW framework. By separating high-level and low-level sub-
spaces, HILOW further enhances task adaptation while avoiding unnecessary model
expansion, making it well-suited for continual learning in dynamic, complex settings.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.2 HIERARCHICAL VS. NON-HIERARCHICAL POLICIES IN GOAL-CONDITIONED CRL

Table 7 consistently demonstrate that HBC improves over BC, notably in terms
of performance (PER) across all CRL baselines tested on both the PointMaze-1
and AntMaze-1 task streams. The most notable improvements are observed in
sophisticated methods like FTN, SCN, and PNN, where HBC achieves near-perfect
scores, such as 99.4 in PointMaze-1’s PNN compared to BC’s 96.9.

PER ↑ MEM ↓
Task Stream CRL Method

BC HBC BC HBC

PointMaze-1

EWC 53.7 ± 13.7 55.1 ± 2.9 1.0 ± 0.0 1.1 ± 0.0

FT1 61.4 ± 16.4 50.0 ± 2.8 1.0 ± 0.0 1.1 ± 0.0

FTN 95.0 ± 0.9 99.1 ± 0.8 4.0 ± 0.0 4.3 ± 0.0

FZ 41.3 ± 5.4 34.2 ± 2.6 1.0 ± 0.0 1.1 ± 0.0

L2 61.3 ± 6.2 57.4 ± 6.7 1.0 ± 0.0 1.1 ± 0.0

PNN 96.9 ± 0.1 99.4 ± 0.8 9.9 ± 0.0 10.6 ± 0.0

SC1 47.0 ± 5.9 32.3 ± 5.1 1.0 ± 0.0 1.1 ± 0.0

SCN 93.2 ± 2.8 98.0 ± 1.1 4.0 ± 0.0 4.3 ± 0.0

AntMaze-1

EWC 11.0 ± 5.9 18.2 ± 3.1 0.9 ± 0.0 1.0 ± 0.0

FT1 9.2 ± 2.5 18.3 ± 1.6 0.9 ± 0.0 1.0 ± 0.0

FTN 54.0 ± 3.1 71.1 ± 5.1 3.7 ± 0.0 4.0 ± 0.0

FZ 19.2 ± 2.5 24.3 ± 0.9 0.9 ± 0.0 1.0 ± 0.0

L2 4.6 ± 2.8 12.3 ± 3.0 0.9 ± 0.0 1.0 ± 0.0

PNN 60.8 ± 7.4 79.0 ± 3.9 9.2 ± 0.0 10.0 ± 0.0

SC1 11.3 ± 2.3 18.0 ± 1.7 0.9 ± 0.0 1.0 ± 0.0

SCN 54.0 ± 5.0 70.8 ± 1.9 3.7 ± 0.0 4.0 ± 0.0

Table 7: Performances of BC and HBC on each of the baseline methods (avg. on 3 seeds).
HBC consistently outperforms BC on PER across nearly all CRL methods, with significant gains in
more sophisticated approaches such as PNN. Notably, HBC shows superior performance even for
challenging methods like EWC and L2, while being only less than 10% more expensive in terms of
memory usage. The only exceptions are a few naive and underperforming methods, where the gap is
small. This demonstrates HBC as a more effective approach for CRL.

Although HBC introduces a small increase in memory usage (MEM), typically less
than 10%, this trade-off is minimal compared to the significant performance gains.
Even for simpler methods like EWC and L2, HBC demonstrates better PER scores,
indicating enhanced retention of previously learned tasks and better adaptation to
new ones, which is a key requirement for continual reinforcement learning (CRL).

In both task streams, particularly in more complex settings such as AntMaze-1,
HBC manages to reduce catastrophic forgetting and outperform BC consistently.
This analysis confirms that HBC offers substantial improvements for CRL across all
tested baselines, making it a strong candidate for scaling up to more challenging and
dynamic environments.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D.3 HIERARCHICAL GOAL-CONDITIONED CRL BENCHMARK

Task Stream CRL Method PER ↑ BWT ↑ FWT ↑ MEM ↓

PointMaze-1

EWC 55.1 ± 2.9 -43.5 ± 3.0 0.6 ± 2.3 1.0 ± 0.0

FT1 50.0 ± 2.8 -49.1 ± 3.6 1.1 ± 1.9 1.0 ± 0.0

FTN 99.1 ± 0.8 0.0 ± 0.0 1.1 ± 1.9 4.0 ± 0.0

FZ 34.2 ± 2.6 0.0 ± 0.0 -63.8 ± 1.6 1.0 ± 0.0

L2 57.4 ± 6.7 -39.3 ± 6.5 -1.3 ± 0.2 1.0 ± 0.0

PNN 99.4 ± 0.8 0.0 ± 0.0 1.4 ± 1.5 9.9 ± 0.0

SC1 32.3 ± 5.1 -65.7 ± 5.8 0.0 ± 0.0 1.0 ± 0.0

SCN 98.0 ± 1.1 0.0 ± 0.0 0.0 ± 0.0 4.0 ± 0.0

HILOW (ours) 98.0 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 2.3 ± 0.0

PointMaze-2

EWC 59.1 ± 3.3 -40.5 ± 3.5 -0.4 ± 0.7 1.0 ± 0.0

FT1 56.1 ± 4.2 -43.5 ± 4.6 -0.4 ± 0.7 1.0 ± 0.0

FTN 99.6 ± 0.7 0.0 ± 0.0 -0.4 ± 0.7 4.0 ± 0.0

FZ 32.3 ± 2.8 0.0 ± 0.0 -67.7 ± 2.8 1.0 ± 0.0

L2 55.2 ± 3.4 -43.2 ± 4.9 -1.6 ± 1.5 1.0 ± 0.0

PNN 99.5 ± 0.9 0.0 ± 0.0 -0.5 ± 0.9 9.9 ± 0.0

SC1 55.5 ± 2.5 -44.5 ± 2.5 0.0 ± 0.0 1.0 ± 0.0

SCN 100.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.0 ± 0.0

HILOW (ours) 99.8 ± 0.4 1.6 ± 2.7 -1.8 ± 2.5 1.9 ± 0.1

Table 8: CRL Benchmark for Hierarchical Policies on PointMaze Streams (on 3 seeds).

Task Stream CRL Method PER ↑ BWT ↑ FWT ↑ MEM ↓

AntMaze-1

EWC 18.2 ± 3.1 0.0 ± 0.0 -1.9 ± 0.6 1.0 ± 0.0

FT1 18.3 ± 1.6 -52.8 ± 3.6 -3.4 ± 1.1 1.0 ± 0.0

FTN 71.1 ± 5.1 0.0 ± 0.0 -3.4 ± 1.9 4.0 ± 0.0

FZ 24.3 ± 0.9 0.0 ± 0.0 -50.2 ± 1.6 1.0 ± 0.0

L2 12.3 ± 3.0 0.0 ± 0.0 -10.8 ± 0.2 1.0 ± 0.0

SC1 18.0 ± 1.7 -56.5 ± 4.0 0.0 ± 0.0 0.0 ± 0.0

SCN 70.8 ± 1.9 0.0 ± 0.0 0.0 ± 0.0 4.0 ± 0.0

PNN 79.0 ± 3.9 0.0 ± 0.0 4.5 ± 1.4 10.0 ± 0.0

HILOW (ours) 74.1 ± 3.2 0.0 ± 0.0 -0.4 ± 0.0 2.8 ± 0.0

AntMaze-2

EWC 42.5 ± 5.7 0.0 ± 0.0 10.3 ± 8.1 1.0 ± 0.0

FT1 44.5 ± 6.6 -41.7 ± 5.8 14.4 ± 6.1 1.0 ± 0.0

FTN 72.8 ± 5.3 0.0 ± 0.0 1.1 ± 7.6 4.0 ± 0.0

FZ 24.1 ± 1.6 0.0 ± 0.0 -55.1 ± 12.8 1.0 ± 0.0

L2 38.3 ± 6.0 0.0 ± 0.0 2.8 ± 5.7 1.0 ± 0.0

SC1 30.3 ± 2.0 -41.4 ± 3.2 0.0 ± 0.0 0.0 ± 0.0

SCN 71.7 ± 3.5 0.0 ± 0.0 0.0 ± 0.0 4.0 ± 0.0

PNN 85.5 ± 2.4 0.0 ± 0.0 13.8 ± 2.5 10.0 ± 0.0

HILOW (ours) 76.5 ± 3.0 0.0 ± 0.0 4.8 ± 2.8 4.0 ± 0.0

Table 9: CRL Benchmark for Hierarchical Policies on AntMaze Streams (on 3 seeds).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Task Stream CRL Method PER ↑ BWT ↑ FWT ↑ MEM ↓

VideoGame-1

FT1 59.5 ± 9.8 -28.6 ± 8.6 3.6 ± 7.3 1.0 ± 0.0

FTN 87.7 ± 2.6 0.0 ± 0.0 4.0 ± 7.1 4.0 ± 0.0

FZ 54.7 ± 2.7 0.0 ± 0.0 -29.2 ± 9.4 1.0 ± 0.0

PNN 85.8 ± 2.1 0.0 ± 0.0 1.4 ± 8.5 10.0 ± 0.0

SC1 53.6 ± 4.2 -30.9 ± 5.7 0.0 ± 0.0 1.0 ± 0.0

SCN 82.8 ± 7.2 0.0 ± 0.0 0.0 ± 0.0 4.0 ± 0.0

EWC 65.1 ± 4.0 -22.8 ± 5.5 3.4 ± 7.8 1.0 ± 0.0

L2 64.6 ± 5.6 -15.2 ± 6.2 -4.7 ± 9.5 1.0 ± 0.0

HILOW 87.8 ± 3.5 0.0 ± 0.0 3.3 ± 9.2 2.6 ± 0.0

VideoGame-2

FT1 63.7 ± 6.9 -26.7 ± 9.3 6.2 ± 1.1 1.0 ± 0.0

FTN 90.5 ± 2.5 0.0 ± 0.0 6.3 ± 1.7 1.7 ± 0.0

FZ 45.8 ± 6.1 0.0 ± 0.0 -37.0 ± 2.7 2.7 ± 0.0

PNN 86.7 ± 1.4 0.0 ± 0.0 2.1 ± 1.0 10.0 ± 0.0

SC1 64.0 ± 2.6 -20.3 ± 5.3 0.0 ± 0.0 1.0 ± 0.0

SCN 84.7 ± 4.0 0.0 ± 0.0 0.0 ± 0.0 4.0 ± 0.0

EWC 62.2 ± 1.4 -27.8 ± 3.1 5.8 ± 1.9 1.9 ± 0.0

L2 66.5 ± 4.3 -12.5 ± 5.1 -5.2 ± 2.7 2.7 ± 0.0

HILOW 90.2 ± 5.4 0.0 ± 0.0 5.9 ± 3.3 3.3 ± 0.0

Table 10: CRL Benchmark for Hierarchical Policies on Video Game Streams (on 3 seeds).

26

	Introduction
	Related Work
	Preliminaries
	Hierarchical Subspace of Policies
	Hierarchical Imitation Learning
	HILOW Learning Algorithm
	Extending a Subspace
	Exploring a Subspace

	Experiments
	Environments & Task Streams
	Continual Reinforcement Learning Baselines
	Performance and Relative Memory Size
	Forgetting and Generalization
	Ablations

	Discussion
	Reproducibility Statement
	Task Streams Details
	Environments
	MuJoCo Maze Environments
	Video Game Navigation Environments

	Tasks
	Datasets
	Task Streams

	Baselines Details
	Goal-Conditioned Offline Reinforcement Learning Algorithms
	Continual Reinforcement Learning Baselines

	Implementation Details
	Architectures & Hyperparameters
	Training Details
	Compute Resources

	Additional & Detailed Results
	Hierarchical vs. Non-Hierarchical Policies in Goal-Conditioned RL
	Hierarchical vs. Non-Hierarchical Policies in Goal-Conditioned CRL
	Hierarchical Goal-Conditioned CRL Benchmark

