
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HIERARCHICAL SUBSPACES OF POLICIES FOR
CONTINUAL OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In dynamic domains such as autonomous robotics and video game simulations,
agents must continuously adapt to new tasks while retaining previously acquired
skills. This ongoing process, known as Continual Reinforcement Learning, presents
significant challenges, including the risk of forgetting past knowledge and the need
for scalable solutions as the number of tasks increases. To address these issues,
we introduce HIerarchical LOW-rank Subspaces of Policies (HILOW), a novel
framework designed for continual learning in offline navigation settings. HILOW
leverages hierarchical policy subspaces to enable flexible and efficient adaptation
to new tasks while preserving existing knowledge. We demonstrate, through
a careful experimental study, the effectiveness of our method in both classical
MuJoCo maze environments and complex video game-like simulations, showcasing
competitive performance and satisfying adaptability according to classical continual
learning metrics, in particular regarding memory usage. Our work provides a
promising framework for real-world applications where continuous learning from
pre-collected data is essential.

1 INTRODUCTION

Humans continuously acquire new skills and knowledge, adapting to an ever-changing world while
retaining what they have previously learned. Designing systems capable of replicating this lifelong
learning ability is a key challenge in the Continual Reinforcement Learning (CRL) (Khetarpal et al.,
2022) community. Traditional Reinforcement Learning (RL) (Sutton & Barto, 2018), while powerful,
often struggles with adaptive, cumulative learning. In CRL, a learning agent must sequentially solve
tasks, requiring to master new skills without degrading the knowledge gained from previous tasks.

Within this framework, we focus on a specific subset of problems that combines goal-conditioned
learning and offline training, with a particular emphasis on navigation. Goal-Conditioned RL (GCRL)
(Ding et al., 2019; Liu et al., 2022) involves learning policies that can be conditioned to reach specific
goal states, making it especially relevant for real-world applications in robotics and video games
where navigation is crucial. The offline setting (Levine et al., 2020; Prudencio et al., 2023)], which
relies on pre-collected datasets is particularly appealing when data collection is expensive, risky, or
impractical. However, alone, this setting is not sufficient in the context of changing environments:
agents need to continuously adapt to new tasks without forgetting the previous ones, while maintaining
scalability as the number of tasks increases (Graffieti et al., 2022; Shaheen et al., 2022).

Various CRL methods have been proposed to tackle these challenges : some use replay buffer or
generative models to replicate past tasks (Rolnick et al., 2019; Huang et al., 2021) ; others involve
architectural revisions to mitigate forgetting (Rusu et al., 2016; Veniat et al., 2020) ; and some
use regularization techniques to improve scalability (Kirkpatrick et al., 2017; Kumar et al., 2023).
Nevertheless, these approaches face limitations : Replay-based methods can be impractical due to
data storage constraints and privacy concerns, particularly in industries like video game development,
where data retention may be costly. Regularization techniques struggle with highly diverse changes,
and architecture modifications, such as expanding neural network structures, can become memory-
intensive thus limiting scalability. While entirely addressing all these limitations is challenging,
Continual Subspace of Policies (CSP) (Gaya et al., 2023) stands out within this literature as an
interesting balance between flexibility and efficiency. CSP introduces subspaces of neural networks
(Wortsman et al., 2021; Gaya et al., 2022), allowing new parameters to be added when necessary,
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which helps adapting without forgetting previous skills. However, CSP is primarily an online method,
leveraging Soft Actor-Critic (Haarnoja et al., 2018) as its backbone algorithm, and remains untested
in offline settings where it may face new challenges.

In this article, we propose HIerarchical LOW-Rank Subspaces of Policies (HILOW), a practical
offline adaptation of Continual Subspace of Policies (CSP) for hierarchical architectures, which is
particularly well suited for navigation tasks. HILOW relies on growing separate parameter subspaces,
for a high-level path-planner policy and a low-level path-follower policy, depending on the task
stream (see Figure 1). To properly assess the relevance of HILOW and catalyze further research, we
present a comprehensive study of existing methods, introducing new environments and tasks that
address the lack of established benchmarks for Continual Offline Reinforcement Learning regarding
Goal-Conditioned navigation tasks. While Section 2 reviews the relevant and related literature,
Section 3 present the theoretical background that contextualizes our research. In Section 4, we detail
our proposed approach. Sections 5.1 and 5.2 presents our experimental methodology, comparing
our approach in both novel video-game-like settings with human-authored datasets and classical
goal-conditioned environments. Finally, Sections 5.3 to 5.5 present experimental results, evaluating
performance across diverse task sequences with standard CRL metrics.

Our main contributions are :

• HILOW, a novel hierarchical framework for Continual Offline RL, leveraging low-rank subspaces
of policies for scalable low-memory adaptation for Goal-Conditioned navigation tasks.

• A large panel of Goal-Conditioned navigation tasks associated with datasets, encompassing both
robotics and video game scenarios with human-authored datasets. We hope this new open-source
benchmark will provide a comprehensive testing ground for future research in this domain.

• A comprehensive experimental evaluation of HILOW and state-of-the-art CRL methods using our
proposed benchmark. Our results demonstrate competitive scalability and adaptability of HILOW,
showcasing its ability to handle diverse and complex task sequences across various classical metrics.

Subspace Pruning : Anchor Weights Optimization

Subspace Extension : Orthogonal Low-Rank Adaptation

Constraints

Constraints

(a) Low-Rank Subspace of Policies.

Anchors N – Retrieval

Anchor 
Weights

Environment N

High-Level Policy

Low-Level Policy

(b) HILOW Inference Process.

Figure 1: HIerarchical LOW-Rank subspaces of policies (HILOW). (a) Illustration of the pruning
and extension mechanisms. Pruning involves optimizing anchor weights α within a defined simplex,
allowing efficient exploration of the existing subspace. Extending introduces new low-rank anchors to
expand the subspace, facilitating the adaptation to new tasks while keeping a compact representation.
(b) The inference pipeline for task N-th leverages learned anchor weights. The high-level policy
generates sub-goals, which the low-level policy uses to produce specific actions.
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2 RELATED WORK

The following section reviews related frameworks and methods to distinguish between various
approaches. While these frameworks share common ground, their settings differ in essential ways,
such as task availability, data access, and adaptation paradigms (see Table 1). By comparing them,
we position our work within this landscape to better highlight the unique challenges we address.

Transfer Learning is an adaptation technique where a model trained for a first task is repurposed as
the starting point for a second one (Zhan & Taylor, 2015; Da Silva & Costa, 2019; Zhu et al., 2023).
While state-of-the-art methods excel at leveraging previously acquired knowledge to enhance the
learning on new ones (Chijiwa, 2023; de Sá et al., 2023), they overlook the need to preserve past
knowledge. As a result, this framework is less suited for continual learning scenarios.

Multitask Learning is a paradigm in which a model learns simultaneously various tasks, sharing
representations among the tasks to improve learning efficiency and performance, leading to better
generalization (Zhang & Yang, 2018; Vithayathil Varghese & Mahmoud, 2020; Yu et al., 2020).
Despite its advantages, multitask learning typically requires access to all tasks at the same time and
does not inherently address the CRL challenge of sequentially learning tasks.

Meta-Learning, or learning to learn, focuses on training a model on a variety of tasks to develop a
meta-policy to efficiently learn new tasks (Schweighofer & Doya, 2003; Gupta et al., 2018; Beck et al.,
2023). While this approach may be effective, it generally relies on the availability of a pre-defined set
of tasks during training. This requirement limits their applicability in continual learning scenarios.

Learning Framework Tasks Availability Data Access Adaptation Paradigm

Transfer Learning Sequential Real-time interactions or Pre-collected datasets Learning new tasks, allowed to forget

Multitask Learning Simultaneous Real-time interactions or Pre-collected datasets Learning multiple tasks together

Meta Learning Sequential Real-time interactions or Pre-collected datasets Learning how to learn new tasks

Online CRL Sequential Real-time interactions Learning new tasks without forgetting

Offline CRL Sequential Pre-collected datasets Learning new tasks without forgetting

Table 1: Comparison of learning frameworks.

Online Continual Reinforcement Learning Online CRL methods enable agents to adapt to new
tasks, learning by sequentially and directly interacting with each of them (Kirkpatrick et al., 2017;
Wang et al., 2024). However, our focus is an offline setting, leveraging pre-collected datasets, which
is a promising setting regarding scalability and real-world applications. Nonetheless, some of the
online CRL algorithms could be adapted to an offline setting (Gaya et al., 2023; Kirkpatrick et al.,
2017).

Offline Continual Reinforcement Learning allows agents to learn from streams of task without
interacting with the environment (Rolnick et al., 2019; Isele & Cosgun, 2018; Liu et al., 2024). A
common approach in offline CRL is to reuse data from previous tasks to prevent forgetting, but this
leads to significant storage and privacy challenges, particularly in certain industrial domains. To
address this, we focus on an approach that avoids replaying past data, emphasizing models that learn
continuously without relying on stored experiences.

Hierarchical Policies structure the decision-making process into multiple levels, and have been
applied in various learning fields including CRL (Tessler et al., 2017; Ding & Zhu, 2022). However,
current works within CRL rely on heavy tools such as large language models (Pan et al., 2024), or are
more suited for meta-learning or multi-task learning scenarios (Shu et al., 2018; Chua et al., 2023).
Thus, there remains a need for approaches that can be integrated within an offline CRL framework.

Despite the aforementioned advancements, our work stands out by specifically addressing the unique
challenges of Offline CRL, without relying on data retention strategies. To the best of our knowledge,
no benchmarks exist for Offline CRL in Goal-Conditioned navigation settings, underscoring the
novelty of our framework and the importance of our introduced benchmark.
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3 PRELIMINARIES

We consider a Markov Decision Process (MDP)M =
(
S, A, PS , PS

(0), R, γ
)
, which provides

a formal framework for RL, where S is a state space, A an action space, PS : S × A → ∆(S)
a transition function, PS

(0) ∈ ∆(S) an initial distribution over the states, R : S × A × S → R
a deterministic reward function, and γ ∈ ]0, 1] a discount factor. An agent’s behavior follows a
policy πθ : S → ∆(A), parameterized by θ ∈ Θ. The objective is to learn optimal parameters θ∗M
maximizing the expected cumulative reward JM(θ) or the success rate σM(θ).

Offline Goal-Conditioned RL We extend the MDP to include a goal space G, introducing PS,G
(0)

an initial state and goal distribution, ϕ : S → G a function mapping each state to the goal it represents,
and d : G×G → R+ a distance metric on G. The policy πθ : S×G → ∆(A) and the reward function
R : S ×A×S ×G → R are now conditioned on a goal g ∈ G. We consider sparse rewards allocated
when the agent reaches the goal within a range 0 ≤ ϵ : R(st, at, st+1, g) = 1

(
d(ϕ(st+1), g) ≤ ϵ

)
.

Given a dataset D =
{
(s, a, r, s′, g)

}
, the policy loss is optimized to reach the specified goals.

Continual Reinforcement Learning In CRL, an agent follows a sequence of tasks, or stream,
T =

(
T1, ..., TN

)
, with Tk =Mk or Tk = (Mk,Dk). We note θk the parameters of a policy after

learning on the k-th task. As the agent learns new skills, it must either preserve (to prevent forgetting)
or enhance (to encourage backward transfer) its performance on tasks already learned, while ideally
having a relatively low number of parameters. To quantitatively compare CRL methods, we adopt
standard metrics commonly used in the literature (Díaz-Rodríguez et al., 2018; Kemker et al., 2018) :

• Performance : PER = 1
N

∑N
k=1 σMk (θN ) ;

• Backward Transfer : BWTN = 1
N

∑N
k=1

(
σMk (θN )− σMk (θk)

)
;

• Forward Transfer : FWT = 1
N

∑N
k=1

(
σMk (θk)− σMk (θ̃k)

)
;

• Relative Model Size : MEM =
|θN |
|θref| .

The performance metric measures the average success rate across all tasks. Backward transfer
indicates how learning a new task affects previous ones, while forward transfer measures the ability
to transfer knowledge to new tasks, using θ̃k as randomly initialized parameters. The relative model
size compares the memory load of the model to a reference model associated to parameters θref .

Subspace of Neural Networks A subspace of neural networks is a low-dimensional convex hull
within the space of all available parameters Wortsman et al. (2021); Gaya et al. (2022; 2023). Building
one involves finding, and eventually extending, a finite set of anchors that serve as a basis. In formal
terms, given a high-dimensional parameter space Θ, a subspace V(θ1, . . . , θn) ⊂ Θ is defined by
a set of anchor points {θ1, θ2, . . . , θk} ⊂ Θ. These points form the basis of the subspace, and any
point θ ∈ V(θ1, . . . , θn) can be represented as a linear combination of these anchors :

θ =

n∑
i=1

αiθi where α ∈ ∆k, i.e.
n∑

i=1

αi = 1 and αi ∈ R+ (1)

Exploring the subspace involves adjusting anchor weights αi within a lower-dimensional space. If
needed, new anchors extend the subspace, expanding its capacity while preserving prior knowledge.
Unlike previous methods, we use two subspaces : a high-level and a low-level one, offering flexibility
by avoiding unnecessary expansions (e.g. not extending the high-level subspace if only low-level
adjustments are needed). Additionally, we propose a new policy evaluation procedure – which
conditions subspace expansion – to better fit offline learning settings (see Section 4.3 for details).

Low-Rank Adaptation Low-Rank Adaptation (LoRA) efficiently extends neural networks for
new tasks by approximating updates to weight matrices using low-rank structures. Given a trained
weight W ∈ Rn×m, we adapt it by introducing an update W ′ = W +∆W , where ∆W is a low-rank
approximation. Specifically, ∆W is factored as A ∈ Rn×r and B ∈ Rr×m, with r ≪ min(m,n).
While LoRA has been successfully applied to transfer learning (Hu et al., 2021), multitask learning
(Liu et al., 2023), and continual learning in domains like supervised tasks and image processing
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(Chaudhry et al., 2020; Hyder et al., 2021; Wistuba et al., 2023), its use in continual reinforcement
learning is still relatively recent. Our work is among the firsts to explore this approach in CRL,
particularly for handling changes in navigation task streams in reinforcement learning contexts.

4 HIERARCHICAL SUBSPACE OF POLICIES

We now provide a detailed description of HIerarchical LOW-Rank Subspaces of Policies (HILOW).
Section 4.1 introduces the Hierarchical Imitation Learning algorithm, the backbone of our approach.
Next, Section 4.2 provides a high-level overview of the core learning steps involved in HILOW. We
then cover low-rank subspace extension in Section 4.3, and subspace exploration in Section 4.4. See
Algorithm 1 for a detailed pseudo-code about learning a subspace of policies in an offline setting.

4.1 HIERARCHICAL IMITATION LEARNING

Hierarchical Imitation Learning (Gupta et al., 2019) learns both high-level and low-level policies
using datasets of episodes D =

{
(sit, a

i
t, r

i
t, s

i
t+1, g

i)
}

. The overall policy is parameterized by
θ = (θh, θl), where θh governs the high-level policy and θl controls the low-level one. This structure
allows the agent to break down complex tasks into simpler ones, facilitating both long-term planning
and short-term action execution (Le et al., 2018; Shu et al., 2018; Park et al., 2023).

• High-Level Policy Training : The high-level policy is trained to predict a sub-goal ϕ(st+k), where
k is the waystep hyperparameter determining how far into the future the sub-goal is :

Lh
D(θh) = E(sit,s

i
t+k

,gi)∼D

[
− log(πh

θh(ϕ(s
i
t+k)|sit, gi))

]
• Low-Level Policy Training : The low-level policy πl is trained to execute actions that take the

agent towards the sub-goals proposed by the high-level policy :

Ll
D(θl) = E(sit,a

i
t,s

i
t+1,ϕ(s

i
t+k

))∼D

[
− log(πl

θl(at|sit, ϕ(sit+k)))
]

• Hindsight Experience Replay (HER) (Andrychowicz et al., 2017; Packer et al., 2021) : We
perform data augmentation using HER, which relabels the goal of a given transition with the goal
representation of a future state within the same trajectories considered.

4.2 HILOW LEARNING ALGORITHM

Let us consider a hierarchical policy π = (πh, πl), associated to two subspaces of parameters
Vh(θh1 , . . . , θ

h
Nh) and V l(θl1, . . . , θ

l
N l) built from learning on a sequence of tasks T = (T1, . . . , TN ).

When learning a new task TN+1 from a dataset of trajectories DN+1, the subspaces Vh and V l will
be pruned or extended based on a comparison of losses between the pruned and extended subspaces,
selecting the best within an ϵ acceptance criterion. The learning algorithm proceeds as follows :

Initial Anchor Training : Train initial anchor parameters θh1 ∈ Θh and θl1 ∈ Θl on task T1.
Initialize anchor weights αh

1 ∈ ∆1 and αl
1 ∈ ∆1 to single vectors (1), indicating full reliance on θh1

and θl1 which serve as foundations for all subsequent tasks, establishing the initial subspaces.

Subspace Extension : For a new task Tk, we leverage previously trained anchor parameters
{θh1 , . . . , θhNh} and {θl1, . . . , θlN l}. New low-rank parameters θhNh+1 ∈ Θh

r and θlN l+1 ∈ Θl
r are

set, with r being a given rank, along with new learnable anchor weights αh
curr and αl

curr, that are
simultaneously learned from the dataset Dk, through hierarchical imitation learning.

Subspace Exploration : After training the new anchors, we explore the subspace by sampling
anchor weights from a Dirichlet distribution. Each sample is evaluated based on the loss computed
from Dk, and the ones yielding the smallest values are selected, namely αh

prev and αl
prev.

Subspace Evaluation : We evaluate the subspaces by comparing the previous losses Lh
prev, Ll

prev

with the current ones Lh
curr, L

l
curr. If both previous losses are within a tolerance parameter ϵ of their

current counterparts, the new anchors are pruned. Otherwise, we retain the new anchors.
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Algorithm 1 Offline Learning of a low-Rank Subspace of Policies
Require: stream T ; number of epochs E ; learning rate η ; criterion ϵ ; rank r ; sample size S .

1: Train initial anchors :
2: Initialize anchor parameters θ1 ∼ Θ and anchor weights α1 ← (1)
3: for epoch = 1 to E do
4: Batched gradient descent : θ1 ← θ1 − η∇LB(α1,1 · θ1)
5: Train subsequent anchors :
6: for k = 2 to len(T ) do
7: Consider N previously trained high anchor parameters θ1, . . . , θN
8: Train k-th anchor :
9: Initialize anchor parameters θN+1 ∼ Θr and anchor scores α̂curr ← (0, . . . , 0) = 0N+1

10: for epoch = 1 to E do
11: for mini-batch B in Dk do
12: Compute anchor weight : αcurr ← softmax(α̂curr)

13: Update θN+1 using gradient descent : θN+1 ← θN+1 − η∇LB(
∑N+1

i=1 αcurr,i · θi)
14: Update α̂curr using gradient descent : α̂curr ← α̂curr − η∇LB(

∑N+1
i=1 αcurr,i · θi)

15: Evaluate current subspace (Section 4.3) :
16: Compute current anchor weight : αcurr ← softmax(α̂curr)

17: Compute current loss : Lcurr ← LDk

(∑N+1
i=1 αcurr,i · θi

)
18: Find optimal weights for previous subspace (Section 4.4) :
19: Sample S anchor weights {α′(s)}Ss=1 ∼ Dirichlet(1N )

20: Set αprev ← argminα′(s) LDk

(∑N
i=1 α

′
i · θi

)
21: Compute Lprev ← LDk

(∑N
i=1 αprev,i · θi

)
22: Criterion based adaptation decision :
23: if Lprev ≤ (1± ϵ) · Lcurr then
24: Pruning : αk ← αprev, discard θN+1

25: else
26: Extending : αk ← softmax(α̂curr), keep θN+1

4.3 EXTENDING A SUBSPACE

Extending a subspace involves integrating a new anchor parameter θN+1 and its corresponding weight
αcurr into the existing set of anchors. This process allows the model to incorporate task-specific
variations while retaining the ability to leverage previously learned policies.

Initially, θN+1 is randomly initialized, and anchor scores α̂curr = (0, . . . , 0) are set to zeros. During
training, the softmax function is applied to the anchor scores, yielding the anchor weights αcurr.
This step ensures that the weights are positive and sum to one, providing smooth and differentiable
control over how much each anchor contributes to the final policy.

The learning process proceeds by updating both θN+1 and α̂curr using gradient descent 1. Specifically,
θN+1 and α̂curr are updated by minimizing the learning loss over the dataset using mini-batches B,
by considering the weighted contributions αcurr :

θN+1 ← θN+1 − η∇LB

(
N+1∑
i=1

αcurr,i · θi

)
, α̂curr ← α̂curr − η∇LB

(
N+1∑
i=1

αcurr,i · θi

)

In practice, whenever a new anchor is added, the anchor weights for previous tasks are extended
by appending a zero to the weight vector. This ensures that the dimensionality of weight vectors is
consistent across all tasks : αi ← (αi, 0), ∀i ∈ {1, . . . , N} .

This approach allows the model to efficiently reuse knowledge from previously learned tasks while
adjusting to the specific requirements of the new one. By adding the new anchor, the subspace is
expanded, enabling the model to handle a broader range of tasks without forgetting previous skills.

1In contrast to CSP (Gaya et al., 2023) which relies on sampling anchor weights for both policy pruning and
extension. Nevertheless, we do sample them when evaluating the previous subspace for better flexibility.
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4.4 EXPLORING A SUBSPACE

After training the new anchor, we evaluate whether the subspace should be extended or pruned. This
decision is based on a comparison between the loss of the current extended subspace (including the
new anchor) and the loss of the previous subspace (without the new anchor).

To compute the current subspace loss, we use the learned αcurr : Lcurr = LDk

(∑N+1
i=1 αcurr,i · θi

)
.

This loss measures how well the newly extended subspace performs on the task’s dataset. For
the previous subspace, we aim to find the weights αprev that minimize the loss over the previous
anchors θ1, . . . , θN , excluding the newly added anchor θN+1. In theory, this would involve finding
αprev = argminα LDk

(∑N
i=1 αi · θi

)
. However, in practice, performing a full optimization over

α can be computationally expensive. Instead, we sample S weight vectors α′ from a Dirichlet
distribution over the simplex ∆N and compute the corresponding loss for each sample:

α′ ∼ Dirichlet(∆N ) , L′
prev = LDk

(
N∑
i=1

α′
i · θi

)
and Lprev = min

α′
L′

prev

This approach provides a computationally efficient approximation to the full optimization problem
by leveraging random sampling from the Dirichlet distribution.

Once both losses are computed, the decision to prune or extend the subspace is made based on a
predefined criterion. If the previous subspace loss Lprev is within an acceptable range of the current
subspace loss Lcurr, the new anchor θN+1 is pruned, and the anchor weights are reverted to the best
previous configuration αprev. Specifically : Lprev ≤ (1± ϵ) ·Lcurr . On the other hand, if the extended
subspace performs significantly better, the subspace is retained, and the weights αcurr are kept.

5 EXPERIMENTS

Our experiments aim to address the following questions : How does HILOW compare to relevant
baselines in terms of performance and memory metrics (Section 5.3) ? How does it perform in terms
of forgetting and generalization metrics (Section 5.4) ? Lastly, we explore through an ablation study
(Section 5.5) : How do the core design principles of HILOW affect its performance ?

5.1 ENVIRONMENTS & TASK STREAMS

We consider multiple scenarios designed to test the ability to adapt and transfer knowledge between
tasks. These experiments span two types of environments : classical maze benchmarks from the
Gymnasium framework and custom video game-like environments implemented in Godot (see Figure
2). Details about these environments and the considered streams are provided in the Appendix A.

(a) Point Agent. (b) Ant Agent. (c) MuJoCo Maze. (d) Godot Agent. (e) Godot Maze.

Figure 2: Point Agent is a point mass controlled by applying forces in two dimensions. Ant Agent
is a more complex 8-DoF articulated quadruped robot controlled by torques. Godot Agent is a 3D
character controlled by both continuous and discrete actions replicating video game controls.

The classical maze environments (Lazcano et al., 2023), PointMaze and AntMaze, are well-known in
deep learning but less explored in the CRL. We introduce a novel use of those by customizing datasets
and environments from Minari (Younis et al., 2024) to create task variations such as inverse actions
or permuted observations. We also introduce more complex maze-like 3D navigation environments
in Godot, SimpleTown and AmazeVille, which feature topological changes across task streams with
human-authored datasets, reflecting the evolving nature of game worlds in the video game industry.

7
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We assess the performance of the different approaches on a diverse set of task streams, with randomly
generated sequences, which also tests the agent’s capacity to adapt across unpredictable transitions.

5.2 CONTINUAL REINFORCEMENT LEARNING BASELINES

We compare our method to several CRL strategies relevant to our setting, as described in Section
3. All baselines are built on the same Hierarchical Imitation Learning backbone and detailed in
Appendix A.4.

The Single Naive Strategy (SC1) trains a single policy from scratch on the latest dataset and applies
it to all tasks, while the Expanding Naive Strategy (SCN) trains and saves a new policy for each
task. The Single Finetuning Strategy (FT1) adapts a single policy across tasks but suffers from
catastrophic forgetting. In contrast, the Expanding Finetuning Strategy (FTN) retains a separate
policy for each task, preserving knowledge but increasing memory use. The Freeze Strategy (FZ)
trains a policy on the first task and applies it unchanged to all subsequent tasks. More advanced
methods include L2-Regularization (L2) (Kumar et al., 2023), which adds a penalty to the loss
function according to the previous weight changes between tasks, and Elastic Weight Consolidation
(EWC) (Kirkpatrick et al., 2017), which supposedly improves L2 by penalizing important weights
using the Fisher Information Matrix. Progressive Neural Networks (PNN) (Rusu et al., 2016) add
new layers for each task, using lateral connections to transfer useful representations while avoiding
interference. Finally, we adapt Continual Subspace of Policies (CSP) (Gaya et al., 2023), originally
designed for online learning, for offline use while maintaining Q-function learning.

5.3 PERFORMANCE AND RELATIVE MEMORY SIZE

The trade-off between performance and memory usage is critical in CRL. Figure 3 illustrates the
average Performance (PER) according to the Relative Memory Size (MEM) of the baseline strategies
and ours. HILOW consistently demonstrates high performance with moderate memory consumption,
outperforming or matching other methods in this balance.
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Video Game Streams
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Figure 3: Performance vs. Relative Memory Size. The figure shows the average performance w.r.t.
memory size of different CRL methods over sets of streams from our three considered environments.
HILOW (yellow star) demonstrates high performance with moderate memory usage.

In the AntMaze streams, our HILOW method approaches the top-performing one PNN while using
significantly less memory. The simple architectural strategies like FTN and SCN perform slightly
below HILOW with comparable memory consumption. In contrast, weight regularization and
naive methods (e.g., EWC, FT1, FZ) underperform in both metrics. These results demonstrate that
HILOW effectively balances performance and resource use2. In the PointMaze streams, HILOW
nearly matches the top-performing PNN, while maintaining significantly lower memory usage.

2For complex tasks like AntMaze, starting with a slightly larger model enhances HILOW’s low-rank adaptors,
resulting in a marginally larger final model than FTN and SCN.
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Figure 4: Evolution of the Relative
Memory Size metric according to
the number of tasks.

Simple architectural methods (FTN and SCN) show high task
performance but require more memory compared to HILOW.
The weight regularization and naive strategies, as in AntMaze,
fail to provide comparable performance, which highlights the
advantage of HILOW in memory-constrained environments.
In the Video Game streams, HILOW surpasses PNN both
in performance and relative memory size. It remains highly
competitive with FTN, which matches HILOW’s performance
but at the cost of more memory.

Overall, the HILOW method consistently demonstrates its
strong performance across diverse tasks while maintaining a
significantly lower memory usage, especially when compared
to memory-heavy methods like PNN, which has an exponential
memory cost (see figure 4). This balance makes HILOW a
highly efficient approach for continual reinforcement learning
in resource-constrained environments.

5.4 FORGETTING AND GENERALIZATION

Table 2: Performance Related Metrics. Backward Transfer (BWT) and Forward Transfer (FWT)
across methods and streams. Architectural approaches like FTN, SCN, PNN and HILOW excel in
BWT by preventing forgetting through parameter storage.

AntMaze Streams PointMaze Streams Video Game Streams
Method

PER ↑ BWT ↑ FWT ↑ PER ↑ BWT ↑ FWT ↑ PER ↑ BWT ↑ FWT ↑

SC1 24.2 -49.0 0.0 43.9 -55.1 0.0 58.8 -25.6 0.0
SCN 71.3 0.0 0.0 99.0 0.0 0.0 83.8 0.0 0.0
FT1 31.4 -47.2 5.5 53.0 -46.3 0.3 61.6 -27.6 4.9
FTN 72.0 0.0 5.5 99.3 0.0 0.3 89.1 0.0 4.9
FZ 24.2 0.0 -52.1 33.3 0.0 -65.7 50.2 0.0 -33.1
L2 25.3 -43.8 -4.0 56.3 -41.2 -1.4 64.1 -18.2 -2.1

EWC 30.3 -47.0 4.2 57.1 -42.0 0.1 61.9 -28.1 5.6
PNN 82.3 0.0 9.1 99.5 0.0 0.5 86.2 0.0 1.7

HILOW 75.3 0.0 2.2 98.7 0.0 -0.8 89.0 0.0 4.6

Table 2 summarizes the Backward Transfer (BWT) and Forward Transfer (FWT) metrics for the
different methods across AntMaze, PointMaze, and Video Game streams. In general, architectural
methods like FTN, SCN, PNN and HILOW perform well in terms of BWT, as they can store
task-specific parameters without overwriting previous ones, allowing them to avoid forgetting. On
the other hand, weight regularization methods (EWC, L2) can struggle when task changes are more
diverse, showing inconsistent BWT results. Regarding forward transfer (FWT), most methods
exhibit minimal or no forward transfer, highlighting the inherent challenge of knowledge transfer
between tasks. While methods such as FT1 and FTN demonstrate some positive forward transfer,
HILOW shows only modest improvements. This may indicate limitations in the low-rank adaptor’s
capacity for task generalization, particularly in dynamic environments. Although HILOW does not
excel in forward transfer metrics, it maintains a stable and balanced performance across tasks, making
it a robust option for effectively managing memory and performance in continual learning settings.

5.5 ABLATIONS

To understand the effectiveness of our proposed HILOW framework, we conduct a series of ablation
studies on PointMaze streams, featuring methods ranging from vanilla adaptations of CSP to HILOW
(see Table 3).

Adapting CSP to Offline CRL : CSP-O The original Continual Subspace of Policies (CSP) (Gaya
et al., 2023) leverages Soft Actor-Critic (SAC) and replay buffers to evaluate policies by learning a
Q-function. However, in an offline setting, replay buffers are impractical. To adapt CSP for offline

9
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CRL, we replace SAC with Hierarchical Imitation Learning (HBC) and eliminate the reliance on
replay buffers, creating a single subspace that encapsulates both high-level and low-level policy
parameters. We refer to this approach as CSP in Table 3. Despite these modifications, we observe that
the Q-function’s predictions become nearly independent of actions due to the optimality of expert
data, limiting CSP’s effectiveness in offline scenarios. To address the limitations of the adapted
CSP, we develop CSP-O, an improved offline adaptation that employs a loss function-based selection
criterion instead of a Q-function. CSP-O maintains a single subspace but enhances policy evaluation
by directly minimizing the loss with respect to the expert behavior, thereby improving performance
in offline settings.

PointMaze StreamsCSP Method PER ↑ MEM ↓
CSP 64.3 ± 98.2 2.5 ± 0.5

CSP-O 99.1 ± 0.6 4.0 ± 0.0
HILOW (w/o LoRA) 98.8 ± 0.3 3.5 ± 0.5

HILOW 98.7 ± 0.1 2.1 ± 0.2

Table 3: HILOW ablations on Point-
Maze Streams.

Why Two Subspaces ? While CSP-O consolidates all
policy parameters into a single subspace, our HILOW di-
vides them into two distinct subspaces: one for high-level
and one for low-level policies. This separation enables
more fine-tuned updates, preventing unnecessary expan-
sions of the high-level subspace when only low-level ad-
justments are needed. Our experiments show that HILOW
outperforms CSP-O in PointMaze streams.

Benefits of Low-Rank Adaptation Low-Rank Adap-
tation (LoRA) enables efficient parameter updates by ap-
proximating changes with low-rank matrices. Comparing HILOW with and without LoRa subspaces,
we find that incorporating low-rank adaptors allows for smaller, more efficient updates when adapting
to new tasks.

6 DISCUSSION

In this work, we introduced HILOW, a framework that combines hierarchical imitation learning with
low-rank subspace adaptations for offline continual reinforcement learning. Our results show that
our framework effectively balances performance and memory usage across diverse environments,
including classical mazes and complex video games. By using separate subspaces for high-level and
low-level policies, it efficiently adapts to new tasks while mitigating forgetting. Compared to other
methods, HILOW offers a strong trade-off between adaptability and resource efficiency.

Future work could study to which extent HILOW can scale to more complex CRL settings, e.g.
with chaotic task streams. Additionally, while HILOW performs well with expert data, scenarios
with imperfect expert trajectories could pose challenges. Towards such settings, improved subspace
evaluations procedured could be studies, e.g. integrating Inverse Reinforcement Learning (IRL)
(Arora & Doshi, 2021; Ho & Ermon, 2016), to refine Q-function learning, providing better scoring of
sampled policies. Exploring adaptive ranks during subspace extension could enhance the framework’s
flexibility and scalability with task complexity. Overall, HILOW makes a significant step toward
addressing offline continual learning challenges.

7 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure that our work is fully reproducible. Detailed descriptions
of the environments, tasks streams, and training settings are provided in the Section 5, and the
Appendix A to C, including specifics for the different environments. We also include pseudo-code for
all algorithms, covering both our proposed HILOW framework and the baselines, with a thorough
explanation of Hierarchical Imitation Learning, the backbone of our approach. To further facilitate
replication, we will share the full source code with reviewers and release it publicly, alongside the
data, upon acceptance. This code include all necessary components for running experiments, training
models, and evaluating metrics. Additionally, all theoretical assumptions, parameters settings, and
decision processes, such as subspace pruning and regularization, are clearly documented to ensure
clarity and replicability.
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A TASK STREAMS DETAILS

A.1 ENVIRONMENTS

A.1.1 MUJOCO MAZE ENVIRONMENTS

We consider two sets of environments from the Gymnasium framework Lazcano et al. (2023) :
PointMaze and AntMaze. They are considered due to their complexity and the availability of datasets
from D4RL Fu et al. (2020), which provide a standardized set of tasks to evaluate CRL algorithms.

(a) Point Agent. (b) Ant Agent. (c) U Maze. (d) Medium Maze. (e) Large Maze.

Figure 5: All U (size = 5×5), M (size = 8×8), and L (size = 12×9) mazes provide a sparse
reward with a value of 1 when the agent is within a 0.5 unit radius to the goal. The Point Agent is a
point mass controlled by applying forces in two dimensions, allowing the agent to move freely across
the plane towards a goal location. In contrast the Ant Agent is a more complex articulated quadruped
robot. It is controlled through the application of torques to its joints.

A.1.2 VIDEO GAME NAVIGATION ENVIRONMENTS

While PointMaze and AntMaze environments were simple to setup and allowed us to quickly generate
datasets, as to our knowledge there are no CRL datasets for navigation, they are primarily focused
on assessing the impact of changes in agent dynamics, such as action transformations. These
environments are expressive but lack features needed to fully understand how topographic variations
affect an agent. To bridge this gap, We introduce a video-game like 3D navigation environments,
implemented on Godot (Godot (2020)), that offer diverse mazes with more explainable spatial
challenges. They allow us to explore the influence of environmental structures on agent performance.

There are two families of mazes : SimpleTown, which mazes are relatively simple, with a size of
30× 30 meters. The starting positions are randomly sampled on one side, and the goal positions are
on the other side ; AmazeVille, which mazes are more challenging, with a size of 60× 60 meters.
They have a finite set of start and goal positions, and include two subsets of maps : some with high
blocks, i.e. not jumpable obstacles ; others with low blocks, i.e. jumpable ones.

Observation Feature Size Type Observation Feature Size Type

Agent Position 3 float Goal Position 3 float

Agent Orientation 3 float Agent Velocity 3 float

RGB Image 3× 64× 64 float Depth Image 11× 11 float

Floor Contact 1 bool Wall Contact 1 bool

Goal Contact 1 bool Timestep 1 int

Up Direction 3 float - - -

Table 4: (Godot) Available observation features. The maximum number of features an observation
may have is 12440, if it were to use all the available ones. The position information correspond
to the (x, y, z) coordinates in meters. The agent orientation is its angle in radian according to the
vertical axis. The velocity is provided in meters per second. The RGB images corresponds to the
visualization of the environment from the agent’s point field of view. The depth image is obtained
using 11× 11 raycasts from the agent position to the visible nearest obstacles.
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(a) S - BASE (b) S - OOX (c) S - OXO (d) S - XOO

(e) S - OOO (f) S - XXO (g) S - XOX (h) S - OXX

(i) A - HOOO (j) A - HOOX (k) A - HXOO (l) A - HXOX

(m) A - LOOO (n) A - LOOX (o) A - LXOO (p) A - LXOX

Figure 6: The SimpleTown (S) and the AmazeVille (AH, AL) environments : The naming indicate
whether specific doors are open (O) or not (X), and if movable green blocks are in high positions (H)
or low positions (L), providing a clear way to distinguish between different maze configurations.
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Frame 0 Frame 5 Frame 10 Frame 15 Frame 20

Frame 25 Frame 30 Frame 35 Frame 40 Frame 45

Frame 50 Frame 55 Frame 60 Frame 65 Frame 70

Figure 7: Visualization of a Human-Generated Trajectory on A - LOOO.

A.2 TASKS

We design a variety of tasks within each environment to evaluate the agent’s adaptability to different
scenarios. For both PointMaze and AntMaze environments, we consider five task variations :

• Normal (N) : The standard task with no changes to actions or observations.
• Inverse Actions (IA) : Opposing values of the action features.
• Inverse Observations (IO) : Opposing values of the observation features.
• Permute Actions (PA) : clockwise permutation of the actions features.
• Permute Observations (PO) : Clockwise permutation of the observation features.

For the Godot-based environments (SimpleTown and AmazeVille), we simply use the mazes provided
without additional modifications. The inherent complexity of these mazes, including variations in
obstacle placement, already presents a significant challenge for the learning algorithms.

A.3 DATASETS

For the PointMaze and AntMaze environments, we employed datasets from D4RL, each comprising
500 episodes per task across different maze configurations. Due to the straightforward nature of the
task transformations, we effectively adapted the original datasets by applying these modifications and
developed corresponding environment wrappers for seamless integration within the Gym framework.

The trajectories visualized in Figures 8 and 9 illustrate not only the richness and diversity of the
collected data but also the complexity of the tasks that agents must navigate. These trajectories
highlight a range of behaviors, from straightforward goal-reaching paths to more intricate maneuvers
required to overcome environmental obstacles.

In the Godot-based environments, data was sampled manually over approximately 10 hours, resulting
in 100 episodes for each AmazeVille maze and 250 episodes for each SimpleTown maze.

A.4 TASK STREAMS

A task stream refers to a sequence of environments and corresponding datasets that an agent learns
from over time. Each task in the stream introduces new environmental variations, changes in
dynamics, or modifications to the observation and action spaces, simulating the possible evolving
challenges in real-world scenarios. They may build upon previously learned skills, testing both
short-term adaptability and long-term memory retention. We consider several classical metrics,
namely : Performance (PER), Backward Transfer (BWT), Forward Transfer (FWT), and Relative
Memory Size (MEM). These metrics enable us to assess the agent’s continual learning capabilities by
evaluating its ability to generalize across tasks, preserve learned knowledge, while being scalable.
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Figure 8: SimpleTown Trajectories (Staring Position are on the bottom).

Figure 9: AmazeVille Trajectories (Staring Position are on the bottom).

Here are the AntMaze streams (maze-task [nepisodes]) :

• 1 : U-N[500]→ L-N[500]→ U-PO[500]→ M-IO[500]

• 2 : U-PA[500]→ M-PO[500]→ M-N[500]→ M-N[500]

Here are the PointMaze streams (maze-task [nepisodes]) :

• 1 : L-N[500]→ M-PA[500]→ M-PO[500]→ U-N[500]

• 2 : U-N[500]→ U-PO[500]→ M-PO[500]→ L-PA[500]

Here are the Video Game streams (maze [nepisodes]) :

• 1 : HOOO[100]→ HXOO[100]→ LOOO[100]→ LOOX[100]

• 2 : LOOX[100]→ HXOO[100]→ HOOO[100]→ LXOX[100]
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B BASELINES DETAILS

B.1 GOAL-CONDITIONED OFFLINE REINFORCEMENT LEARNING ALGORITHMS

In both Imitation Learning and Hierarchical Imitation Learning algorithms, we will
consider a MDPM =

(
S, A, PS , PS,G

(0), R, γ, G, ϕ, d
)
, and a dataset of

trajectories D =
{
(sit, a

i
t, r

i
t, s

i
t+1, g

i)
}

sampled by one or many expert agents.

Imitation Learning (BC) Ding et al. (2019). The BC algorithm is a direct and simple
framework to leverage a dataset of transitions D by running a supervised regression
using a negative log-likelihood loss :

LD(θ) = E(sit,a,s
i
t,r,s

i
t,s

i
t+1,g

i)∼D

[
− log(πθ(a

i
t|sit, gi))

]
, and θ∗D = arg min

θ ∈ Θ

LD(θ) (2)

Moreover this algorithm benefit from using a HER (Figure 10) relabelling strategy.
Indeed, as the trajectories have been sampled by an expert, if we consider a transition
(sit, a

i
t, r

i
t, s

i
t+1, g

i) ∈ D then we can also consider (sit, a
i
t, r

i
t, s

i
t+1, ϕ(s

i
t+k)) as also

an expert generated transition. Thus, HER can be considered as a data augmentation
technique, which is particularly effective in low data regime.

(a) Original Trajectory. (b) New Trajectory.

Figure 10: Hindsight Experience Replay (HER) Illustration.

Hierarchical Imitation Learning (HBC) (Le et al., 2018; Gupta et al., 2019; Park et al., 2023).
HBC leverages hierarchical structures so as to effectively handle the challenges
associated with learning from offline datasets. This algorithm decomposes the
navigation task into manageable sub-tasks using a high-level and a low-level policy.

Now, an end-to-end policy πθ : S × G → ∆(A) is divided into two distinct
learnable components. First, a high policy πh

θh
: S × G → ∆(G) aiming at selecting

intermediate sub-goals that are strategically feasible stepping stones towards a final
goal, thus simplifying the path finding task. Then, a low policy πl

θl
: S ×G → ∆(A)

focused on generating the actions necessary to progress from the current state towards
the sub-goal selected by the high policy. The optimization follows :

Lh
D(θh) = E(sit,s

i
t+k

,gi)∼D

[
− log(πh

θh(ϕ(s
i
t+k)|sit, gi)))

]
, and θh

∗
D = arg min

θh ∈ Θ

Lh
D(θh) (3)

Ll
D(θl) = E(sit,a

i
t,s

i
t+1,s

i
t+k

,gi)∼D

[
− log(πl

θl(at|sit, ϕ(sit+k)))
]
, and θl

∗
D = arg min

θl ∈ Θ

Ll
D(θl) (4)

Hence, given way step hyperparameter k, which determines the desired temporal
distance of the sub-goals, the optimization for the high and low policies uses a
common loss structure, adapted to suit their specific roles.
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B.2 CONTINUAL REINFORCEMENT LEARNING BASELINES

This section explores CRL baselines, designed to learn from a task stream T , where
each task Tk consists of a MDP Mk =

(
Sk, Ak, PSk , PS,G

(0)
k , Rk, γk, G, ϕk, dk

)
and a

dataset of trajectories Dk =
{
(sk,it , ak,i

t , rk,it , sk,it+1, g
k,i)

}
. Interestingly, these strategies

could be extended to a broader range algorithms, beyond goal-conditioned ones.

Naive Learning Strategy or From Scratch (SC1 & SCN). In SC1, a single policy is learned
from the latest dataset and then applied unchanged to all tasks. In SCN, a new policy
is trained for each task, improving performance at the cost of a memory load.

Algorithm 2 Naive Strategy

Require: learning rate η, number of epochs E, boolean StorePolicies
1: for k = 1 to N do
2: Initialize policy parameters θk
3: for epoch = 1 to E do
4: for mini-batch B in Dk do
5: Update θk using gradient descent: θk ← θk − η∇LB(θk)

6: if StorePolicies then Store θk
7: else θ1 ← θk

Freeze Strategy (FZ). In the Freeze Strategy, a single policy is trained only on the
first task and then applied without modification to all subsequent tasks.

Algorithm 3 Freeze Strategy

Require: learning rate η, number of epochs E
1: Initialize policy parameters θ1
2: for epoch = 1 to E do
3: for mini-batch B in D1 do
4: Update θ1 using gradient descent: θ1 ← θ1 − η∇LB(θ1)

Finetuning Strategy (FT1 & FTN). The Finetuning Strategy involves adapting a policy
learned from the initial task to each subsequent task, either by continuously updating
a single policy (FT1) or by copying and then updating the policy for each new task
(FTN), allowing for better task adaptation.

Algorithm 4 Finetuning Strategy

Require: learning rate η, number of epochs E, boolean StorePolicies
1: Initialize policy parameters θ1
2: for epoch = 1 to E do
3: for mini-batch B in D1 do
4: Update θ1 using gradient descent: θ1 ← θ1 − η∇LB(θ1)

5: for k = 2 to N do
6: if StorePolicies then θk ← θk−1

7: else θk ← θ1
8: for epoch = 1 to E do
9: for mini-batch B in Dk do

10: Update θk using gradient descent: θk ← θk − η∇LB(θk)

11: if StorePolicies then Store θk
12: else θ1 ← θk
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Elastic Weight Consolidation (EWC) Kirkpatrick et al. (2017). This strategy has been
designed to mitigate catastrophic forgetting in continual learning. It achieves this by
selectively slowing down learning on certain weights based on their importance to
previously learned tasks. This importance is measured by the Fisher Information
Matrix, which quantifies the sensitivity of the output function to changes in the
parameters.

EWC introduces a quadratic penalty to the loss function, constraining the parameters
close to their values from previous tasks, where the strength of the penalty is propor-
tional to each parameter’s importance. This allows the model to retain performance
on previous tasks while continuing to learn new tasks effectively.

However this method struggles for navigation tasks due to the penalty for updating
parameters, making it difficult to adapt to tasks like inverse actions. This rigidity is
problematic in complex environments where different tasks demand flexibility. As a
result, EWC is limited in effectively handling tasks requiring greater adaptation.

Algorithm 5 Elastic Weight Consolidation Strategy

Require: learning rate η, number of epochs E, elastic weight λ, Fisher Information Matrix F0

1: Initialize policy parameters θ
2: for k = 1 to N do
3: for epoch = 1 to E do
4: for mini-batch B in Dk do
5: Compute standard loss : LS

B(θ)

6: Compute EWC loss : LEWC
B (θ) = λ

2

∑k−1
i=1 Fi · (θi − θi,old)

2

7: Total loss : LB(θ) = LS
B(θ) + LEWC

B (θ)
8: Update θ using gradient descent: θ ← θ − η∇LB(θ)

9: Update Fisher Information Matrix Fk

10: Store current parameters to learn next ones θk,old ← θ

L2-Regularization Finetuning (L2) Kumar et al. (2023). This strategy also mitigates
catastrophic forgetting by adding an L2 penalty to the loss, discouraging large
weight changes during training. This helps preserve knowledge from previous tasks
by promoting stability in the learned representations.

As with EWC, L2-regularization struggles in CRL for navigation tasks, especially
when actions or dynamics change drastically. The method limits the network’s
flexibility by forcing small weight updates, making it difficult to adapt to tasks that
require distinct actions for similar states, which is critical in evolving environments.

Algorithm 6 L2-Regularization Finetuning Strategy

Require: learning rate η, number of epochs E, regularization strength λ
1: Initialize policy parameters θ with θ
2: for k = 1 to N do
3: for epoch = 1 to E do
4: for mini-batch B in Dk do
5: Compute task-specific loss : LS

B(θ)
6: Compute L2 regularization loss : LL2

B (θ) = λ∥θ − θold∥2
7: Total loss : LDk

(θ) = LS
B(θ) + LL2

B (θ)
8: Update θ using gradient descent: θ ← θ − η∇LB(θ)
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Progressive Neural Networks (PNN) Rusu et al. (2016). This framework introduce a
new column layers for each task, freezing previous weights to preserve knowledge.
Lateral connections allow feature transfer, leveraging prior experience while avoiding
interference. PNNs effectively prevent catastrophic forgetting, but the model grows
with each task, limiting scalability for many tasks or limited memory contexts.

Algorithm 7 Progressive Neural Networks Strategy

Require: number of tasks N , learning rate η
1: Initialize first task column C1 with random weights
2: Train C1 on the dataset D1 for the first task
3: for k = 2 to N do ▷ For each new task
4: Create a new task-specific column Ck with random weights
5: Freeze weights in previous columns C1, C2, . . . , Ck−1

6: Add lateral connections from C1, . . . , Ck−1 to Ck

7: Load task-specific dataset Dk

8: for each mini-batch B in Dk do
9: Compute the outputs of previous columns C1, . . . , Ck−1

10: Pass outputs through lateral connections to Ck

11: Update the weights in Ck using gradient descent
12: Freeze the weights in column Ck after training

Continual Subspace of Policies (CSP) Gaya et al. (2023). This strategy handles continual
learning by maintaining a subspace of policy parameters that adapt as new tasks are
learned. For each new task, a new anchor is added, allowing the model to combine
parameters from previous tasks. CSP decides whether to extend or prune the subspace
based on a critic, Wϕ, that evaluates the performance of anchor combinations.

Algorithm 8 Continual Subspace of Policies (CSP)

1: Input: θ1, . . . , θj (previous anchors), ϵ (threshold)
2: Initialize: Wϕ (subspace critic), B (replay buffer)
3: Initialize: θj+1 ← 1

j

∑j
i=1 θi (new anchor)

4: for i = 1, . . . ,B do ▷ // Grow the Subspace
5: Sample α ∼ Dir(U(j + 1))

6: Set policy parameters θα ←
∑j+1

i=1 αiθi
7: for l = 1, . . . ,K do
8: Collect and store (s, a, r, s′, α) in B by sampling a ∼ πθα(s)

9: if time to update then
10: Update πθj+1 and Wϕ using the SAC algorithm and the replay buffer B
11:
12: Use B and Wϕ to estimate: ▷ // Extend or Prune the Subspace
13:

αold ← arg max
α∈Rn

+,∥α∥1=1

Wϕ(α)

αnew ← arg max
α∈Rn+1

+ ,∥α∥1=1

Wϕ(α)

14: if Wϕ(·, αnew) > (1 + ϵ) ·Wϕ(·, αold) then
15: Return: θ1, . . . , θj , θj+1, α

new ▷ // Extend
16: else
17: Return: θ1, . . . , θj , αold ▷ // Prune
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C IMPLEMENTATION DETAILS

C.1 ARCHITECTURES & HYPERPARAMETERS

We primarily followed prior work (Ghosh et al., 2023) for network architectures and
hyperparameters. All environments used MLPs with layer normalization on hidden
layers. Low-level policies had 256 hidden units, and high-level policies used 64. For
HILOW in AntMaze and Godot, we increased these to 300 and 70 respectively as,
experimentally, low-rank adaptors performed better with larger initial models on
more complex tasks. Dropout of 0.1 was applied to all hidden layers.

Input sizes were 31 for AntMaze (including position, goal, and features), 8 for
PointMaze, and 133 for Godot. Output sizes were 8 for AntMaze and Godot, and 2
for PointMaze. Outputs were continuous for AntMaze and PointMaze, while Godot
used both continuous and discrete outputs to simulate gamepad controls.

Hyperparameter AntMaze PointMaze AmazeVille SimpleTown
Batch Size 1024 1024 64 64

Learning Rate 3e-4
Umaze : 10 Umaze : 50

Way Steps (Sub-goal distance) Medium : 15 Medium : 25 10 3
Large : 15 Large : 25

Umaze : 100.0
HER Sampling Temperature 50.0 Medium : 75.0 100.0 15.0

Large : 100.0

Table 5: Hyperparameter settings for AntMaze, PointMaze, and Godot environments.

C.2 TRAINING DETAILS

For EWC and L2 strategies, we experimented with five regularization weights
λ ∈ { 1e-2, 1e-1, 1, 1e1, 1e2 } and selected the best model in terms of performance
for each task stream. Similarly, for HILOW, we tested different acceptance values
ϵ ∈ { 1e-2, 5e-2, 1e-1, 2.5e-1 } to decide whether to prune or extend a subspace.

When using Hierarchical Imitation Learning, we also employed Hindsight Experi-
ence Replay (HER) for all environments, using an exponential sampling strategy
guided by a temperature parameter to improve sample efficiency.

C.3 COMPUTE RESOURCES

Training was conducted on a shared compute cluster using CPUs for all experiments,
as the models are relatively small and the backbone algorithms do not require
highly intensive operations typically associated with GPU use. This choice also
allowed us to run more experiments in parallel, optimizing resource utilization. The
compute cluster featured Intel(R) Xeon(R) CPU E5-1650 and Intel Cascade Lake
6248 processors. For most models, 4 cores per training were sufficient, but due
to PNN’s growing memory requirements, we allocated 6 cores for its experiments.
Total training times across the defined streams of tasks ranged from 10 to 18 hours,
depending on the complexity of the task stream.
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D ADDITIONAL & DETAILED RESULTS

D.1 HIERARCHICAL VS. NON-HIERARCHICAL POLICIES IN GOAL-CONDITIONED RL

Table 6 compares Imitation Learning and Hierarchical Imitation Learning across
the various maze environments. HBC consistently outperforms BC in both success
rate and episode length, especially in complex environments like AmazeVille, where
hierarchical decision-making is crucial for navigating diverse tasks and obstacles. In
simpler environments like SimpleTown, the performance difference is minimal, as
these tasks are easier to solve.

Success Rate ↑ Episode Length ↓
Environment Maze

BC HBC BC HBC

PointMaze
Umaze 99.2 ± 1.4 100.0 ± 0.0 68.4 ± 10.9 63.8 ± 6.2

Medium 94.1 ± 8.4 99.5 ± 1.1 199.5 ± 32.2 172.0 ± 33.1

Large 67.9 ± 9.7 95.0 ± 6.9 328.5 ± 33.3 282.5 ± 61.4

AntMaze
Umaze 76.7 ± 8.5 93.5 ± 5.4 422.0 ± 75.9 286.6 ± 48.8

Medium 43.3 ± 10.5 68.8 ± 5.0 688.0 ± 101.1 519.1 ± 61.4

Large 18.8 ± 11.4 32.8 ± 9.9 861.4 ± 88.9 816.8 ± 63.8

SimpleTown

BASE 94.8 ± 5.0 98.6 ± 2.0 52.7 ± 3.6 51.5 ± 2.6

OOO 95.9 ± 1.9 97.3 ± 1.9 55.8 ± 2.2 56.0 ± 2.5

OOX 92.6 ± 4.8 94.3 ± 3.2 60.6 ± 2.3 59.7 ± 4.0

OXO 89.5 ± 4.4 91.6 ± 4.2 61.7 ± 1.9 62.8 ± 1.2

XOO 94.0 ± 4.0 93.8 ± 3.7 59.3 ± 3.0 60.0 ± 2.4

XXO 89.8 ± 7.2 84.2 ± 5.3 70.2 ± 2.5 72.6 ± 1.7

XOX 90.1 ± 5.7 97.0 ± 2.3 61.4 ± 2.5 60.2 ± 1.8

OXX 93.4 ± 4.3 91.3 ± 3.0 67.5 ± 0.9 69.5 ± 1.6

AmazeVille

HOOO 70.5 ± 9.7 88.8 ± 6.3 211.0 ± 12.8 182.5 ± 9.3

HOOX 51.2 ± 13.0 78.6 ± 8.7 249.8 ± 18.9 226.0 ± 14.2

HXOO 60.4 ± 15.8 94.8 ± 4.7 228.3 ± 19.8 190.8 ± 9.1

HXOX 46.5 ± 9.9 75.9 ± 5.2 273.7 ± 11.9 240.8 ± 4.7

LOOO 49.6 ± 3.5 75.0 ± 7.1 221.9 ± 6.0 172.2 ± 18.0

LOOX 59.9 ± 7.2 82.9 ± 6.3 225.9 ± 12.2 174.8 ± 9.6

LXOO 47.0 ± 5.8 75.9 ± 6.3 222.8 ± 8.3 169.3 ± 13.6

LXOX 60.1 ± 8.8 95.6 ± 4.6 221.3 ± 14.8 159.9 ± 10.1

Table 6: Performance of BC and HBC across baseline environments (average over 8 seeds).
HBC consistently outperforms BC in both success rate and episode length metrics across most
environments. In some of the SimpleTown environments, the differences between HBC and BC are
negligible, as these tasks are easier to learn and provide limited room for improvement.

Given its efficiency in managing complex environments, HBC was chosen as the
backbone for the HILOW framework. By separating high-level and low-level sub-
spaces, HILOW further enhances task adaptation while avoiding unnecessary model
expansion, making it well-suited for continual learning in dynamic, complex settings.
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D.2 HIERARCHICAL VS. NON-HIERARCHICAL POLICIES IN GOAL-CONDITIONED CRL

Table 7 consistently demonstrate that HBC improves over BC, notably in terms
of performance (PER) across all CRL baselines tested on both the PointMaze-1
and AntMaze-1 task streams. The most notable improvements are observed in
sophisticated methods like FTN, SCN, and PNN, where HBC achieves near-perfect
scores, such as 99.4 in PointMaze-1’s PNN compared to BC’s 96.9.

PER ↑ MEM ↓
Task Stream CRL Method

BC HBC BC HBC

PointMaze-1

EWC 53.7 ± 13.7 55.1 ± 2.9 1.0 ± 0.0 1.1 ± 0.0

FT1 61.4 ± 16.4 50.0 ± 2.8 1.0 ± 0.0 1.1 ± 0.0

FTN 95.0 ± 0.9 99.1 ± 0.8 4.0 ± 0.0 4.3 ± 0.0

FZ 41.3 ± 5.4 34.2 ± 2.6 1.0 ± 0.0 1.1 ± 0.0

L2 61.3 ± 6.2 57.4 ± 6.7 1.0 ± 0.0 1.1 ± 0.0

PNN 96.9 ± 0.1 99.4 ± 0.8 9.9 ± 0.0 10.6 ± 0.0

SC1 47.0 ± 5.9 32.3 ± 5.1 1.0 ± 0.0 1.1 ± 0.0

SCN 93.2 ± 2.8 98.0 ± 1.1 4.0 ± 0.0 4.3 ± 0.0

AntMaze-1

EWC 11.0 ± 5.9 18.2 ± 3.1 0.9 ± 0.0 1.0 ± 0.0

FT1 9.2 ± 2.5 18.3 ± 1.6 0.9 ± 0.0 1.0 ± 0.0

FTN 54.0 ± 3.1 71.1 ± 5.1 3.7 ± 0.0 4.0 ± 0.0

FZ 19.2 ± 2.5 24.3 ± 0.9 0.9 ± 0.0 1.0 ± 0.0

L2 4.6 ± 2.8 12.3 ± 3.0 0.9 ± 0.0 1.0 ± 0.0

PNN 60.8 ± 7.4 79.0 ± 3.9 9.2 ± 0.0 10.0 ± 0.0

SC1 11.3 ± 2.3 18.0 ± 1.7 0.9 ± 0.0 1.0 ± 0.0

SCN 54.0 ± 5.0 70.8 ± 1.9 3.7 ± 0.0 4.0 ± 0.0

Table 7: Performances of BC and HBC on each of the baseline methods (avg. on 3 seeds).
HBC consistently outperforms BC on PER across nearly all CRL methods, with significant gains in
more sophisticated approaches such as PNN. Notably, HBC shows superior performance even for
challenging methods like EWC and L2, while being only less than 10% more expensive in terms of
memory usage. The only exceptions are a few naive and underperforming methods, where the gap is
small. This demonstrates HBC as a more effective approach for CRL.

Although HBC introduces a small increase in memory usage (MEM), typically less
than 10%, this trade-off is minimal compared to the significant performance gains.
Even for simpler methods like EWC and L2, HBC demonstrates better PER scores,
indicating enhanced retention of previously learned tasks and better adaptation to
new ones, which is a key requirement for continual reinforcement learning (CRL).

In both task streams, particularly in more complex settings such as AntMaze-1,
HBC manages to reduce catastrophic forgetting and outperform BC consistently.
This analysis confirms that HBC offers substantial improvements for CRL across all
tested baselines, making it a strong candidate for scaling up to more challenging and
dynamic environments.
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D.3 HIERARCHICAL GOAL-CONDITIONED CRL BENCHMARK

Task Stream CRL Method PER ↑ BWT ↑ FWT ↑ MEM ↓

PointMaze-1

EWC 55.1 ± 2.9 -43.5 ± 3.0 0.6 ± 2.3 1.0 ± 0.0

FT1 50.0 ± 2.8 -49.1 ± 3.6 1.1 ± 1.9 1.0 ± 0.0

FTN 99.1 ± 0.8 0.0 ± 0.0 1.1 ± 1.9 4.0 ± 0.0

FZ 34.2 ± 2.6 0.0 ± 0.0 -63.8 ± 1.6 1.0 ± 0.0

L2 57.4 ± 6.7 -39.3 ± 6.5 -1.3 ± 0.2 1.0 ± 0.0

PNN 99.4 ± 0.8 0.0 ± 0.0 1.4 ± 1.5 9.9 ± 0.0

SC1 32.3 ± 5.1 -65.7 ± 5.8 0.0 ± 0.0 1.0 ± 0.0

SCN 98.0 ± 1.1 0.0 ± 0.0 0.0 ± 0.0 4.0 ± 0.0

HILOW (ours) 98.0 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 2.3 ± 0.0

PointMaze-2

EWC 59.1 ± 3.3 -40.5 ± 3.5 -0.4 ± 0.7 1.0 ± 0.0

FT1 56.1 ± 4.2 -43.5 ± 4.6 -0.4 ± 0.7 1.0 ± 0.0

FTN 99.6 ± 0.7 0.0 ± 0.0 -0.4 ± 0.7 4.0 ± 0.0

FZ 32.3 ± 2.8 0.0 ± 0.0 -67.7 ± 2.8 1.0 ± 0.0

L2 55.2 ± 3.4 -43.2 ± 4.9 -1.6 ± 1.5 1.0 ± 0.0

PNN 99.5 ± 0.9 0.0 ± 0.0 -0.5 ± 0.9 9.9 ± 0.0

SC1 55.5 ± 2.5 -44.5 ± 2.5 0.0 ± 0.0 1.0 ± 0.0

SCN 100.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.0 ± 0.0

HILOW (ours) 99.8 ± 0.4 1.6 ± 2.7 -1.8 ± 2.5 1.9 ± 0.1

Table 8: CRL Benchmark for Hierarchical Policies on PointMaze Streams (on 3 seeds).

Task Stream CRL Method PER ↑ BWT ↑ FWT ↑ MEM ↓

AntMaze-1

EWC 18.2 ± 3.1 0.0 ± 0.0 -1.9 ± 0.6 1.0 ± 0.0

FT1 18.3 ± 1.6 -52.8 ± 3.6 -3.4 ± 1.1 1.0 ± 0.0

FTN 71.1 ± 5.1 0.0 ± 0.0 -3.4 ± 1.9 4.0 ± 0.0

FZ 24.3 ± 0.9 0.0 ± 0.0 -50.2 ± 1.6 1.0 ± 0.0

L2 12.3 ± 3.0 0.0 ± 0.0 -10.8 ± 0.2 1.0 ± 0.0

SC1 18.0 ± 1.7 -56.5 ± 4.0 0.0 ± 0.0 0.0 ± 0.0

SCN 70.8 ± 1.9 0.0 ± 0.0 0.0 ± 0.0 4.0 ± 0.0

PNN 79.0 ± 3.9 0.0 ± 0.0 4.5 ± 1.4 10.0 ± 0.0

HILOW (ours) 74.1 ± 3.2 0.0 ± 0.0 -0.4 ± 0.0 2.8 ± 0.0

AntMaze-2

EWC 42.5 ± 5.7 0.0 ± 0.0 10.3 ± 8.1 1.0 ± 0.0

FT1 44.5 ± 6.6 -41.7 ± 5.8 14.4 ± 6.1 1.0 ± 0.0

FTN 72.8 ± 5.3 0.0 ± 0.0 1.1 ± 7.6 4.0 ± 0.0

FZ 24.1 ± 1.6 0.0 ± 0.0 -55.1 ± 12.8 1.0 ± 0.0

L2 38.3 ± 6.0 0.0 ± 0.0 2.8 ± 5.7 1.0 ± 0.0

SC1 30.3 ± 2.0 -41.4 ± 3.2 0.0 ± 0.0 0.0 ± 0.0

SCN 71.7 ± 3.5 0.0 ± 0.0 0.0 ± 0.0 4.0 ± 0.0

PNN 85.5 ± 2.4 0.0 ± 0.0 13.8 ± 2.5 10.0 ± 0.0

HILOW (ours) 76.5 ± 3.0 0.0 ± 0.0 4.8 ± 2.8 4.0 ± 0.0

Table 9: CRL Benchmark for Hierarchical Policies on AntMaze Streams (on 3 seeds).
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Task Stream CRL Method PER ↑ BWT ↑ FWT ↑ MEM ↓

VideoGame-1

FT1 59.5 ± 9.8 -28.6 ± 8.6 3.6 ± 7.3 1.0 ± 0.0

FTN 87.7 ± 2.6 0.0 ± 0.0 4.0 ± 7.1 4.0 ± 0.0

FZ 54.7 ± 2.7 0.0 ± 0.0 -29.2 ± 9.4 1.0 ± 0.0

PNN 85.8 ± 2.1 0.0 ± 0.0 1.4 ± 8.5 10.0 ± 0.0

SC1 53.6 ± 4.2 -30.9 ± 5.7 0.0 ± 0.0 1.0 ± 0.0

SCN 82.8 ± 7.2 0.0 ± 0.0 0.0 ± 0.0 4.0 ± 0.0

EWC 65.1 ± 4.0 -22.8 ± 5.5 3.4 ± 7.8 1.0 ± 0.0

L2 64.6 ± 5.6 -15.2 ± 6.2 -4.7 ± 9.5 1.0 ± 0.0

HILOW 87.8 ± 3.5 0.0 ± 0.0 3.3 ± 9.2 2.6 ± 0.0

VideoGame-2

FT1 63.7 ± 6.9 -26.7 ± 9.3 6.2 ± 1.1 1.0 ± 0.0

FTN 90.5 ± 2.5 0.0 ± 0.0 6.3 ± 1.7 1.7 ± 0.0

FZ 45.8 ± 6.1 0.0 ± 0.0 -37.0 ± 2.7 2.7 ± 0.0

PNN 86.7 ± 1.4 0.0 ± 0.0 2.1 ± 1.0 10.0 ± 0.0

SC1 64.0 ± 2.6 -20.3 ± 5.3 0.0 ± 0.0 1.0 ± 0.0

SCN 84.7 ± 4.0 0.0 ± 0.0 0.0 ± 0.0 4.0 ± 0.0

EWC 62.2 ± 1.4 -27.8 ± 3.1 5.8 ± 1.9 1.9 ± 0.0

L2 66.5 ± 4.3 -12.5 ± 5.1 -5.2 ± 2.7 2.7 ± 0.0

HILOW 90.2 ± 5.4 0.0 ± 0.0 5.9 ± 3.3 3.3 ± 0.0

Table 10: CRL Benchmark for Hierarchical Policies on Video Game Streams (on 3 seeds).
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