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In this section, we present additional material and details to supplement the main paper.1

A Dataset and training details2

A.1 Imagenet-to-sketch dataset3

The dataset contains five different domains: Flowers [1], Cars [2], Sketch [3], Caltech-UCSD Birds4

(CUBs) [4], and WikiArt [5] with 102, 195, 250, 196, and 200 classes, respectively. We randomly5

crop images from each domain to 224× 224 pixels, along with normalization and random horizontal6

flipping. We report the baseline experiments, Fine-Tuning, Feature-Extractor, and ’FC and BN only’7

with 0.005 learning rate (lr) and SGD optimizer with no weight decay. We train for 30 epochs with a8

batch size 32 and a cosine annealing learning rate scheduler.9

The experiments with our proposed FTN approach are learned through the Adam optimizer with10

lr 0.005 for low-rank layers and through the SGD optimizer with lr 0.008 for remaining trainable11

layers (task-specific batchnorm and classification layers). Again, we train them for 30 epochs with12

batch size 32 and cosine annealing scheduler. We showed the experiments for different low-ranks,13

R ∈ {1, 5, 10, 15, 20, 25, 50}.14

A.2 DomainNet dataset15

This dataset contains six domains: Clipart, Sketch, Painting (Paint), Quickdraw (Quick), Inforgraph16

(Info), and Real, with an equal number of 345 classes/categories. We train the baseline experiments,17

Fine-Tuning, Feature-Extractor, and ’FC and BN only’ with 0.005 lr with 0.0001 weight decay and18

SGD optimizer. Similar to the Imagenet-to-sketch dataset, we apply the same data augmentation19

techniques and train for 30 epochs with 32 batch size and a cosine annealing learning rate scheduler.20

For our experiments with the FTN method, we train the low-rank tensor layers with Adam optimizer21

and 0.005 lr. The remaining layers were optimized using the SDG optimizer with the same 0.00522

learning rate and no weight decay. We train the FTN networks for 30 epochs with the same learning23

rate scheduler. We showed our experiments for different low-ranks, R ∈ {1, 5, 10, 20, 30, 40}.24

A.3 NYUD dataset25

In multi-task learning, we use NYUD dataset, which consists of 795 training and 654 testing26

images of indoor scenes, for dense prediction experiments. It has four tasks: edge detection (Edge),27

semantic segmentation (SemSeg), surface normals estimation (Normals), and depth estimation28

(Depth). We evaluated the performance using optimal dataset F-measure (odsF) for edge detection,29

mean intersection over union (mIoU) for semantic segmentation, and mean error (mErr) for surface30

normals. At the same time, we report root mean squared error (RMSE) for depth. We perform random31
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scaling in the range of [0.5, 2.0] and random horizontal flipping for data augmentation and resize32

each image to 425× 560. We train our baseline experiments, Fine-tuning, Feature Extractor, and ’FC33

and BN only’ for 60 epochs with batch size 8 and polynomial learning rate scheduler. We learn the34

network using SGD optimizer and 0.005 learning rate with 0.9 momentum and 0.0001 weight decay.35

In FTN we train for the same 60 epochs, batch size 8, and polynomial learning rate scheduler. We36

learn over low-rank layers using the Adam optimizer with a 0.01 learning rate and no weight decay.37

The remaining decoder and batchnorm layers are optimized using the same hyperparameters used for38

baseline experiments. This dataset shows experiments with different low-ranks, R ∈ {1, 10, 20, 30}.39

B Effect on performance with different number of low-rank factors.40

We performed an experiment by removing the low-rank factors from our trained FTN backbone41

network at different thresholds. We perform this experiment on five domains of the Imagenet-to-42

sketch dataset and compute the ℓ2-norm of ∆W at every layer. We selected equally spaced threshold43

values from the minimum and maximum ℓ2-norm and removed the low-rank factors below the44

threshold. The performance vs. the number of parameters of low-rank layers for different thresholds45

is shown in Figure S1. We observe a drop in performance on every domain as we increase the46

threshold and reduce the number of layers from the backbone. Interestingly, when we reduce the47

number of layers from 52 to 28 on the Flowers and CUBS dataset, we did not see a significant drop48

in accuracy.49
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Figure S1: Performance on five domains of the Imagenet-to-sketch dataset as we remove the low-rank parameters.
We selected the number of layers in the backbone based on a moving threshold. We annotate the specified
threshold at each marker point and the number of affected layers (in parentheses).

C Visualization of changes in FTN with low-rank factors50

We present the norm of low-rank factors at every adapted layer in the backbone of our FTN as a51

heatmap in Figures S2–S3. The colors indicate relative norms because we normalized them for every52

network in the range 0 to 1 to highlight the relative differences. Figure S2 presents results on five53

domains of the Imagenet-to-sketch dataset (resnet-50 backbone), adapting every layer with rank-5054

FTN. We observe the maximum changes in the last layer of the backbone network instead of the55

initial layers. We also show a similar trend on the DomainNet dataset with resnet-34 backbone where56

maximum changes occur in the network’s later layer (see Figure S4). We observe from Figure S3 that57

on the wikiart domain of the Imagenet-to-sketch dataset, the layers in the backbone network become58

more adaptive upon increasing the rank of FTN. The rank-50 FTN has more task adaptive layers than59

the rank-1 FTN on the wikiart domain.60
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Figure S2: Norm of low-rank factors in the adapted backbone layers for different domains of the Imagenet-to-
sketch dataset with R = 50.
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Figure S3: Norm of low-rank factors in the adapted backbone layers for different values of R ∈
{1, 5, 10, 15, 20, 25, 50} with the wikiart domain of the Imagenet-to-sketch dataset.
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Figure S4: Norm of low-rank factors in the adapted backbone layers for different domains of the DomainNet
dataset with R = 40.

D Results on DomainNet dataset under joint setting61

We performed additional experiments under a joint learning setup on the DomainNet dataset. A single62

model is trained jointly on all the domains of the dataset with Fine-Tuning setup. Table S1 summarizes63

the results for the performance of the DomainNet dataset under a joint setup. The domains under this64

setting share information among each other for all parameters. The Fine-Tuning experiment achieves65

the overall best performance, but at the expense of a large number of parameters. We observe poor66

performance for the shared Feature Extractor, since that does not learn any additional task-specific67

parameters. The results in the third row show that by changing just the task-specific batchnorm layers68

in the jointly trained backbone, we can achieve better results than TAPS and Adashare. Our FTN69

with just R = 1 also outperforms Adashare and TAPS.70

Table S1: Performance on DomainNet dataset under joint setting using resnet34 backbone (initialized with
jointly trained weights) with our FTN approach along with comparison methods.

Methods Params (Abs) Clipart Sketch Paint Quick Info Real mean

Fine-tuning 6× (127.68M) 77.43 69.25 69.21 71.61 41.50 80.74 68.29
Feature extractor 1× (21.28M) 76.67 65.2 65.26 52.97 35.05 76.08 61.87
FC and BN only 1.004× (21.35M) 77.07 68.34 68.76 69.06 40.63 79.07 67.15

Adashare 1× (21.28M) 75.88 63.96 67.90 61.17 31.52 76.90 62.88
TAPS 1.46× (31.06M) 76.98 67.81 67.91 70.18 39.30 78.91 66.84

FTN, R=1 1.008× (21.45M) 77.13 68.10 68.50 69.41 40.04 79.49 67.11

E Image generation training details and results71

E.1 Transient attributes dataset72

The Transient attributes dataset [6] contains a total of 8571 images with 40 annotated attribute labels.73

Each label is associated with a score in the [−1, 1] range. We utilize the associated confidence score74

for each season to build our collection of images for each season. Additionally, we only selected75
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Table S2: FTN PSNR for image generation under R = {20, 50}
Season Rank 20 Rank 50

Winter 18.11 22.23
Spring 18.89 20.50
Autumn 17.95 20.08

images that were captured during daytime. Our training set consisted of 1875 summer, 1405 spring,76

1353 autumn, and 2566 winter images. We normalized each image to the range of [−1, 1] and resized77

them to a resolution of 128× 128.78

E.2 Training details79

Our base network follows the BigGAN architecture [7] that was pre-trained for 100k iterations on80

ImageNet using 128 × 128 images. We trained all the networks in this experiment using Adam81

optimizer. We used a learning rate of 0.05 for the low-rank tensors and a learning rate of 0.001 for the82

linear layers. We did not use any weight decay. We trained for 2000 epochs with a cosine annealing83

learning rate scheduler and an early stopping criterion ranging from 200 to 600 iterations.84

E.3 Additional results85

Figure S5, we show additional generated images by our FTN network. In addition, table S2 shows the86

average performance of our FTN network under different rank settings. We observe a performance87

increase by increasing the rank R of our low-rank factors.88
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Figure S5: Generated images for different seasons using FTN.
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