
TPA-GEN: A MULTI-MODAL DATA GENERATION
METHOD FOR TEXT AND PHYSICS-BASED ANIMATION

Anonymous authors
Paper under double-blind review

A SCENE GRAMMAR PRODUCTIONS

We use an attributed stochastic grammar as a hierarchical and structured representation that determines
the scenario’s content with initial physical parameters and appearance settings. The grammar is
decomposed into multiple levels of components which are sampled according to the production
rules defined in Table 1. The tree structure itself describes the scenario’s content, while the related
attributes, which contain numerous features, specialize the content’s characteristics. Table 2
presents a list of the attributes and features designed for each node.

Label Production Rules
Scene Scene → TarObjSet ⊕ Environment ⊕ Render

Component-0 TarObjSet → TargetObj+ ⊙ TarObjSet∗

Environment → ColObjSet
Component-* ColObjSet → CollisionObj∗ ⊙ ColObjSet∗

TarObjSet∗ → TargetObj∗ ⊙ TarObjSet∗

Table 1: Production rule of the scenario stochastic grammar. Here, TarObjSet is short for
Target Object Set which includes a set of simulated object (TargetObj) with potential
relationships; ColObjSet represents a set of non-movable collision objects (CollisionObj)
serving as boundary conditions. Moreover, ⊕ represents and relation, making the child elements
mandatory; while ⊙ refers to or relation to connect optional child nodes; + means one or more and ∗

means zero or more.

B DYNAMIC MODEL AND CONSTRAINTS

B.1 CONSTRAINTS

In practice, we use the following eight constraints to reveal object relationships and the constraints
are checked and applied on selected object features. Every constraint consists of a list of
operands "[o0, o1, ..., oN]" and an ID number list "[n0, .., nM]" which represents the unalterable
criteria operand(s). Here, operand oi refers to either a constant (value or vector that is always
unalterable), or a node-attribute-feature pair in which case the value of the corresponding
feature is fetched for computation. Additionally, the criteria operands must by default satisfy the
given constraints to avoid ambiguities.

• less_eq([o0, ..., oN], [n0, ..., nM]): o0 ≤ ... ≤ oN , with on0 , ...onM
stay unchanged during

resampling.
• less([o0, ..., oN], [n0, ..., nM]): o0 < ... < oN , with on0 , ...onM

stay unchanged during
resampling.

• larger_eq([o0, ..., oN], [n0, ..., nM]): o0 ≥ ... ≥ oN , with on0
, ...onM

stay unchanged
during resampling.

• larger([o0, ..., oN], [n0, ..., nM]): o0 > ... > oN , with on0
, ...onM

stay unchanged during
resampling.

• eq([o0, ..., oN], [n0, ..., nM]): o0 = ... = oN , with on0
, ...onM

stays unchanged during
resampling.

1

• same_dir([o0, ..., oN], [n0]): oi must be vectors, and for ∀i ∈ [0, ..., N] the angle between
oi and on0

is zero. Note that only one criterion operand is allowed to be present in this
constraint.

• oppo_dir([o0, ..., oN], [n0]): oi must be vectors, and for ∀i ∈ [0, ..., N] the angle between
oi and on0 is 180◦. Note that only one criterion operand is allowed to be present in this
constraint.

• similar_dir([o0, ..., oN], [n0, ..., nM], θ): oi must be vectors, and for ∀i ∈ [0, ..., N], ∀j ∈
[0, ...,M] the angle between oi and oj is less or equal to θ. Here, on0

, ...onM
stays unchanged

during resampling.

During sampling process, we validate the defined constraints after random sampling all features.
The non-criteria operands that violate the constraints will be resampled to guarantee the correctness
of the relation. If the criteria operands themselves violate the constraint, the resample process will be
terminated and errors will be reported.

B.2 DYNAMIC MODEL

As introduced in the main paper, we have the following dynamic models: JUMP, DROP, THROW,
PUSH and STRIKE. We summarize the basic constraints required for each intransitive dynamic
model in Table 3 and transitive dynamical verbs in Table 4. In additional to these dynamic models,
one can easily define and generate other dynamic models into our codebase with predefined interfaces
for constraints. Some example defintions can be found in Table 5.

In all the above mentioned tables, "DM" refers to Dynamic Model, and the "sub" is used to denote the
subjective object on which the verb in dynamic model focuses. And as shown in the last two columns
of the table, objective objects (represented by "obj") are introduced with from and to directional
relations.

C DATASHEET FOR DATASET

We answer the questions that applied to our work:

C.1 MOTIVATION

• For what purpose was the dataset created? We propose a method to generate Text and
Physics-based Animation (TPA) for multi-modal model training. The goal is to expand
the current problem domain of multi-modal learning from image-text understanding to
vision-world dynamics understanding. We believe that this is the one of the beginning steps
to enable multi-modal model’s capability to understand our world from a model fundamental
perspective.

• Who created the dataset and on behalf of which entity? The authors are from three
different institutes. Yuxing Qiu, Minchen Li and Chenfanfu Jiang are from UCLA Multi-
Physics Lagrangian-Eulerian Simulation Lab (MultiPLES). Feng Gao, was a Ph.D. student
at UCLA when the project was initiated. Yin Yang is from University of Utah, Utah graphics
lab. Govind Thattai joins the project as a individual contributor.

• This work is fully funded by UCLA computer science department and UCLA MultiPLES
lab.

C.2 COMPOSITION

• What do the instances that comprise the dataset represent? Each generated instance
consists of the following elements: a video of the rendered physics-based animation, a set of
text descriptions of the animation, a 3D material points (position) of the object ID at frame
ID.

• How many instances are there in total? As mentioned in the main paper, we propose a
method to generate TPA data. In theory, one can generate as much as possible of TPA data
with sufficient objects, types of materials and pre-defined motion types. To better illustrate
the details of the data, we provide a sample set of TPA data which contains 500 instances.

2

• Does the dataset contain all possible instances or is it a sample of instances from a
larger set? No.

• Are there recommended data splits? We don’t specify any splits. One can configure the
split accordingly.

C.3 COLLECTION PROCESS

As we mentioned in the main paper, we propose a method to generate text and physics-based animation
data. Since the data is synthetic, we don’t require any human annotators to involve. Besides, in order
to improve the quality of the generated texts, we take advantages of the most popular large language
model, ChatGPT, to rewrite the generated description of the animation. Beside, we also use ChatGPT
to help proposing label names of the 3D objects in a TPA instance. The 3D objects are generated
with a SoTA text-3D generation model. Specifically we use the checkpoint of GPT-3.5-turbo-0301 as
the backbone model.

C.4 PRE-PROCESSING/CLEANING/LABELING

• 3D object representation transformation: The 3D objects are spatially discretized to
material points at each time step. The positions of the material points representing each
object (including object-of-interests and collision object)d are stored in separate PLY files.

• Description rewriting: We use ChatGPT to help cleaning the generated text description by
rewriting the sentences without changing the meaning of it.

C.5 DISTRIBUTION

• How will the dataset be distributed? The implementation of the propose TPA data
generation method contains three parts: 1, a scene sampling process code; 2, a binary
execution of a physics-based simulation engine complied from a set of source code. The
source code of this simulation engine is based on a open-source version of Material Point
Method (MPM); 3, data cleaning codes. Above implementations will be made public on
GitHub.

• When will the dataset be distributed? The sample dataset and the implementation code
will be distributed after the NeurIPS dataset track review process.

C.6 MAINTENANCE

• Who will be supporting/hosting/maintaining the dataset? UCLA MultiPLES lab will be
the host of the proposed dataset generation method.

• How can the owner of the dataset be contacted? Yuxing Qiu (yuxqiu[AT]g.ucla.edu) and
Chenfanfu Jiang (cffjiang[AT]math.ucla.edu) are the main contacts of the proposed data
generation method.

• Will the dataset be updated? UCLA MultiPLES lab will keep updating the generation
method including adding more 3D objects and types of motions into the generation process.

D DATASET SUBMISSION REQUIREMENTS

D.1 IMPACT AND CHALLENGES

We expect our proposed method and the data generated by this method can make a board impact to
both multi-modal and computer graphics community.

• In terms of multi-modal understand, as discussed in the main paper, we aim to help this
community to expand the problem domain from shallow vision-language alignment to deep
comprehension of the knowledge space of vision-language-world dynamics. It could boardly
impact specific research domain such as Text-to-Video/Simulation (T2V/S), robotics and
intuitive physics.

3

• Our method could also make a large impact in the conventional computer graphics domain
by reformulating the 3D animation creation process. Our generation process provides a
rule-based generation of 3D animation scenes. On the other hand, once we have a reliable
model that can generate 3D animation from human language, it could save huge amount of
efforts to create 3D animation from scratch. The traditional pipeline usually requires very
experienced artist and computer graphics researchers and engineers to collaborate even for a
simple scene. Our method initialize the very first step towards fully automatic generation of
3D physics-based animations from text description.

D.2 LICENSING ANS ACCESS

We would like to specify that we intend to utilize the MIT license for the method proposed in this
paper to generate TPA data. This open-source license grants users the freedom to use, modify, and
distribute the dataset while providing clear attribution to the original creators. By choosing the MIT
license, I aim to foster collaboration, encourage innovation, and ensure that the generated data the
code of the proposed method to generate remains accessible to the wider community for further
exploration and development.

E DATA SAMPLES

Figure 1, Figure 2, Figure 3, and Figure 4 demonstrate more sample examples of the proposed gener-
ative algorithm. For more demos, please check out this google drive: https://drive.google.
com/drive/folders/1IbPJBmPLlzB4DPmXVx1eQhSr42WYjLU_?usp=sharing.
One can check out the demos in the following file hierarchy (DM refers to concrete dynamic model
names):

• DM_scene:
– label_out.json (labels of all nodes, attributes and features)
– value_out.json (quantitative values of corresponding setups)
– sentence_original.json (sentence sampled from the proposed language model)
– sentence_rewrite.json (sentence rewritten by ChatGPT)
– render (a folder contains rendered results)

* FID.png (FID refers to frame ID)
* out.mp4 (video of rendering results)

• DM_3d: (3D object data)
– _0_0_0_target_OID_FID.ply (OID refers to object ID; 3D material points (position) of

object OID at frame FID)
– _0_0_0_collision_FID.ply (point positions of collision objects)

4

https://drive.google.com/drive/folders/1IbPJBmPLlzB4DPmXVx1eQhSr42WYjLU_?usp=sharing
https://drive.google.com/drive/folders/1IbPJBmPLlzB4DPmXVx1eQhSr42WYjLU_?usp=sharing

Figure 1: Data samples of DROP dynamics.

5

Node Attribute Feature Label Candidates

Env

Boundary
BOUNDARY Box, Floor

Condition
TYPE Sticky, Slip

FRICTION FACTOR
Smooth, Even Surface,
Rough, Extremely rough

External FORCE TYPE Gravity, Wind
Force Force value Dependent on FORCE TYPE

Temporal TOTAL FRAME Short, Medium, Long

Object

Appearance COLOR
White, Red, Blue, Green, Lime,
Orange, Yellow, Pink, Purple ...

MATERIAL Glossy, Matte

Shape SHAPE Cube, Sphere, Cylinder, Mesh
SIZE Small, Medium-sized, Large, Super large

Motion

VELOCITY VALUE Slow, Medium-speed, Fast

VELOCITY DIRECTION
Up, Down, Right, Left,
Forward, Backward, Horizontal, Vertical

INITIAL POSITION On the ground, In the sky

Physics

MATERIAL
Elastic, Rigid, Fluid,
Snow, Mud, Sand, Granular

Young’s Modulus Dependent on MATERIAL;
Soft, Moderate-hardness, Hard, Rigid

Poisson Ratio Dependent on MATERIAL;
Elastic, Rigid

DENSITY Light, Medium-weight, Heavy

FRICTION FACTOR
Smooth, Even Surface,
Rough, Extremely rough

Render
Background LIGHT Bright, Dark

TEXTURE Preset texture list or "random"

Camera CAMERA POSITION Preset camera position
Viewpoint Dependent on CAMERA POSITION

Table 2: Attributes with features associated for each scene node. In the table, independent
features are highlighted with the SMALL CAPS font style, whereas dependent features are
labeled with italic. The final column lists examples of candidate labels for each feature. Each
label is mapped to a specific value or range of values based on its semantics. Additional labels can be
easily appended by providing a mapping between the label name and corresponding value ranges.

6

DM Type Constraint

JUMP

Basic
similar_dir([[0, 1, 0], (sub, Motion, VELOCITY DIRECTION)], [0], θ0)
less_eq([vmin, (sub, Motion, VELOCITY VALUE)], [0])

(vmin defined by user)

from
eq([pgt, (sub, Motion, INITIAL POSITION)], [0]), with pgt = [pgt

0 , p
gt
1 , p

gt
2]

Here, pgt
i = pobj

i ± (ssub
i + sobj

i + C) ∗ 0.5 for i ∈ [0, 2]

to
similar_dir([dgt, (sub, Motion, VELOCITY DIRECTION)], [0], θ1)

Here, dgt = (pobj − psub) + α · [0, 1, 0] (α defined by user)

DROP

Basic

similar_dir([[0,−1, 0], (sub, Motion, VELOCITY DIRECTION)], [0], θ0)
larger_eq([vsmall, (sub, Motion, VELOCITY VALUE)], [0])

(vsmall defined by user)
less_eq([pgt, (sub, Motion, INITIAL POSITION)], [0]),
pgt = [pgt

0 , p
gt
1 , p

gt
2]; pgt

1 is user-defined threshold;
pgt
0 and pgt

2 are the global minimum position

from
eq([pgt, (obj, Motion, INITIAL POSITION)], [0])

Here, pgt
i = psub

i ± (ssub
i + sobj

i + C) ∗ 0.5 for i ∈ [0, 2]

to
eq([pgt, (obj, Motion, INITIAL POSITION)], [0])

Here, pgt
i = psub

i ± (ssub
i + sobj

i + C) ∗ 0.5 for i = 0, 2; pgt
1 = sobj

1 + C

THROW

Basic similar_dir([vgt
dir, (sub, Motion, VELOCITY DIRECTION)], [0], θ0),

(UP) vgt
dir = [C0, 1, C1]

Basic
similar_dir([vgt

dir, (sub, Motion, VELOCITY DIRECTION)], [0], θ0),
vgt
dir = [C0,−1, C1]

(DOWN) eq([pgt, (obj, Motion, INITIAL POSITION)], [0]).
Here, pgt

i = psub
i ± (ssub

i + sobj
i + C) ∗ 0.5

from
eq([pgt, (obj, Motion, INITIAL POSITION)], [0])

Here, pgt
i = psub

i ± (ssub
i + sobj

i + C) ∗ 0.5 for i ∈ [0, 2]

to
eq([pgt, (obj, Motion, INITIAL POSITION)], [0])

Here, pgt = psub + ssub + vsub
value · vsub

dir · C

Table 3: Constraints in each single-object dynamic model. In the table, s, p, vvalue and vdir

refers to object size, initial position, velocity value and velocity direction, separately; C ≥ 0, C0 ∈
[−1, 1], C1 ∈ [−1, 1], Csmall ∈ [0, 0.1 ∗ ssubmax] represents random noise, and ± means +/- are chosen
randomly in practice. All the dynamic model has the basic constraints applied to the objects, with
randomly sampled from, to, or NONE relation. Note that from and to relation will be chosen
only when there are enough objects in the scenario. Specially, for THROW model, we will first sample
to decide if it is "Throw UP" or "Throw DOWN" before defining the basic constraints.

7

DM Type Constraint

PUSH

Basic

similar_dir([vgt
dir, (sub, Motion, VELOCITY DIRECTION)], [0], θ0)

Here vgt
dir = pobj − pgt-sub

less_eq([vlarge, (sub, Motion, VELOCITY VALUE)], [0])
(vlarge defined by user)

larger_eq([vsmall, (obj, Motion, VELOCITY VALUE)], [0])
(vsmall defined by user)

Basic eq([pgt-sub, (sub, Motion, INITIAL POSITION)], [0])

(Not from) Here, pgt-sub
i = pobj

i ± (ssub
i + sobj

i + C) ∗ 0.5 for i ∈ [0, 2]

from

eq([pgt-sub, (sub, Motion, INITIAL POSITION)], [0])

Here, pgt-sub
i = pobj-extra

i ± (ssub
i + sobj-extra

i + C) ∗ 0.5 for i ∈ [0, 2]
eq([pgt-obj, (obj, Motion, INITIAL POSITION)], [0])

Here, pgt-obj = pgt-sub
i +K ∗ pgt-sub−pobj-extra

||pgt-sub−pobj-extra||
K = 0.5 ·maxi=0,1,2(s

sub
i + sobj

i) + C

to
eq([pgt-obj-extra, (obj-extra, Motion, INITIAL POSITION)], [0])

Here, pgt-obj-extra = pobj +K ∗ vsub
dir

K = 0.5 ·maxi=0,1,2(s
obj
i + sobj-extra

i) + C

STRIKE

to pto = pobj-extra

Not to Random sample pto

Basic

similar_dir([pto − psub, (
sub, Motion, VELOCITY DIRECTION)], [0], θ0)

similar_dir([pto − pobj, (
obj, Motion, VELOCITY DIRECTION)], [0], θ0)

less_eq([vlarge, (sub, Motion, VELOCITY VALUE)], [0])
(vlarge defined by user)

less_eq([vlarge, (obj, Motion, VELOCITY VALUE)], [0])
(vlarge defined by user)

from
eq([pgt, (obj, Motion, INITIAL POSITION)], [0])

Here, pgt
i = psub

i ± (ssub
i + sobj

i + C) ∗ 0.5 for i ∈ [0, 2]

Table 4: Constraints in each multiple-object dynamic model. These dynamic models are applied
to at least two objects, one representing the subjective and the other representing the objective ("sub"
and "obj" in the table). from and to relation will include another objective object, named "obj-extra"
in the table. C ≥ 0 represents random noise, and ± means +/- are chosen randomly in practice.

8

DM Type Constraint

FLY

Basic
similar_dir([vgt

dir, (sub, Motion, VELOCITY DIRECTION)], [0], θ0),
vgt
dir = [C0, 0, C1]

less_eq([vlarge, (sub, Motion, VELOCITY VALUE)], [0])
(vlarge defined by user)

less_eq([pgt, (sub, Motion, INITIAL POSITION)], [0]),
pgt = [pgt

0 , p
gt
1 , p

gt
2], p

gt
1 is user-defined threshold

pgt
0 and pgt

2 are the global minimum position

from
eq([pgt, (obj, Motion, INITIAL POSITION)], [0])

Here, pgt
i = psub

i ± (ssub
i + sobj

i + C) ∗ 0.5 for i ∈ [0, 2]

to
eq([pgt, (obj, Motion, INITIAL POSITION)], [0])

Here, pgt = psub + ssub + vsub
value · vsub

dir · C

SLIDE

Basic similar_dir([vgt
dir, (sub, Motion, VELOCITY DIRECTION)], [0], θ0),

vgt
dir = [C0, 0, C1]

Basic less_eq([pgt-min, (sub, Motion, INITIAL POSITION),pgt-max], [0, 2])

(Not from) Here pgt-* = [pgt-*
0 , pgt-*

1 , pgt-*
2], pgt-min

1 = ssub
1 , pgt-max

1 = ssub
1 + Csmall

pgt-*
i refers to global * position for i = 0, 2 and * refers to min/max

from
eq([pgt, (sub, Motion, INITIAL POSITION)], [0]), with pgt = [pgt

0 , p
gt
1 , p

gt
2]

Here, pgt
1 = pobj

1 + (ssub
1 + sobj

1 + Csmall) ∗ 0.5
Random sample pgt

i ∈ [pobj
i − sobj

i ∗ 0.5, pobj
i + sobj

i ∗ 0.5] for i = 0, 2

to
eq([pgt, (obj, Motion, INITIAL POSITION)], [0])

Here, pgt = psub + ssub + vsub
value · vsub

dir · C

Table 5: Example of other possible dynamic models. One can easily define and implement
additional dynamic models with in our codebase.

9

Figure 2: Data samples of DROP dynamics.

10

Figure 3: Data samples of JUMP dynamics.

11

Figure 4: Data samples of JUMP dynamics.

12

	Scene Grammar Productions
	Dynamic Model and Constraints
	Constraints
	Dynamic Model

	Datasheet for Dataset
	Motivation
	Composition
	Collection Process
	Pre-processing/Cleaning/Labeling
	Distribution
	Maintenance

	Dataset Submission Requirements
	Impact and Challenges
	Licensing ans Access

	Data Samples

