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ABSTRACT

Plasticity Loss is an increasingly important phenomenon that refers to the empir-
ical observation that as a neural network is continually trained on a sequence of
changing tasks, its ability to adapt to a new task diminishes over time. We intro-
duce Self-Normalized Resets (SNR), a simple adaptive algorithm that mitigates
plasticity loss by resetting a neuron’s weights when evidence suggests its firing
rate has effectively dropped to zero. Across a battery of continual learning prob-
lems and network architectures, we demonstrate that SNR consistently attains su-
perior performance compared to its competitor algorithms. We also demonstrate
that SNR is robust to its sole hyperparameter, its rejection percentile threshold,
while competitor algorithms show significant sensitivity. SNR’s threshold-based
reset mechanism is motivated by a simple hypothesis test that we derive. Seen
through the lens of this hypothesis test, competing reset proposals yield subopti-
mal error rates in correctly detecting inactive neurons, potentially explaining our
experimental observations. We also conduct a theoretical investigation of the op-
timization landscape for the problem of learning a single ReLU. We show that
even when initialized adversarially, an idealized version of SNR learns the target
ReLU, while regularization based approaches can fail to learn.

1 INTRODUCTION

Plasticity Loss is an increasingly important phenomenon studied broadly under the rubric of con-
tinual learning (Dohare et al., 2024). This phenomenon refers to the empirical observation that as
a network is continually trained on a sequence of changing tasks, its ability to adapt to a new task
diminishes over time. While this is distinct from the problem of catastrophic forgetting (also studied
under the rubric of continual learning (Goodfellow et al., 2013; Kirkpatrick et al., 2017)), it is of
significant practical importance. In the context of pre-training language models, an approach that
continually trains models with newly collected data is preferable to training from scratch (Ibrahim
et al., 2024; Wu et al., 2024). On the other hand, the plasticity loss phenomenon demonstrates that
such an approach will likely lead to models that are increasingly unable to adapt to new data. Simi-
larly, in the context of reinforcement learning using algorithms like TD, where the learning tasks are
inherently non-stationary, the plasticity loss phenomenon results in actor or critic networks that are
increasingly unable to adapt to new data (Lyle et al., 2022). Figure 1 illustrates plasticity loss in the
‘Permuted MNIST’ problem introduced by Goodfellow et al. (2013).

One formal definition of plasticity measures the ability of a network initialized at a specific set of
parameters to fit a random target function using some pre-specified optimization procedure. In this
sense, random parameter initializations (eg. Lyle et al. (2024)) are known to enjoy high plasticity.
This has motivated two related classes of algorithms that attempt to mitigate plasticity loss. The first
explicitly ‘resets’ neurons that are deemed to have low ‘utility’ (Dohare et al., 2023; Sokar et al.,
2023). A reset re-initializes the neurons input weights and bias according to some suitable random
initialization rule, and sets the output weights to zero; algorithms vary in how the utility of a neuron
is defined and estimated from online data. A second class of algorithms perform this reset procedure
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implicitly via regularization (Ash & Adams, 2020; Kumar et al., 2023b). These latter algorithms
differ in their choice of what to regularize towards, with choices including the original network
initialization; a new randomly drawn initialization; or even zero. The aforementioned approaches to
mitigating plasticity loss attempt to adjust the training process; other research has studied the role
of architectural and optimizer hyperparameter choices. Across all of the approaches to mitigating
plasticity loss described above, no single approach is yet to emerge as both robust to hyperparameter
choices, and simultaneously performant across benchmark problems.

Given some point process consider the task of distinguishing between the hypotheses that this point
process has a positive rate (the null hypothesis), or a rate that is identically zero with a penalty for
late rejection or acceptance. An optimal test here takes the following simple form: we reject the
null hypothesis as soon as the time elapsed without an event exceeds some percentile of the inter-
arrival time under the null hypothesis and otherwise accept immediately upon an event. Viewing the
firing of a neuron as such a point process, we propose to reset a neuron based on a rejection of the
hypothesis that the the neuron is firing at a positive rate. We use the histogram of past inter-firing
times as a proxy of the inter-arrival time distribution under the null hypothesis. This exceedingly
simple algorithm is specified by a single hyperparameter: the rejection percentile threshold. We
refer to this procedure as self-normalized resets (SNR) and argue this is a promising approach to
mitigating plasticity loss:

1. We demonstrate superior performance on four benchmark problems classes studied in (Do-
hare et al., 2023; Kumar et al., 2023b). Interestingly, there is no single closest competitor to
SNR across these problems. Many competing approaches also show significant sensitivity
to the choice of hyperparameters; SNR does not. We introduce a new problem to eluci-
date similar plasticity loss phenomena in the context of language models, and show similar
relative merits for SNR.

2. We conduct a theoretical investigation of the optimization landscape for the problem of
learning a single ReLU. We show that while (an idealized version of) SNR learns the target
ReLU, regularization based approaches can fail to learn in this simple setting.

1.1 RELATED LITERATURE

The phenomenon of plasticity loss was discovered in the context of transfer learning (Ash & Adams,
2020; Zilly et al., 2021; Achille et al., 2017). Achille et al. (2017) showed that pre-training a network
on blurred CIFAR images reduces its ability to learn on the original images. In a similar vein, Ash
& Adams (2020) showed that pre-training a network on 50% of a training set followed by training
on the complete training set reduces accuracy relative to a network that forgoes the pre-training
step. More recent literature has focused on problems that induce plasticity loss while training on
a sequence of hundreds of changing tasks, such as Permuted MNIST and Continual ImageNet in
Dohare et al. (2021), capturing the necessity to learn indefinitely.

Correlates of Plasticity Loss. The persistence of plasticity loss across a swathe of benchmark
problems has elucidated a search for its cause. Several correlates of plasticity loss have been well
observed, namely neuron inactivity, feature or weight rank collapse, increasing weight norms, and
loss of curvature in the loss surface (Dohare et al., 2021; Lyle et al., 2023; Sokar et al., 2023;
Lewandowski et al., 2023; Kumar et al., 2020). The exact cause of plasticity loss remains unclear
and Lyle et al. (2023) have shown that for any correlate an experiment can be constructed in which
its correlation with plasticity loss is negative. Nonetheless, these correlates have inspired a series of
algorithms and interventions with varying degrees of success in alleviating the problem. However,
none is consistently performant across architectures and benchmark problems.

Reset Methods. Algorithms that periodically reset inactive or low-utility neurons have emerged
as a promising approach (Dohare et al., 2023; Sokar et al., 2023; Nikishin et al., 2022). Continual
Backprop (CBP) (Dohare et al., 2023) is one such method which tracks a utility for each neuron,
and according to some reset frequency r, it resets the neuron with minimum utility in each layer.
CBP’s utility is a discounted average product of a neuron’s associated weights and activation, a
heuristic inspired by the literature on network pruning. Another algorithm is ReDO (Sokar et al.,
2023), where on every 1/rth mini-batch, ReDO computes the average activity of each neuron and
resets those neurons whose average activities are small relative to other neurons in the corresponding
layer, according to a threshold hyperparameter. Two defining characteristics of CBP and ReDO are
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a fixed reset rate and that neurons are reset relative to the utility of other neurons in their layer. As
we will see, these proposals result in sub-optimal error rates, in a sense we make precise later.

Regularization Methods. L2 regularization has been shown to reduce plasticity loss, but is insuf-
ficient in completely alleviating the phenomenon (Dohare et al., 2021; Lyle et al., 2023). While
L2 regularization limits weight norm growth during continual learning, it can exacerbate weight
rank collapse due to regularization towards the origin. One successful regularization technique is
Shrink and Perturb (S&P) (Ash & Adams, 2020), which periodically scales the network’s weights
by a shrinkage factor p followed by adding random noise to each weight with scale σ. Another
approach is to perform L2 regularization towards the initial weights referred to as L2 Init (Kumar
et al., 2023b). These methods can be viewed as variants of L2 regularization that regularize to-
wards a random initialization and the original initialization, respectively. These methods limit the
growth of weight norms while maintaining weight rank and neuron activity by regularizing towards
a high-plasticity parameterization.

Architectural and Optimizer Modifications. Architectural modifications such as layer normaliza-
tion (Ba et al., 2016) and the use of concatenated ReLU activations have been shown to improve
plasticity to varying degrees across network architectures and problem settings (Lyle et al., 2023;
Kumar et al., 2023b). Additionally, tuning Adam hyperparameters to improve the rate at which
second moment estimates are updated has been explored with some success in Lyle et al. (2023).

2 ALGORITHM

To make ideas precise, consider a sequence of training examples (Xt, Yt) ∈ X × Y , drawn from
some distribution µt. Denote the network by f : X × Θ → Y , and let l : Y × Y → R be our loss
function. Denote by Ht ∈ Ht, the history of network weights and training examples up to time t,
and assume access to an optimization oracle Ot : Ht−1 → Θ that maps the history of weights and
training examples to a new set of network weights. As a concrete example, Ot might correspond to
stochastic gradient descent.

Let θ∗t minimize Eµt
[l(f(Xt; θ), Yt)], denote Θt = Ot(Ht−1), and consider average expected regret

1

T

∑
t

Eµt
[l(f(Xt; Θt), Yt)]− Eµt

[l(f(Xt; θ
∗
t ), Yt)]

Plasticity loss describes the phenomenon where, for certain continual learning processes Θt, such as
those corresponding to SGD or Adam, average expected regret increases over time, even for benign
choices of µt.1 To make these ideas concrete, it is worth considering an example of the above
phenomenon reported first by Dohare et al. (2021).
Example 2.1 (The Permuted MNIST problem). Consider a sequence of ‘tasks’ presented sequen-
tially to SGD, wherein each task consists of 10000 images from the MNIST dataset with the pixels
permuted. SGD trains over a single epoch on each task before the subsequent task is presented. Fig-
ure 1 measures average accuracy on each task; we see that average accuracy decreases over tasks.
The figure also shows a potential correlate of this phenomenon: the number of ‘dead’ or inactive
neurons2 in the network increases as training proceeds, diminishing the network’s effective capacity.

One hypothesis that seeks to explain plasticity loss is that the network weights obtained from min-
imizing loss over some task yield poor initializations for a subsequent task, leading to the inactive
neurons we observe in the above experiment. On the other hand random weight initializations are
known to work well (Glorot & Bengio, 2010), suggesting a natural class of heuristics: re-initialize
inactive neurons. Of course, the crux of any such algorithm is determining whether a neuron is
inactive in the first place, and doing so as quickly as possible.

To motivate our algorithm, SNR, consider applying the network f(·; θ∗t ) to a hypothetical sequence
of training examples drawn i.i.d. from µt indexed by s. Let Zµt

s,i indicate the sequence of activa-

1Specifically, one canonical choice of the sequence of measures µt considered in all of the literature on this
topic is dividing T into intervals, each of length, say ∆, and having µt be constant and equal to µi over the
ith such interval. If µi is itself drawn randomly from some distribution of measures and ∆ scales faster than a
constant with T , we would expect average expected regret to scale like a constant; this is certainly the case if
the optimization problem defining θ∗t is convex; in which case that constant is zero.

2this notion is formalized in Section 2.1
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Figure 1: Illustration of plasticity loss and its mitigation by SNR during training of a multilayer
perceptron on the Permuted MNIST problem for a single random seed. For this figure, a neuron is
declared dead if it has not fired for the last 1000 consecutive training examples.

Algorithm 1: SNR: Self-Normalized Resets
Input: Reset percentile threshold η
Initialize: Initialize weights θ0 randomly. Set inter-firing time ai = 0 for each neuron i
for each training example xt do

Forward Pass: Evaluate f(xt; θt). Get neuron activations zt,i for each neuron i
Update inter-firing times: For each neuron i, ai ← ai + 1 if zt,i = 0. Otherwise, ai ← 0
Optimize: θt+1 ← Ot(Ht)
Resets: For each neuron i, reset if P(Aµt

i ≥ ai) ≤ η.
end

tions of neuron i, and let Aµt

i be a random variable distributed as the random time between any
two consecutive activations over this hypothetical sequence of examples. Now turning to the actual
sequence of training examples, let ati count the time since the last firing of neuron i prior to time t.
Our (idealized) proposal is then exceedingly simple: reset neuron i at time t iff P(Aµt

i ≥ ati) ≤ η
for some suitably small threshold η. We dub this algorithm Self-Normalized Resets and present it as
Algorithm 1. The algorithm requires a single hyper parameter, η. Of course in practice, the distribu-
tion of Aµt

i is unknown to us, and so an implementable version of Algorithm 1 simply approximates
this distribution with the histogram of inter-firing times of neuron i prior to time t.3

2.1 MOTIVATING SNR AND COMPARISON TO OTHER RESET SCHEMES

Here we motivate the SNR heuristic and compare it to other proposed reset schemes. Consider the
following simple hypothesis test: we observe a discrete time process Zs ∈ {0, 1} which under the
null hypothesis H0 is a Bernoulli process with mean p > 0. The alternative hypothesis H1 is that
the mean of the process is identically zero. A hypothesis test must, at some stopping time τ , either
reject (Xτ = 1) or accept (Xτ = 0) the null; an optimal such test would choose to minimize the
sum of type-1 and type-2 errors (the ‘error rate’) and a penalty for delays:

P(Xτ = 1|H0) + P(Xτ = 0|H1) + λ (E[τ |H0] + E[τ |H1])

Here the multiplier λ > 0 penalizes the delay in a decision. If λ < p/2, the optimal test takes a
simple form: for some suitable threshold T̄ , reject the null iff Zs = 0 for all times s up to T̄ :
Proposition 2.1. Let T̄ be the 1− λ(p− λ)−1 percentile of a Geometric(p) distribution. Then the
optimal hypothesis test takes the form Xτ = 1{Zτ = 0} where τ = min(s : Zs = 1) ∧ T̄ .

3As opposed to tracking the histogram itself, we simply track the mean inter-firing time, and assume Aµt
i is

geometrically distributed with that mean. This requires tracking just one parameter per neuron. Our mean esti-
mate is itself computed over a fixed length trailing window motivated by the change-point detection approach
of Besbes & Zeevi (2011); the length of this window is a hyper-parameter.
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Notice that if λ ∝ p, the percentile threshold above is independent of p. Applying this setup to
the setting where under the null, we observe the firing of neuron i under i.i.d. training examples
from µt and a neuron is considered ‘dead’ or inactive if the alternate hypothesis is true, imagine that
p = P(Zµt

s,i = 1). Further, we assume λ = αp (α < 1/2); a reasonable assumption which models
a larger penalty for late detection of neurons that are highly active. It is then optimal to declare
neuron i ‘inactive’ if the length of time it has not fired exceed the 1− α(1− α)−1 percentile of the
distribution of Aµt

i . This is the underlying motivation for the SNR heuristic.

Comparison with Reset Schemes: Neuron reset heuristics such as Sokar et al. (2023) define (some-
times complex) notions of neuron ‘utility’ to determine whether or not to re-initialize a neuron. The
utility of every neuron is computed over every consecutive (say) r minibatches, and neurons with
utility below a threshold are reset. To facilitate a comparison, consider the setting where neurons
that do not fire at all over the course of the r mini batches are estimated to have zero utility, and that
only neurons with zero utility are re-initialized.

This reveals an interesting comparison with SNR. The schemes above will re-initialize a neuron
after inactivity over a period of time that is uniform across all neurons. On the other hand, SNR will
reset a neuron after it is inactive for a period that corresponds to a fixed percentile of the inter-firing
time distribution of that neuron. Whereas this percentile is fixed across neurons, the corresponding
period of inactivity after which a neuron is reset will vary across neurons: shorter for neurons that
tend to fire frequently, and longer for neurons that fire less frequently.

We can make this comparison precise in the context of the hypothesis testing setup above: specif-
ically, consider two neurons with null firing rates p1 and p2 respectively (p1 < p2), and delay
multipliers, λ, of αp1 and αp2 respectively. By Proposition 2.1, under SNR, the first is reset if it is
inactive for time at least log(α(1−α)−1)/ log(1−p1) and the second if it is inactive for time at least
log(α(1−α)−1)/ log(1− p2). In contrast, for a fixed threshold scheme such as Sokar et al. (2023),
either neuron would be reset after being inactive for some fixed threshold, say r∗. Assume r∗ is set
to minimize the sum of the error rates of the two neurons while keeping the total delay identical to
that for SNR. The proposition below compares the error rate between the two schemes:

Proposition 2.2. The ratio of total error rate with a fixed threshold r∗ to that under SNR scales like

Ω

(
exp

(
log(α(1− α)−1)

(
−1

2
+

1

2

log(1− p1)

log(1− p2)

)))

Now recall that α < 1/2 and p1 < p2. The result above then shows that: (a) the error rate under an
(optimal) fixed threshold can grow arbitrarily larger than the error rate under SNR as the penalty for
delay shrinks to zero and (b) the rate at which this gap grows itself scales with the difference in the
nominal firing rates of the neurons under consideration. This provides insight into the relative merits
of using a scheme like SNR in lieu of existing reset proposals: resets under SNR detect changes in
the firing rate of a neuron faster and more accurately; this matters particularly in situations where
there is wide disparity in the nominal firing rates of neurons across the network.

3 EXPERIMENTS

We evaluate the efficacy and robustness of SNR on a series of benchmark problems from the contin-
ual learning literature, measuring regret with respect to prediction accuracy l(y, y′) = 1{y ̸= y′}.
As an overview, we will seek to make the following points:

Inactive neurons are an important correlate of plasticity loss: This is true across several archi-
tectures: vanilla MLPs, CNNs and transformers.
Lower average loss: Across a broad set of problems/ architectures from the literature, SNR consis-
tently achieves lower average loss than competing algorithms.
No consistent second-best competitor: Among competing algorithms, none emerge as consistently
second best to SNR.
Robustness to hyper-parameters: The performance of SNR is robust to the choice of its single
hyper parameter (the rejection percentile threshold). This is less so for competing algorithms.
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3.1 EXPERIMENTAL SETUP

Each problem consists of tasks T1, T2, . . . , TN , each of which contains training examples in X ×Y .
A network is trained for a fixed number of epochs per task to minimize cross-entropy loss. We
perform an initial hyperparameter sweep over 5 seeds to determine the optimal choice of hyperpa-
rameters (see Appendix C). For each algorithm and problem, we select the hyperparameters that
attain the lowest average loss and repeat the experiment on 5 new random seeds. A random seed
determines the network’s parameter initialization, the generation of tasks, and any randomness in
the algorithms evaluated. We evaluate both SGD and Adam as the base optimization algorithm, as
earlier literature has argued that Adam can be less performant than SGD in some continual learning
settings (Dohare et al., 2023; Ashley et al., 2021). We evaluate on the following problems:

Permuted MNIST (PM) (Goodfellow et al., 2013; Dohare et al., 2021; Kumar et al., 2023b): A
subset of 10000 image-label pairs from the MNIST dataset are sampled for an experiment. A task
consists of a random permutation applied to each of the 10000 images. The network is presented
with 2400 tasks appearing in consecutive order. Each task consists of a single epoch and the network
receives data in batches of size 16.
Random Label MNIST (RM) (Kumar et al., 2023b; Lyle et al., 2023): A subset of 1200 images
from the MNIST dataset are sampled for an experiment. An experiment consists of 100 tasks, where
each tasks is a random assignment of labels, consisting of 10 classes, to the 1200 images. A network
is trained for 400 epochs on each task with a batch size 16.
Random Label CIFAR (RC) (Kumar et al., 2023b; Lyle et al., 2023): A subset of 128 images
from the CIFAR-10 dataset are sampled for an experiment. An experiment consists of 50 tasks,
where each tasks is a random assignment of labels, consisting of 10 classes, to the 128 images. An
agent is trained for 400 epochs on each task with a batch size 16.
Continual Imagenet (CI) (Dohare et al., 2023; Kumar et al., 2023b): An experiment consists
of all 1000 classes of images from the ImageNet-32 dataset (Chrabaszcz et al., 2017) containing
600 images from each class. Each task is a binary classification problem between two of the 1000
classes, selected at random. The experiment consists of 500 tasks and each class occurs in exactly
one task. Each task consists of 1200 images, 600 from each class, and the network is trained for 10
epochs with a batch size of 100.
Permuted Shakespeare (PS): We propose this problem to facilitate studying the transformer ar-
chitecture in analogy to the MNIST experiments. An experiment consists of 32768 tokens of text
from Shakespeare’s Tempest. For any task, we take a random permutation of the vocabulary of the
Tempest and apply it to the text. The network is presented with 500 tasks. Each task consists of 100
epochs and the network receives data in batches of size 8 with a context widow of width 128. We
evaluate over 9 seeds.

This experimental setup, for all but Permuted Shakespeare, follows that of (Kumar et al., 2023b),
with the exceptions of Permuted MNIST which has its task count increased from 500 to 2400,
Random Label MNIST which has its task count increased from 50 to 100, and Random Label CIFAR
which has its dataset reduced from 1200 to 128 images. Lyle et al. (2023) consider variants of the
Random Label MNIST and CIFAR problems by framing them as MDP environments for DQN
agents. During training, the DQN agents are periodically paused to assess their plasticity by training
them on separate, randomly generated regression tasks using the same image datasets.

3.1.1 ALGORITHMS AND ARCHITETCURES

Our baseline in all problems consist simply of using SGD or Adam as the optimizer with no further
intervention. We then consider several interventions to mitigate plasticity loss. First, we consider
algorithms that employ an explicit reset of neurons: these include SNR, Continual Backprop (CBP)
(Dohare et al., 2021), and ReDO (Sokar et al., 2023). Among algorithms that attempt to use reg-
ularization, we consider vanilla L2 regularization, L2 Init (Kumar et al., 2023b), and Shrink and
Perturb (Ash & Adams, 2020). Finally, as a potential architectural modification we consider the use
of Layer Normalization (Ba et al., 2016).

We utilize the following network architectures:
MLP: For Permuted MNIST and Random Label MNIST we use an MLP identical to that in Kumar
et al. (2023b) which in turn is a slight modification to that in Dohare et al. (2023).
CNN: For Random Label CIFAR and Continual ImageNet we use a CNN architectures identical to

6



Published as a conference paper at ICLR 2025

that in Kumar et al. (2023b) which in turn is a slight modification to that in Dohare et al. (2023).
Transformer: We use a decoder model with a single layer consisting of 2 heads, dimension 16 for
each head, and with 256 neurons in the feed forward layer with ReLU activations. We deploy this
architecture on the Permuted Shakespeare problem using the GPT-2 BPE tokenizer (limited to the
set of unique tokens present in the sampled text).

3.2 RESULTS AND DISCUSSION

We separately discuss the results for the first four problems (PM, RM, RC, CI) followed by Per-
muted Shakespeare; we observe additional phenomena in the latter experiment which merit separate
discussion.

Optimizer SGD Adam
Algorithm PM RM RC CI PM RM RC CI
No Intv. 0.71 0.11 0.18 0.78 0.64 0.11 0.15 0.58
SNR 0.85 0.97 0.99 0.89 0.88 0.98 0.98 0.85
CBP 0.84 0.95 0.96 0.84 0.88 0.95 0.33 0.82
ReDO 0.83 0.72 0.98 0.87 0.85 0.67 0.74 0.80
L2 Reg. 0.82 0.80 0.95 0.83 0.88 0.95 0.97 0.80
L2 Init 0.83 0.91 0.97 0.83 0.88 0.96 0.98 0.83
S&P 0.83 0.92 0.97 0.85 0.88 0.96 0.97 0.81
Layer Norm. 0.69 0.14 0.96 0.82 0.66 0.11 0.96 0.58

Table 1: Average accuracy on the last 10% of tasks on the benchmark continual learning problems
over 5 seeds. Standard deviations are provided in the extended Table 6.

Table 1 shows that across all four problems (PM, RM, RC, CI) and both SGD and Adam, SNR
consistently attains the largest average accuracy on the final 10% of tasks. For each competitor al-
gorithm there is at least one problem on which SNR attains superior accuracy by at least 5 percentage
points with SGD and at least 2 percentage points with Adam. We also see that there is no consistent
second-best algorithm with the SGD optimizer while L2 Init is consistently the second-best with the
Adam optimizer.

Another notable property of SNR is its robustness to the choice of rejection percentile threshold. In
contrast, its competitors are not robust to the choice of their hyperparemter(s). On all but RM with
SGD, SNR experiences a decrease of at most 2 percentage points in average accuracy when varying
its rejection percentile threshold across the range of optimal thresholds found across experiments.
On the other hand, increasing the hyperparameter strength by a single order of magnitude, as is
common in a hyperparameter sweep, from the optimal value for L2 Init, S&P, and CBP results in a
decrease in average accuracy by at least 72 percentage points. See Appendix C for detailed tables.

Next, we turn our attention to the Permuted Shakespeare problem. For the no intervention network
with Adam, we see dramatic plasticity loss, as the average loss increases from about 0.15 on the
first few tasks to 3.0242 on the last 50 tasks; see Figure 2. In Figure 4 and Figure 3 we see that
this plasticity loss is correlated with increasing weight norms in the self-attention and feedforward
layers, persistent neuron inactivity, and a collapse in the entropy of the self-attention probabilities.
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Figure 2: Cumulative average of the loss measured on the final epoch of each task on the Permuted
Shakespeare problem. Right panel zooms in to L2 and SNR+L2
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Algorithm All Tasks First 50 Tasks Last 50 Tasks
L2 0.2762 (0.0309) 0.1560 (0.0236) 0.3101 (0.0425)
SNR+L2 0.2177 (0.0196) 0.1370 (0.0169) 0.2551 (0.0454)
No Intv. 2.7397 (0.0140) 1.8164 (0.0295) 3.0147 (0.0250)
L2 Init 1.5052 (0.0437) 1.2931 (0.0486) 1.5262 (0.0420)
SNR 2.6872 (0.0222) 1.7338 (0.0295) 3.0242 (0.0408)
CBP 2.4922 (0.0171) 1.3732 (0.0234) 2.9410 (0.0188)
L2* 0.1506 (0.0279) 0.1874 (0.0348) 0.1092 (0.0429)
SNR+L2* 0.1402 (0.0246) 0.1549 (0.0107) 0.0909 (0.0177)
ReDO 2.3258 (0.0356) 1.3689 (0.0686) 2.8119 (0.0373)

Table 2: Average loss measured on the final epoch of each task with standard deviations over 9
seeds on the Permuted Shakespeare problem. Note, L2* denotes L2 regularization applied only to
the attention weights.

We see that resets are by themselves insufficient in mitigating plasticity loss, providing at most a
marginal improvement over no intervention. This is unsurprising since neurons are only present
in the feedforward layers, unlike the MLP and CNN architectures in the earlier experiments. As
such, regularization appears necessary and we see that, over the last 50 tasks, L2 regularization
attains an average loss of 0.3101 in contrast to 3.0147 and 3.0242 for no intervention and SNR.
This improvement in performance coincides with stable weight norms and non-vanishing average
entropy of self-attention probabilities for L2 regularization. In contrast to the earlier problems, L2
Init fares worse than L2 regularization and experiences substantial loss of plasticity, although to a
lesser extent than the no intervention network.

While L2 regularization addresses weight blowup, neuron death remains present; see Figure 3. The
average loss with L2 increases from 0.1560, over the first 50 tasks, to 0.3101, over the final 50 tasks.
This prompts us to consider using SNR in addition to L2 regularization. This largely eliminates
neuron death (see the right panel of Figure 3), while stabilizing weight norms and maintaining
entropy of self-attention probabilities, providing the lowest loss (0.2551) over the final 50 tasks. As
an ablation, we evaluate performance when applying L2 regularization only to the attention weights,
which we denote by L2* and SNR+L2* in Table 2.
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3.2.1 SCALED PERMUTED SHAKESPEARE

While the scale of our Permuted Shakespeare problem serves as a simple benchmark problem for
evaluating a series of continual learning algorithms and hyperparameter choices for language mod-
els, it is also of interest to investigate the effect of model and dataset scale on plasticity. To this
end, we scale the number of non-embedding weights in our transformer network by a factor of
N = 16, increasing the number of heads to 8 and number of neurons to 1024. In line with scaling
laws (Kaplan et al., 2020), we increase the size of our dataset by a factor of 160.74, specifically to
254’976 tokens per task. The rest of the problem setup remains unchanged; we train the network for
100 epochs on 500 tasks in sequence. To facilitate the larger token count, we train on a sample of
254’976 tokens worth of text from the complete set of plays by William Shakespeare.

We limit our experiment to 4 random seeds, scales 1 and 16, evaluating only SNR+L2 and L2 with
hyperparameters η = 0.05 and λ = 10−4, presenting our results in Table 3. We first note that
as model and dataset size grow, the gap in average loss between L2-regularization and SNR+L2-
regularization grows substantially. Simultaneously, we see a dramatic increase in the proportion of
inactive neurons with L2-regularization. At any time step, on average 0.06% of neurons are inactive
at scale N = 1 while 32.9% are inactive at scale N = 16. These results suggest that resets can
play a critical role in maintaining plasticity in large-scale language models. See Appendix A which
shows a scale 256 experiment, but run only up to 50 tasks, showing similar merits.

Algorithm Loss (All Tasks) Loss (Last 50 Tasks) Dead Neuron Rate
L2 - Scale 1 0.159 (0.025) 0.152 (0.016) 0.06%
SNR+L2 - Scale 1 0.154 (0.008) 0.141 (0.031) 0.00%
L2 - Scale 16 0.377 (0.016) 0.410 (0.052) 32.9%
SNR+L2 - Scale 16 0.324 (0.028) 0.332 (0.073) 1.41 · 10−6%

Table 3: Average loss on the final epoch of each task for the scaled Permuted Shakespeare experi-
ments, with means and standard deviations reported over 4 seeds.

3.2.2 GENERALIZATION

Lee et al. (2024) recently propose separating training loss from test loss in studying plasticity; the
extant literature and the present work focuses largely on measuring training loss on each task. As
a complement, we briefly consider measuring test loss on a holdout set for each task. We consider
three setups: first, we consider the PM problem, and measure test loss on a set of 10000 image label-
pairs for each task; we annotate this setup PM-G1. Our second setup is a modification of PM-G1:
in each task we add noise to the labels by randomly re-labeling a fraction of the training images.
We decrease the fraction of images with noisy labels from 50% on the first task to 0 on the last; we
annotate this task PM-G2. Finally in analogy to PM-G2, we consider a variant of the RC problem
(RC-G1) where we decay the fraction of random labels from 50% to 0 linearly across tasks. PM-G2
and RC-G1 are analogous to the setup in Lee et al. (2024).

Detailed results of these experiments are presented in Appendix A.2; we draw the following con-
clusions: first, SNR displays similar relative merits to competing algorithms as in our main body
of experiments on training loss. Second, through a careful study of variants of the setup in PM-G2
where we alter the number of passes through the dataset relevant to each task, we point out an im-
portant issue that requires careful attention if one is to study test loss: specifically, confounding the
effects of overfitting with plasticity loss.

4 THEORETICAL ANALYSIS OF LEARNING A SINGLE RELU

One common hypothesis that seeks to explain plasticity loss is that the network weights obtained
from minimizing loss over some task yield poor initializations for a subsequent task; these initial-
izations effectively lead to poor local minima. This section attempts to make this effect transparent
through the analysis of the simplest non-trivial task: learning a single ReLU. Vardi et al. (2021)
have already established that for random initializations a ReLU can be efficiently learned. Here we
ask what happens when the initialization is picked adversarially; one can think of this adversarial
initialization as corresponding to optimal weights for an earlier ReLU learning task.
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Theorem 4.1. [Informal restatement of Theorems E.2 and E.1] There exists a general class of target
ReLUs, a distribution over example inputs, and a distribution over initial weights for which:

• Gradient descent with L2 Init or L2 regularization fail to learn the target ReLU with positive
probability with respect to the distribution over initial weights. Specifically the average
expected MSE exceeds a positive constant as the number of training examples T grows
with a probability bounded from below by a positive constant.

• Gradient descent with oracle resets achieves an average expected MSE of O(1/T ) with
probability one.

The oracle resets in the second result above effectively know precisely whether or not a neuron will
or will not fire over the input distribution and are in this sense oracular. Reset methods must come as
close as possible to mimicking such an oracle; Propositions 2.1 and 2.2 make the case for why SNR
might be a good such candidate and why competing reset proposals may fall short. See Appendix E
for a formal setup, statement of results, and proofs.

5 DISCUSSION AND LIMITATIONS

A common explanation for plasticity loss is that the network weights obtained from minimizing
loss over some task yield poor initializations for a subsequent task – this explanation continues to
motivate the vast majority of algorithms that attempt to combat plasticity loss. Specifically, regu-
larization based algorithms can be viewed as regularizing towards a ‘good’ initial set of weights,
whereas reset based algorithms can be viewed as explicitly reinitializing weights to good random
initializations.

Theoretical Motivation: Our theoretical development showed that regularization methods them-
selves are insufficient at combatting the plasticity loss problem, at least in the case of learning Re-
LUs (Theorem 4.1). Further we showed that existing proposals to detect whether it was appropriate
to reset a ReLU (based on ad hoc notions of a neuron’s utility) could have high type 1 error rates
relative to an optimal resetting mechanism (Proposition 2.2). SNR was designed to minimize the
error rate in solving this detection problem (Proposition 2.1).

SOTA Performance: Across a range of experiments we see that neuron inactivity is an important
correlate of plasticity loss, and that SNR consistently outperforms other reset based methods as well
as regularization methods (Table 1, Figure 2). We also observed that SNR was robust to its hyper-
parameters while the adhoc utility schemes employed by other reset methods tended to make them
somewhat brittle (Appendix C). Finally, the extant literature has focused on measuring plasticity loss
through the lens of training loss, but it is also natural to ask about test loss. We see that SNR enjoys
similar relative merits in this context as well (Table 5), but one has to be careful to not confound
issues of overfitting with plasticity loss (Figure 6).

Attention Menchanisms: Whereas neuron death is an important correlate of plasticity loss, in the
case of language models, a crucial component of the architecture – the attention mechanism – does
not involve neurons so that the notion of resetting is irrelevant to that component. We have shown
that plasticity loss occurs nonetheless and that it is associated with a collapse in the entropy of the
attention layer along with neuron death in the feedforward layers (Figures 3 and 4). As such, we
see that combining our resets along with L2 regularization of the attention mechanism is important
to preserve plasticity (Table 2). Language models also give us a natural substrate to consider the
plasticity loss phenomenon vis-a-vis scaling laws, and we see similar relative merits across several
orders of magnitude of model scales (Table 3, Appendix 4).

Limitations: We recognize a few limitations in the present work. First, whereas we have shown the
plasticity loss phenomenon over several orders of model scale our largest models have up to 5M pa-
rameters. This is large in the context of the literature on plasticity loss but small in a practical sense.
We believe that overcoming this requires understanding ways of exploring this phenomenon without
the brute force effort of feeding a model a large sequence of tasks (which is fundamentally serial and
hard to accelerate). A second limitation is the theoretical characterization of the phenomenon itself;
the approach in the literature has been largely phenomenological – fixing conjectured root causes
for what is really an increase in dynamic regret over time. While Section 4 took a first step, future
work ought to connect the plasticity loss phenomenon tightly with the optimization landscape.
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A ADDITIONAL EXPERIMENTAL RESULTS

A.1 EVEN LARGER SCALE EXPERIMENT FOR PERMUTED SHAKESPEARE

We increase the scale further for the Permuted Shakespeare experiment from our original model by
a factor of 256, resulting in a model with 5.1 million non-embedding parameters; results are in Table
4. In accordance with scaling laws, we simultaneously increase the number of tokens or examples
per task by a factors of 2560.74, resulting in 1.9 million tokens or 15’500 training examples, with a
context window of 128, for the 256-scale model. Due to computational constraints, we reduce the
number of tasks from 500 to 50, but keep a training regime of 100 epochs per task. At the largest
scale, over the 50 tasks, our model is trained for 100 epochs over 99 million tokens or 775’000
distinct 128-token-long training examples.

The scale of our largest model is comparable to the scale of the largest transformers considered in
recent literature on plasticity loss, namely ViT Tiny (5 million parameters) in Lee et al. (2024). The
largest dataset on which Lee et al. (2024) train on is the Tiny Imagenet dataset consisting of 100’000
training examples, on which models are trained for 100 epochs; our largest experiment consists of
775’000 training examples. It is important to consider the scale of datasets used in continual learning
experiments as the phenomenon of plasticity loss has been shown to be correlated with the amount
of data on which a network trains (Kumar et al., 2023a; Dohare et al., 2021).

Algorithm Train Loss at Scale 256
SNR+L2 0.4576 (0.0017)
L2 0.4681 (0.0025)

Table 4: Average training loss on the final epoch over all 50 tasks of the 256-scale Permuted Shake-
speare problem with standard deviations reported for 5 random seeds.
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Figure 5: Cumulative average test accuracy for PM-G1 and PM-G2 experiments.

It is important to note that relative to Table 3 where we show plasticity loss for 500 tasks, the
above experiment has only been run to 50 tasks (due to computational budget constraints) and
already shows a gap between SNR+L2 and L2.

A.2 GENERALIZATION RESULTS

Table 5 shows test loss on the last 10% of tasks for PM-G1, PM-G2 and RC-G1. Figure 5 shows
the test accuracy for PM-G1 and PM-G2. We see that SNR enjoys similar relative merits to its
competitors in PM-G1 and PM-G2. For RC-G1, it appears that there is no plasticity loss and as such
all of the different algorithms perform similarly. Notice that this is not contrary to our observations
in RC – there the labels across tasks were entirely unrelated.

We consider next a slight tweak on RC-G1. Specifically, each task in RC-G1 consists of 16 epochs;
what happens if we do more? The bottom three curves of Figure 6 show the results of doing 100
epochs for each task. We see here that test loss for no intervention and SNR begin to suffer. As it
turns out this is misleading – specifically, we see that the test accuracy for all three algorithms is
significantly below test accuracy when one does only 16 epochs (as reported in Table 5). That is,
the decay in test performance is likely attributable to overfitting in each task, and while L2 overfits
as well, it is unsurprisingly more resilient. Put a different way, this overfitting can be controlled
by the usual tools to combat overfitting. The top three curves of Figure 6 show that SNR performs
equivalently to L2 showing that early stopping would accomplish this comfortably in this context.

Algorithm PM-G1 PM-G2 RC-G1
No Intv. 0.8999 (0.0041) 0.8931 (0.0013) 0.5526 (0.0034)
L2 Init 0.9320 (0.0037) 0.9284 (0.0032) N/A
L2 0.9297 (0.0034) 0.9258 (0.0032) 0.5651 (0.0023)
S&P 0.9313 (0.0033) 0.9281 (0.0027) N/A
ReDO 0.9086 (0.0028) 0.9083 (0.0021) N/A
SNR 0.9318 (0.0001) 0.9325 (0.0029) 0.5650 (0.0013)

Table 5: Test accuracy over the last 10% of tasks (mean and standard deviation) for PM-G1, PM-G2,
and RC-G1.

B COMPLETE RESULTS FOR BENCHMARK PROBLEMS

To maintain brevity in the main body of the paper, we include here the complete results for the
benchmark problems PM, RC, RM, and CI which include both the mean and standard deviation of
terminal task accuracies over random seeds.
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Figure 6: Test accuracy for the RC-G1 experiments evaluated with 16 and 100 epochs per task.

Optimizer SGD
Algorithm PM RM RC CI
No Intv. 0.710 (0.007) 0.113(0.004) 0.180 (0.011) 0.784 (0.019)
SNR 0.851(0.002) 0.975 (0.001) 0.987 (0.002) 0.888 (0.010)
CBP 0.844(0.002) 0.951 (0.007) 0.961 (0.011) 0.840 (0.015)
ReDO 0.831 (0.013) 0.716 (0.024) 0.981 (0.003) 0.869 (0.038)
L2 Reg. 0.818 (0.001) 0.803 (0.011) 0.952 (0.006) 0.833 (0.011)
L2 Init 0.829 (0.001) 0.913 (0.001) 0.966 (0.002) 0.832 (0.010)
S&P 0.826 (0.002) 0.920 (0.009) 0.971 (0.004) 0.853 (0.006)
Layer Norm. 0.687 (0.009) 0.143 (0.015) 0.959 (0.005) 0.819 (0.009)
Optimizer Adam
Algorithm PM RM RC CI
No Intv. 0.641 (0.007) 0.114 (0.005) 0.151 (0.005) 0.581 (0.081)
SNR 0.889(0.001) 0.982(0.001) 0.976 (0.002) 0.847 (0.005)
CBP 0.876 (0.001) 0.948 (0.003) 0.331 (0.312) 0.818 (0.005)
ReDO 0.846 (0.002) 0.671 (0.021) 0.744 (0.131) 0.803 (0.063)
L2 Reg. 0.876(0.002) 0.948 (0.002) 0.967 (0.011) 0.803 (0.009)
L2 Init 0.883 (0.002) 0.961 (0.003) 0.976 (0.002) 0.827 (0.008)
S&P 0.876 (0.002) 0.955 (0.006) 0.971 (0.005) 0.814 (0.005)
Layer Norm. 0.662 (0.001) 0.113 (0.005) 0.955 (0.005) 0.651 (0.053)

Table 6: Average accuracy on the last 10% of tasks on the benchmark continual learning problems
with standard deviations over 5 seeds.
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C ADDITIONAL EXPERIMENTAL DETAILS AND HYPERPARAMETER SWEEP

With SGD we train with learning rate 10−2 on all problems except Random Label MNIST, for which
we train with learning rate 10−1. With Adam we train with learning rate 10−3 on all problems,
including Permuted Shakespeare and we use the standard parameters of β1 = 0.9, β2 = 0.999, and
ϵ = 10−7. For Permuted Shakespeare we train our networks solely with Adam. The learning rates
were selected after an initial hyperparameter sweep.

For each algorithm we vary its hyperparameter(s) by an appropriate constant over 7 choices, effec-
tively varying the hyperparameters over a log scale. With the exception of the Permuted Shakespeare
experiment, we limit over hyperparameter search to 5 choices. In Table 7 we provide the hyperpa-
rameter sweep for the 4 benchmark problems. CBP’s replacement rate r is to be interpreted as one
replacement per layer every r−1 training examples, as presented in Dohare et al. (2024). ReDO’s
reset frequency r determines the frequency of resets in units of tasks, as implemented and evaluated
in Kumar et al. (2023b).

Hyperparameter Strength
Algorithm 0 1 2 3 4 5 6
L2 Reg. (λ) 10−6 10−5 10−4 10−3 10−2 10−1 100

L2 Init (λ) 10−6 10−5 10−4 10−3 10−2 10−1 100

S&P (1-p) 10−8 10−7 10−6 10−5 10−4 10−3 10−2

S&P (σ) 10−6 10−5 10−4 10−3 10−2 10−1 100

CBP (r) 10−7 10−6 10−5 10−4 10−3 10−2 10−1

ReDO (τ) 0 0.01 0.02 0.04 0.08 0.16 0.32
ReDO (r) 64 32 16 8 4 2 1
SNR (η) 0.08 0.04 0.02 0.01 0.005 0.0025 0.00125

Table 7: Hyperparameter sweep for the Permuted MNIST (PM), Random Label MNIST (RM),
Random Label CIFAR (RC), and Continual ImageNet (CI) problems.

Hyperparameter Strength
Algorithm 0 1 2 3 4
L2 Reg. (λ) 10−6 10−5 10−4 10−3 10−2

L2 Init (λ) 10−6 10−5 10−4 10−3 10−2

SNR (η) 0.1 0.05 0.03 0.01 0.001
SNR + L2 Reg (η) 0.1 0.05 0.03 0.01 0.001

Table 8: Hyperparameter sweep for the Permuted Shakespeare problem. For the combination of
SNR and L2 regularization we use the regularization strength of 10−4, the best performing regular-
ization strength for L2 regularization, and vary the rejection percentile threshold η

.

Hyperparameter Strength
Algorithm 0 1 2 3 4
L2 Reg. (λ) 1.284 0.883 0.348 0.853 4.269

(0.037) (0.059) (0.093) (0.061) (0.013)
L2 Init (λ) 1.791 1.481 1.641 2.429 5.598

(0.056) (0.050) (0.067) (0.124) (0.030)
SNR (η) 3.034 3.024 3.012 3.027 3.025

(0.022) (0.041) (0.025) (0.029) (0.045)
SNR + L2 Reg (η) 0.315 0.276 0.325 0.293 0.269

(0.084) (0.078) (0.068) (0.065) (0.025)

Table 9: Average loss of the final epoch of each task in Permuted Shakespeare, averaged over the
final 50 tasks, reported as mean (standard deviation) over 5 random seeds.
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Figure 7: Permuted MNIST hyperparameter sweep results over 5 seeds.
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Figure 8: Random LabeL MNIST hyperparameter sweep result over 5 seeds.
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Figure 9: Random Label CIFAR hyperparameter sweep results over 5 seeds.
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Figure 10: Continual ImageNet hyperparameter sweep results over 5 seeds.
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Hyperparameter Strength Log Scale
Algorithm 0 1 2 3 4 5 6
SNR (η) 0.849 0.849 0.848 0.847 0.850 0.848 0.847

(0.002) (0.003) (0.003) (0.004) (0.002) (0.002) (0.002)
L2 Init (λ) 0.716 0.731 0.790 0.827 0.824 0.758 0.288

(0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.017)
L2 Reg. (λ) 0.713 0.729 0.787 0.816 0.790 0.110 0.104

(0.002) (0.002) (0.001) (0.002) (0.003) (0.003) (0.002)
S&P (1− p) 0.709 0.716 0.770 0.826 0.804 0.615 0.106

(0.001) (0.002) (0.001) (0.002) (0.004) (0.001) (0.003)
S&P (σ) 0.823 0.823 0.825 0.826 0.784 0.110 0.110

(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
ReDO (τ ) 0.710 0.832 0.817 0.742 0.743 0.743 0.743

(0.007) (0.001) (0.011) (0.018) (0.018) (0.018) (0.018)
ReDO (r) 0.815 0.824 0.830 0.832 0.819 0.808 0.778

(0.004) (0.002) (0.001) (0.001) (0.005) (0.006) (0.013)
CBP (r) 0.726 0.763 0.823 0.843 0.844 0.648 0.655

(0.006) (0.002) (0.002) (0.001) (0.002) (0.000) (0.000)
Layer Norm 0.689 0.689 0.689 0.689 0.689 0.689 0.689

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
SGD 0.710 0.710 0.710 0.710 0.710 0.710 0.710

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Table 10: Performance on Permuted MNIST with different hyperparameters reported as mean (stan-
dard deviation).

Hyperparameter Strength Log Scale
Algorithm 0 1 2 3 4 5 6
SNR (η) 0.887 0.885 0.880 0.876 0.872 0.867 0.872

(0.002) (0.001) (0.002) (0.002) (0.001) (0.002) (0.012)
L2 Init (λ) 0.790 0.837 0.864 0.884 0.870 0.784 0.276

(0.001) (0.002) (0.002) (0.002) (0.002) (0.001) (0.008)
L2 Reg. (λ) 0.792 0.837 0.858 0.878 0.859 0.365 0.103

(0.002) (0.002) (0.002) (0.002) (0.004) (0.008) (0.002)
S&P (1− p) 0.638 0.858 0.877 0.876 0.768 0.105 0.102

(0.005) (0.002) (0.002) (0.002) (0.001) (0.003) (0.001)
S&P (σ) 0.874 0.875 0.875 0.877 0.877 0.583 0.115

(0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.001)
ReDO (τ ) 0.636 0.846 0.847 0.847 0.847 0.847 0.847

(0.009) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)
ReDO (r) 0.830 0.837 0.842 0.845 0.847 0.841 0.825

(0.004) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001)
CBP (r) 0.723 0.773 0.817 0.857 0.876 0.733 0.720

(0.012) (0.004) (0.002) (0.002) (0.002) (0.001) (0.008)
Layer Norm 0.661 0.661 0.661 0.661 0.661 0.661 0.661

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Adam 0.636 0.636 0.636 0.636 0.636 0.636 0.636

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

Table 11: Performance on Permuted MNIST with different hyperparameters reported as mean (stan-
dard deviation).
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Hyperparameter Strength Log Scale
Algorithm 0 1 2 3 4 5 6
SNR (η) 0.975 0.975 0.974 0.974 0.974 0.973 0.973

(0.001) (0.001) (0.000) (0.000) (0.001) (0.001) (0.001)
L2 Init (λ) 0.115 0.114 0.181 0.881 0.912 0.191 0.101

(0.006) (0.009) (0.027) (0.017) (0.006) (0.008) (0.010)
L2 Reg. (λ) 0.115 0.115 0.115 0.126 0.801 0.113 0.108

(0.006) (0.006) (0.006) (0.013) (0.010) (0.007) (0.009)
S&P (1− p) 0.112 0.161 0.138 0.550 0.924 0.114 0.109

(0.008) (0.009) (0.008) (0.023) (0.003) (0.006) (0.009)
S&P (σ) 0.917 0.913 0.910 0.919 0.924 0.181 0.116

(0.005) (0.004) (0.007) (0.004) (0.003) (0.005) (0.006)
ReDO (τ ) 0.115 0.600 0.642 0.719 0.705 0.705 0.705

(0.006) (0.023) (0.030) (0.021) (0.021) (0.021) (0.021)
ReDO (r) 0.111 0.111 0.109 0.116 0.117 0.233 0.719

(0.008) (0.008) (0.008) (0.019) (0.019) (0.022) (0.021)
CBP (r) 0.389 0.931 0.945 0.953 0.929 0.115 0.115

(0.031) (0.051) (0.012) (0.005) (0.002) (0.006) (0.006)
Layer Norm 0.145 0.145 0.145 0.145 0.145 0.145 0.145

(0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013)
SGD 0.115 0.115 0.115 0.115 0.115 0.115 0.115

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Table 12: Performance on Random Label MNIST with different hyperparameters reported as mean
(standard deviation).

Hyperparameter Strength Log Scale
Algorithm 0 1 2 3 4 5 6
SNR (η) 0.979 0.981 0.979 0.978 0.976 0.969 0.966

(0.001) (0.001) (0.002) (0.001) (0.002) (0.001) (0.003)
L2 Init (λ) 0.312 0.929 0.958 0.960 0.905 0.114 0.098

(0.050) (0.011) (0.007) (0.001) (0.003) (0.004) (0.009)
L2 Reg. (λ) 0.243 0.918 0.946 0.944 0.506 0.113 0.107

(0.038) (0.008) (0.009) (0.004) (0.043) (0.007) (0.009)
S&P (1− p) 0.115 0.955 0.946 0.931 0.114 0.109 0.102

(0.006) (0.004) (0.008) (0.005) (0.006) (0.009) (0.004)
S&P (σ) 0.945 0.941 0.942 0.943 0.955 0.243 0.121

(0.009) (0.009) (0.007) (0.013) (0.004) (0.015) (0.006)
ReDO (τ ) 0.115 0.306 0.381 0.553 0.670 0.588 0.588

(0.006) (0.017) (0.023) (0.028) (0.019) (0.031) (0.031)
ReDO (r) 0.115 0.115 0.120 0.109 0.112 0.122 0.670

(0.006) (0.006) (0.009) (0.008) (0.008) (0.028) (0.019)
CBP (r) 0.124 0.199 0.482 0.922 0.949 0.115 0.115

(0.030) (0.055) (0.077) (0.007) (0.004) (0.006) (0.006)
Layer Norm 0.115 0.115 0.115 0.115 0.115 0.115 0.115

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Adam 0.115 0.115 0.115 0.115 0.115 0.115 0.115

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Table 13: Performance on Random Label MNIST with different hyperparameters reported as mean
(standard deviation).
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Hyperparameter Strength Log Scale
Algorithm 0 1 2 3 4 5 6
SNR (η) 0.887 0.888 0.893 0.886 0.886 0.886 0.886

(0.009) (0.007) (0.006) (0.004) (0.004) (0.004) (0.004)
L2 Init (λ) 0.781 0.780 0.827 0.831 0.722 0.646 0.573

(0.028) (0.016) (0.011) (0.008) (0.014) (0.014) (0.018)
L2 Reg. (λ) 0.775 0.800 0.833 0.819 0.488 0.488 0.491

(0.010) (0.013) (0.012) (0.007) (0.000) (0.000) (0.001)
S&P (1− p) 0.778 0.784 0.752 0.815 0.853 0.488 0.488

(0.023) (0.024) (0.073) (0.010) (0.008) (0.000) (0.000)
S&P (σ) 0.848 0.839 0.849 0.853 0.844 0.497 0.500

(0.002) (0.010) (0.008) (0.008) (0.010) (0.005) (0.000)
ReDO (τ ) 0.785 0.856 0.870 0.843 0.721 0.727 0.726

(0.024) (0.012) (0.010) (0.015) (0.041) (0.043) (0.040)
ReDO (r) 0.827 0.824 0.844 0.870 0.867 0.864 0.836

(0.027) (0.038) (0.029) (0.010) (0.016) (0.011) (0.009)
CBP (r) 0.777 0.791 0.792 0.837 0.840 0.488 0.488

(0.022) (0.016) (0.013) (0.012) (0.008) (0.000) (0.000)
Layer Norm 0.818 0.818 0.818 0.818 0.818 0.818 0.818

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
SGD 0.785 0.785 0.785 0.785 0.785 0.785 0.785

(0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024)

Table 14: Performance on Continual ImageNet with different hyperparameters reported as mean
(standard deviation).

Hyperparameter Strength Log Scale
Algorithm 0 1 2 3 4 5 6
SNR (η) 0.840 0.840 0.839 0.839 0.840 0.840 0.840

(0.002) (0.005) (0.006) (0.006) (0.006) (0.006) (0.006)
L2 Init (λ) 0.703 0.767 0.814 0.826 0.819 0.757 0.640

(0.052) (0.025) (0.005) (0.009) (0.005) (0.011) (0.014)
L2 Reg. (λ) 0.767 0.791 0.802 0.797 0.749 0.492 0.492

(0.018) (0.013) (0.012) (0.009) (0.021) (0.001) (0.000)
S&P (1− p) 0.506 0.813 0.811 0.787 0.492 0.492 0.492

(0.025) (0.010) (0.008) (0.008) (0.001) (0.000) (0.000)
S&P (σ) 0.806 0.807 0.804 0.803 0.813 0.494 0.500

(0.012) (0.004) (0.011) (0.007) (0.010) (0.000) (0.001)
ReDO (τ ) 0.582 0.802 0.610 0.730 0.725 0.732 0.730

(0.075) (0.018) (0.120) (0.012) (0.016) (0.016) (0.013)
ReDO (r) 0.763 0.775 0.788 0.796 0.801 0.802 0.790

(0.033) (0.018) (0.013) (0.007) (0.008) (0.018) (0.006)
CBP (r) 0.562 0.747 0.770 0.802 0.819 0.677 0.712

(0.087) (0.032) (0.014) (0.004) (0.003) (0.092) (0.039)
Layer Norm 0.709 0.709 0.709 0.709 0.709 0.709 0.709

(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014)
Adam 0.582 0.582 0.582 0.582 0.582 0.582 0.582

(0.075) (0.075) (0.075) (0.075) (0.075) (0.075) (0.075)

Table 15: Performance on Continual ImageNet with different hyperparameters reported as mean
(standard deviation).
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Hyperparameter Strength Log Scale
Algorithm 0 1 2 3 4 5 6
SNR (η) 0.975 0.974 0.969 0.973 0.970 0.971 0.973

(0.003) (0.001) (0.006) (0.004) (0.004) (0.004) (0.002)
L2 Init (λ) 0.313 0.366 0.818 0.977 0.979 0.966 0.141

(0.076) (0.096) (0.165) (0.005) (0.003) (0.004) (0.006)
L2 Reg. (λ) 0.221 0.237 0.342 0.957 0.968 0.148 0.149

(0.049) (0.029) (0.035) (0.012) (0.002) (0.004) (0.004)
S&P (1− p) 0.148 0.391 0.837 0.972 0.147 0.149 0.147

(0.004) (0.228) (0.170) (0.002) (0.005) (0.004) (0.005)
S&P (σ) 0.971 0.972 0.971 0.967 0.966 0.570 0.148

(0.004) (0.002) (0.002) (0.009) (0.004) (0.039) (0.008)
ReDO (τ ) 0.148 0.207 0.314 0.209 0.687 0.594 0.741

(0.004) (0.115) (0.330) (0.079) (0.125) (0.089) (0.128)
ReDO (r) 0.148 0.170 0.169 0.205 0.407 0.637 0.741

(0.004) (0.044) (0.045) (0.077) (0.165) (0.155) (0.128)
CBP (r) 0.148 0.147 0.330 0.168 0.326 0.146 0.148

(0.004) (0.007) (0.302) (0.026) (0.074) (0.006) (0.004)
Layer Norm 0.958 0.958 0.958 0.958 0.958 0.958 0.958

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Adam 0.148 0.148 0.148 0.148 0.148 0.148 0.148

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Table 16: Performance on Random Label CIFAR with different hyperparameters reported as mean
(standard deviation).

Hyperparameter Strength Log Scale
Algorithm 0 1 2 3 4 5 6
SNR (η) 0.987 0.836 0.898 0.808 0.848 0.941 0.829

(0.002) (0.242) (0.112) (0.124) (0.183) (0.064) (0.173)
L2 Init (λ) 0.207 0.182 0.268 0.594 0.968 0.943 0.156

(0.040) (0.012) (0.068) (0.135) (0.004) (0.007) (0.005)
L2 Reg. (λ) 0.182 0.187 0.261 0.393 0.951 0.146 0.148

(0.012) (0.024) (0.097) (0.265) (0.005) (0.004) (0.004)
S&P (1− p) 0.155 0.158 0.165 0.341 0.973 0.145 0.148

(0.005) (0.007) (0.009) (0.081) (0.003) (0.005) (0.004)
S&P (σ) 0.951 0.960 0.963 0.965 0.973 0.185 0.100

(0.007) (0.006) (0.004) (0.003) (0.003) (0.068) (0.014)
ReDO (τ ) 0.184 0.942 0.984 0.975 0.962 0.841 0.840

(0.013) (0.054) (0.004) (0.020) (0.038) (0.039) (0.057)
ReDO (r) 0.207 0.199 0.160 0.377 0.890 0.984 0.980

(0.057) (0.067) (0.025) (0.220) (0.121) (0.004) (0.001)
CBP (r) 0.190 0.199 0.232 0.528 0.964 0.142 0.142

(0.021) (0.024) (0.058) (0.266) (0.012) (0.006) (0.006)
Layer Norm 0.958 0.958 0.958 0.958 0.958 0.958 0.958

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)
SGD 0.184 0.184 0.184 0.184 0.184 0.184 0.184

(0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013)

Table 17: Performance on Random Label CIFAR with different hyperparameters reported as mean
(standard deviation).
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D PROOFS OF PROPOSITION OF 2.1 AND 2.2

Proposition D.1 (Restatement of Proposition 2.1). Let T be the 1 − λ
p−λ percentile of a

Geometric(p) distribution. Then the optimal hypothesis test takes the form Xτ = 1{Zτ = 0}
where τ = min(s : Zs = 1) ∧ T .

Proof. We begin by assuming equal priors P(H0) = P(H1) = 1
2 . We note that for any time s, if

Zs = 1 then any optimal hypothesis test must declare Xs = 0 as Zs = 1 is impossible under H1 and
waiting to make a future declaration will incur additional cost of at least λ. Therefore, it remains for
us to derive an optimal stopping time for the collection of states {Z1 = . . . = Zs = 0 : s ∈ Z+}.
Let V (s) be the expected total future cost at time s given that we have observed Z1 = . . . = Zs = 0.
We define

πs = P(H0|Z1 = . . . = Zs = 0)

=
P(H0, Z1 = . . . = Zs = 0)

P(Z1 = . . . = Zs = 0)

=
(1− p)sP(H0)

(1− p)sP(H0) + P(H1)

=
(1− p)s

(1− p)s + 1
by P(H0) = P(H1)

If we stop at time s and make a declaration, we choose the hypothesis with higher positive probability
in order tom minimize the error probability

P(Xs = 1|H0) + P(Xs = 0|H1)

Thus, the expected cost of stopping is

Cstop(s) = min{πs, 1− πs}

We can simplify this further by noting that πs ≤ 1− πs. We note that

1

2
(1− p)s ≤ 1

2

by 1− p ∈ [0, 1]. This is equivalent to

(1− p)s ≤ 1

2
((1− p)s + 1)

by adding 1
2 (1− p)s, which in turn, is equivalent to

πs =
(1− p)s

(1− p)s + 1
≤ 1

2

Therefore, πs ≤ 1
2 ≤ 1− πs and so we have that

Cstop(s) = min{πs, 1− πs} = πs

This also implies that if we are to stop at some state {Z1 = . . . = Zs = 0}, it is optimal to declare
Xs = 1.

If we continue at time s to s+1, we incur an additional delay cost of λ, and the expected future cost
depending on whether we see a Zs+1 = 1 or Zs+1 = 0.

• With probability pπs we obserbes Zs+1, under H0, and we stop the process with Xs+1 = 0,
incurring zero error cost since Zs+1 = 1 cannot occur under H1.

• With probability (1 − p)πs + (1 − π) = 1 − pπs we observe Zs+1 = 0 and the process
continues.
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Therefore, the expected cost of continuing at time s is

Ccont(s) = λ+ (1− pπs)V (s+ 1)

Then the Bellman equation for the optimal cost-to-go function is

V (s) = min{Cstop(s), Ccont(s)}
To determine an optimal stopping time, our goal is to find smallest T for which

Cstop(T ) ≤ Ccont(T ) (1)

Assuming we stop at time T ,

V (T + 1) = Cstop(T + 1) = πT+1

Therefore,
Ccont(T ) = λ+ (1− pπs)V (T + 1) = λ+ (1− pπs)πT+1

and to establish (1) it suffices to show that

πT ≤ λ+ (1− pπT )πT+1 (2)

First, we write πT+1 in terms of πT . Under the updating rule for the posterior probability, we have
that

πT+1 − P(H0|Z1 = . . . = ZT+1 = 0)

=
P(ZT+1 = 0|H0)P(H0|Z1 = . . . = ZT = 0)

P(ZT+1 = 0|Z1 = . . . = ZT = 0)

=
(1− p)πT

P(ZT+1 = 0|H0)πT + P(ZT+1 = 0|H1)(1− πT )

=
(1− p)πT

(1− p)πT + (1− πT )

=
(1− p)πT

1− pπT

Returning to (2), we need to show that

πT ≤ λ+ (1− pπT )
(1− p)πT

1− pπT
= λ+ (1− p)πT

Simplifying the above inequality, we have that

πT ≤
λ

p

Substituting in our formula for πT , the above is equivalent to

(1− p)⊤

(1− p)⊤ + 1
≤ λ

p

which after simplification is equivalent to

(1− p)⊤ ≤
λ
p

1− λ
p

=
λ

p− λ

Let F be the CDF of the Geometric(p) distribution. Let T ∗ be the 1 − λ
p−λ percentile of the

Geometric(p) distribution. Note, since λ < p
2 then 1− λ

p−λ ∈ (0, 1) and is a valid percentile. Then
for any T ≥ T ∗ we have that

1− (1− p)⊤ = F (T )

≥ F (T ∗) by T ≥ T ∗

≥ 1− λ

p− λ
by choice of T ∗
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which is equivalent to

(1− p)⊤ ≤ λ

p− λ

and therefore, the optimal hypothesis test is to declare XT = 1 for any T ≥ T ∗ if Z1 = . . . = ZT =
0. Hence, the optimal hypothesis takes the form of

Xτ = 1{Zτ = 0} where τ = min(s : Zs = 1) ∧ T ∗

Proposition D.2. Restatement of Proposition 2.2] The ratio of total error rate with a fixed threshold
r∗ to that under SNR scales like

Ω

(
exp

(
log(α(1− α)−1)

(
−1

2
+

1

2

log(1− p1)

log(1− p2)

)))
Proof. For notational convenience, define ᾱ = α(1 − α)−1. Notice that by Proposition 2.1, under
SNR, neuron i, (I = 1, 2), is reset if it inactive for any longer that time T̄ = log(ᾱ))/ log(1 − pi).
Consequently, the expected delay penalty, E[τ |H0] + E[τ |H1] for neuron i, is simply

log(ᾱ)

log(1− pi)
+

1

pi
(1− ᾱ)

Letting the optimal fixed threshold be r∗, we must have that the expected total delay across both
neurons under this fixed threshold is at least 2r∗. This total expected delay can be no larger than that
under SNR. Thus,

2r∗ ≤ log(ᾱ)

(
1

log(1− p1)
+

1

log(1− p2)

)
+ (1− ᾱ)

(
1

p1
+

1

p2

)
But the sum of the error rates across the two neurons with the fixed threshold r∗ is at least (1 −
p1)

r∗ + ᾱ, while the total error rate under SNR is precisely ᾱ. Dividing these two quantities and
employing the upper bound derived on r∗ then yields the result.

E LEARNING A SINGLE RELU

In this section we prove Theorem 4.1.

E.1 PRELIMINARIES

We aim to learn a single ReLU-activated neuron with bias, or equivalently, the mapping fv : R2 →
R+ which we define as

fv(x) = σ(v⊤x) =

{
v⊤x if v⊤x ≥ 0

0 if v⊤x < 0

We refer to v = (ṽ, bv) as the target parameters where ṽ is the slope and bv is the bias of the linear
map x 7→ v⊤x. Likewise, we denote our model’s parameters as w = (w̃, bw) where w̃ is the slope
and bw is the bias.

We sample data x = (x̃, 1) ∼ Uniform(−L,L) × {1} such that the first coordinate x̃ is sampled
uniformly from the domain [−L,L] and the second coordinate is a constant 1 so as to model the bias
term in a ReLU-activated neuron. We learn the target neuron with respect to the squared loss and
we thus define the loss to be

F (w) = Ex[
1

2
(σ(w⊤x)− σ(v⊤x))2] (3)

Then the gradient of F is simply

∇F (w) = Ex[(σ(w
⊤x)− σ(v⊤x))I(w⊤x ≥ 0)x] (4)

where the above expectations are taken with respect to x ∼ Uniform(−L,L) × {1}. We minimize
F using gradient descent with a constant learning rate η

wt+1 = wt − η∇F (wt) (5)
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We define the regret of learning a single ReLU with an iterative algorithm as

E[RT ] = Ew0
[

T−1∑
t=0

F (wt)]

where the randomness is over the initialization of w0 and the potential reinitialization of wt due to
resets. Then the average regret is simply

1

T
E[RT ] =

1

T
Ew0

[

T−1∑
t=0

F (wt)]

For some constant ṽmax > 1 we suppose that ṽ ∈ [1, ṽmax] and bv ∈ [−L
6 , 0]. While for some

constant w̃min < 1 we sample w̃0 uniformly from [−1,−w̃0) ∪ (w̃0, 1] and set bw0 = 0, as is
customary to initialize neurons with zero bias.

E.1.1 L2 INIT AND L2 REGULARIZATION

Given a regularization strength λ ≥ 0, we consider the loss with L2 Init regularization as

F̄ (w) = Ex[
1

2
(σ(w⊤x)− σ(v⊤x))2] +

λ

2
||w − w0||2 = F (w) +

λ

2
||w − w0||2

Then the gradient of F̄ is simply

∇F (w) = Ex[(σ(w
⊤x)− σ(v⊤x))I(w⊤x ≥ 0)x] + λ(w − w0) = ∇F (w) + λ(w − w0)

Then the L2 Init gradient descent update is simply

wt+1 = wt − η∇F̄ (wt) = wt − η∇F (wt)− ηλ(wt − w0) (6)

Similarly, we can consider vanilla L2 regularization whose update is simply

wt+1 = wt − η∇F (wt)− ηλwt (7)

Note, if λ = 0 then we simply retain the update of unregularized gradient descent (5). Then for any
sufficiently small learning rate η we attain non-vanishing average regret.
Theorem E.1. Suppose that x is sampled according to x ∼ Uniform(−L,L)× {1} ⊆ R2 and that
the target parameters v = (ṽ, bv) satisfy ṽ > 0 and bv ≤ 0. Then applying gradient descent with L2
Init (6) or L2 regularization (7), with regularization strength λ ≥ 0 and learning rate η > 0 such that

η ≤ 1

L2 + 1

ηλ < 1

and with w0 sampled uniformly from ([−1,−w̃min) ∪ (w̃min, 1]) × {0}, for any w̃min > 0, then
with probability 1

2 over random initializations of w0, the average regret is non-vanishing

1

T
RT ≥ F (0)

Proof. The proof follows immediately by Lemma E.4 for L2 Init. A trivial modification of Lemma
E.4 yields an identical result for L2 regularization, which we omit for brevity.

E.1.2 GRADIENT DESCENT WITH RESETS

For any reset threshold ϵ > 0 we define a reset oracle Oϵ such that for any w ∈ R2

Oϵ(w) =

{
True if supx∈[−L,L]×{1} w

⊤x ≤ ϵ

False if supx∈[−L,L]×{1} w
⊤x > ϵ

We consider the following gradient descent updates with resets

ut+1 = wt − η∇F (wt) (8)

wt+1 =

{
ut+1 if Oϵ(ut+1) = False
sample from Uniform ([−1,−w̃min) ∪ (w̃min, 1])× {0} if Oϵ(ut+1) = True

(9)
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Theorem E.2. Suppose that x is sampled according to x ∼ Uniform(−L,L) × {1} ⊆ R2 and the
target parameters v = (ṽ, bv) satisfy ṽ ∈ [1, ṽmax] and −L

6 ≤ bv ≤ 0 and we denote vmax =

(ṽmax,−L
6 ). Let ϵ > 0 be a reset threshold and suppose that the initial parameters w0 are sampled

uniformly from w̃0 ∼ [−1,−w̃min) ∪ (w̃min, 1] and bw0
= 0 such that

w̃min >
12ṽmaxϵ

L

and
5

2
L ≥ ϵ.

Then gradient descent with a constant learning rate of

η ≤ w̃3
minL

6

3 · 122 · 243(2 + ||vmax||)5(L2 + 1)6

and with resets, i.e. (8) and (9), attains an average regret of

1

T
E[RT ] ≤

C

T

where

C = ⌈32L
2F ((−1, 0))
ηϵ4

⌉F ((−1, 0)) + 3

2η2

(
(ṽmax − w̃min)

2) + (
L

6
)2
)

Proof. The theorem is restated and proven as Theorem E.3.

E.2 PROOFS

E.2.1 PROPERTIES OF THE LOSS FUNCTION

Lemma E.1. The ReLU activation function σ(x) = max{0, x} is 1-Lipschitz continuous.

Proof. Let x, y ∈ R be arbitrary. Without loss of generality we suppose that x ≥ y. We consider
two cases. Firstly, if x ≥ 0 then we have that

|σ(x)− σ(y)| = σ(x)− σ(y) by x ≥ y

= x− σ(y) by x ≥ 0

≤ x− y by σ(y) ≥ y

≤ |x− y|

As for the case of x < 0 then we likewise have that y < 0 and so

|σ(x)− σ(y)| = 0 ≤ |x− y|

Thus, it follows that σ(·) is 1-Lipschitz continuous.

Lemma E.2. Suppose that x is sampled according to x ∼ Uniform(−L,L)×{1} ⊆ R2 and that the
target parameters v = (ṽ, bv) satisfy ṽ > 0 and bv ≤ 0. Then for w ≤ 0,∇F (w) = Ex[σ(w

⊤x)x].

Proof. For almost every x̃ > 0, w⊤x = w̃x̃+ bw < 0 and so

(σ(w⊤x)− σ(v⊤x))I(w⊤x ≥ 0)x = 0 by I(w⊤x ≥ 0) = 0

= σ(w⊤x)x by σ(w⊤x) = 0 since w⊤x < 0

As for x̃ < 0, we have that v⊤x < 0 since ṽ > 0 and bv ≤ 0, and so σ(v⊤x) = 0. Hence,

(σ(w⊤x)− σ(v⊤x))I(w⊤x ≥ 0)x = σ(w⊤x)I(w⊤x ≥ 0)x = σ(w⊤x)x

where the last equality follows by the fact that I(w⊤x ≥ 0) is redundant given that σ(w⊤x) = 0 if
w⊤x < 0. Therefore, for almost every x ∈ Uniform(−L,L)× {1}, we have that

(σ(w⊤x)− σ(v⊤x))I(w⊤x ≥ 0)x = σ(w⊤x)x (10)
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We recall that
∇F (w) = Ex[(σ(w

⊤x)− σ(v⊤x))I(w⊤x ≥ 0)x]

and hence by (10)
∇F (w) = Ex[σ(w

⊤x)x]

Lemma E.3. Suppose that x is sampled according to x ∼ Uniform(−L,L) × {1} ⊆ R2 and that
the target parameters v = (ṽ, bv) satisfy ṽ > 0 and bv ≤ 0. then ∇F (·) is (L2 + 1)-Lipschitz
continuous on w ≤ 0. That is, for any w, u ≤ 0, ||∇F (w)−∇F (u)|| ≤ (L2 + 1)||w − u||.

Proof. By w, u ≤ 0 and Lemma E.2 we have that ∇F (w) = Ex[σ(w
⊤x)x] and ∇F (u) =

Ex[σ(u
⊤x)x]. Then we establish the desired result as follows,

||∇F (w)−∇F (u)|| = ||Ex[σ(w
⊤x)x− σ(u⊤x)x]||

≤ Ex[||σ(w⊤x)x− σ(u⊤x)x||] by Jensen’s inequality

= Ex[|σ(w⊤x)− σ(u⊤x)| · ||x||]
≤ Ex[|w⊤x− u⊤x| · ||x||] by Lemma E.1

≤ ||w − u||Ex[||x||2] by Cauchy-Schwarz inequality

≤ (L2 + 1)||w − u|| by x ∈ [−L,L]× {1}

E.2.2 CONVERGENCE AFTER A NEGATIVE INITIALIZATION

Lemma E.4. Suppose that x is sampled according to x ∼ Uniform(−L,L) × {1} ⊆ R2 and that
the target parameters v = (ṽ, bv) satisfy ṽ > 0 and bv ≤ 0. Then applying gradient descent with L2
Init regularization with strength λ ≥ 0 according to equation (6) with w0 satisfying w̃0 ∈ [−1, 0)
and bw0 = 0 and learning rate η = α

L2+1 where α ∈ (0, 1] such that ηλ < 1, then for any t ≥ 0

w̃0 ≤ w̃t ≤ 0, (11)
bwt
≤ 0, (12)

F (wt) ≥ F (0) (13)

Proof. We additionally prove the following invariant

∀t ≥ 0, w⊤
t (−L, 1) ≥ 0 (14)

For t = 0 we have that w̃0 ≤ w̃0 ≤ 0 and bw0
≤ 0 hold trivially by assumption. As for (14), we

observe that

w⊤
0 (−L, 1) = −Lw̃0 + bw0

= −Lw̃0 since bw0 = 0

≥ 0 since w̃0 ∈ [−L, 0)

Therefore, we suppose that (11), (12), and (14) hold for some arbitrary t and proceed to show that
they hold for t+ 1. We begin with establishing, (12).

bwt+1
= bwt

− η∇F̄ (wt)2

= bwt
− η∇F (wt)2 − ηλ(bwt

− bw0
)

= (1− ηλ)bwt
− η∇F (wt)2 by bw0

= 0

= (1− ηλ)bwt
− ηEx[σ(w

⊤
t x)] by Lemma E.2 given that wt ≤ 0, ṽ > 0, bv ≤ 0

≤ (1− ηλ)bwt
since σ(w⊤

t x) ≥ 0,∀x
≤ 0 since bwt

≤ 0 and ηλ < 1
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Next, for (11) we have that w̃t+1 ≤ 0 if −Lw̃t+1 + bwt+1
= w⊤

t+1(−L, 1) ≥ 0 since bwt+1
≤ 0.

This is equivalent to showing that

(wt − η∇F (wt)− ηλ(wt − w0))
⊤(−L, 1) ≥ 0 (15)

We proceed by bounding η∇F (wt)
⊤(−L, 1). Again invoking Lemma E.2, we have that

η∇F (wt)
⊤(−L, 1) = ηEx[σ(w

⊤
t x)x]

⊤(−L, 1)
= ηEx[σ(w

⊤
t x)(−Lx̃+ 1)]

≤ ησ(w⊤
t (−L, 1))(L2 + 1) by assumption that w̃t ≤ 0

= ασ(w⊤
t (−L, 1)) by choice of η

= αw⊤
t (−L, 1) by assumption of the invariant (14)

≤ w⊤
t (−L, 1) since α ≤ 1

Then, we have that

(wt − η∇F (wt)− ηλ(wt − w0))
⊤(−L, 1) ≥ (1− ηλ)w⊤

t (−L, 1) + ηλw⊤
0 (−L, 1)− w⊤

t (−L, 1)
≥ (1− ηλ)w⊤

t (−L, 1) + ηλw⊤
t (−L, 1)− w⊤

t (−L, 1)
= 0

where the second inequality above follows by w̃0 ≤ w̃t ≤ 0 and bwt
≤ 0 = bw0

. Therefore,
it follows that w̃t+1 ≤ 0. Moreover, this also establishes (14) for t + 1. As for showing that
w̃t+1 ≥ w̃0, in order to complete (11), we argue as follows.

w̃t+1 = w̃t − η∇F̄ (wt)1

= w̃t − η∇F (wt)1 − ηλ(w̃t − w̃0)

= (1− ηλ)w̃t + ηλw̃0 − ηEx[σ(w
⊤
t x)x̃] by Lemma E.2 given that wt ≤ 0, ṽ > 0, bv ≤ 0

≥ (1− ηλ)w̃t + ηλw̃0 since x̃ > 0⇒ σ(w⊤
t x) = 0 by wt ≤ 0

≥ (1− ηλ)w̃0 + ηλw̃0 by w̃t ≥ w̃0 and ηλ < 1

= w̃0

Therefore, (11) holds for t+ 1. As for (13), given that we have established (11) and (12) it follows
that for any t ≥ 0

F (wt) = Ex[
1

2
(σ(w⊤

t x)− σ(v⊤x))2]

≥ Ex[
1

2
(σ(w⊤

t x)− σ(v⊤x))2I{x̃≥0}]

= Ex[
1

2
(σ(v⊤x))2I{x̃≥0}] since wt ≤ 0 and hence σ(w⊤

t x)I{x̃≥0} = 0

= Ex[
1

2
(σ(v⊤x))2] since v⊤t x ≤ 0 for x̃ < 0 by ṽ > 0, bv ≤ 0

= F (0)

E.2.3 RESETS AFTER A NEGATIVE INITIALIZATION

Lemma E.5. Suppose that x is sampled according to x ∼ Uniform(−L,L) × {1} ⊆ R2 and that
the target parameters v = (ṽ, bv) satisfy ṽ > 0 and bv ≤ 0. Then applying gradient descent
according to equation (5) with w0 satisfying w̃0 ∈ [−1, 0] and bw0 = 0 and learning rate η < 1

L2+1 ,

we have that for any threshold ϵ > 0, there exists some t ∈ {0, 1, . . . , T = ⌈ 16L
2Cη

ϵ4 ⌉}, where
Cη = 2

ηF ((−1, 0)), such that supx∈[−L,L]×{1} σ(w
⊤
t x) ≤ ϵ.

Proof. If w̃0 ∈ [− ϵ
L , 0] then

sup
x∈[−L,L]×{1}

σ(w⊤
t x) = −Lw̃0 ≤ ϵ
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and so at t = 0 we immediately have that supx∈[−L,L]×{1} σ(w
⊤
t x) ≤ ϵ. Therefore, we consider

the case of w̃0 ∈ [−L,− ϵ
L ) and proceed as follows. According to Lemma E.4 and by the choice

of learning rate η, we have that ∀t ∈ {0, 1, . . . , T}, wt ≤ 0. Therefore by Lemma E.2, ∇F (·)
is (L2 + 1)-Lipschitz continuous on the span of {w0, w1, . . . , wT }. Consequently, following the
canonical analysis of gradient descent, we have that for any t ≥ 0

F (wt+1) ≤ F (wt) +∇F (wt)
⊤(wt+1 − wt) +

L2 + 1

2
||wt+1 − wt||2

= F (wt)− (η − (L2 + 1)η2

2
)||∇F (wt)||2

≤ F (wt)−
η

2
||∇F (wt)||2

where the second line above follows by wt+1 = wt − η∇F (wt) and the last line above follows by
the fact that

(η − L2 + 1

2
η2)− η

2
=

1

2
(η − (L2 + 1)η2)

≥ 1

2
(η − η) by η ≤ 1

L2 + 1

= 0

Then by a telescoping sum,
⊤∑
t=0

||∇F (wt)||2 ≤
2

η
(F (w0)− F (wT+1))

≤ 2

η
F ((−1, 0))

where the second line follows by the fact that the loss F (w0) is maximized at w0 = (−1, 0) (over the
space of initializations of w0) and by the fact that the loss F (wT+1) is nonnegative. Then defining
Cη = 2

ηF ((−1, 0)), we have that for some t ∈ {0, 1, . . . , T}, ||∇F (wt)||2 ≤ Cη

T . More precisely,
we have that

||Ex[(σ(w
⊤x)− σ(v⊤x))I(w⊤x ≥ 0)x]||2 ≤ Cη

T
Given that x ∼ Uniform(−L,L) × {1}, by considering the second element of the gradient, which
corresponds to the constant component of x, this implies that

Ex[(σ(w
⊤
t x)− σ(v⊤x))I(w⊤x ≥ 0)]2 ≤ Cη

T
Additionally, by Lemma E.4 we have that w̃0 ≤ w̃t ≤ 0 and bwt

≤ 0, and thus by Lemma E.2, we
have that

Ex[σ(w
⊤x)]2 = Ex[(σ(w

⊤x)− σ(v⊤x))I(w⊤
t x ≥ 0)]2 ≤ Cη

T
Hence,

Ex[σ(w
⊤
t x)] ≤

√
Cη

T
Then, noting that w̃0 ≤ w̃t ≤ 0 and bwt

≤ 0, we have that 2LEx[σ(w
⊤
t x)] is the area of the

triangle formed by the line w⊤
t x over the x-axis with its base ranging from its x-intercept to −L.

We denote the length of its base by b and its height by h. Given that w̃t ≤ 0 it follows that h =
σ(w⊤

t (−L, 1)) = supx∈[−L,L]×{1} σ(w
⊤
t x). Additionally, we have that h = |w̃t|b ≤ |w̃0|b ≤ b

given that −1 ≤ w̃0 ≤ w̃t ≤ 0. Hence we have that

h2

4L
≤ bh

4L
= Ex[σ(w

⊤
t x)] ≤

√
Cη

T

By the choice of T we have that 4L
√

Cη

T ≤ ϵ2. Hence, we obtain

sup
x∈[−L,L]×{1}

σ(w⊤
t x) = h ≤

√
4L

√
Cη

T
≤ ϵ
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E.2.4 CONVERGENCE AFTER A POSITIVE INITIALIZATION

Lemma E.6. Suppose that x is sampled according to x ∼ Uniform(−L,L)× {1} ⊆ R2, the target
parameters v = (ṽ, bv) satisfy ṽ ∈ [1, ṽmax] and −L

6 ≤ bv ≤ 0, and initial parameters w0 satisfy
w̃0 ∈ (0, 1] and bw0

= 0. Then there exists some δ ≥ w̃0L
2

24 such that F (w0) ≤ F (0)− δ.

Proof.

F (w0) = Ex[
1

2
(σ(w⊤

0 x)− σ(v⊤x))2]

= F (0) +
1

2
Ex[σ(w

⊤
0 x)

2]− Ex[σ(w
⊤
0 x)σ(v

⊤x)]

= F (0) +
w̃2

0

4L

∫ L

0

x2dx− Ex[σ(w
⊤
0 x)σ(v

⊤x)] by w̃0 ≥ 0 and bw0 = 0

= F (0) +
w̃2

0L
2

12
− Ex[σ(w

⊤
0 x)σ(v

⊤x)]

Therefore, we define δ = − w̃2
0L

2

12 + Ex[σ(w
⊤
0 x)σ(v

⊤x)] and we proceed to show that δ ≥ w̃0L
2

24 .
We let z = − bv

ṽ so that (z, 1) is the x-intercept of the line v⊤x. Then, v⊤x = ṽ(x̃− z). Moreover,
z ∈ [0, L

6 ] since bv ∈ [−L
6 , 0] and ṽ ≥ 1. Therefore, ∀x̃ ≥ z, v⊤x ≥ 0 and ∀x̃ < z, v⊤x < 0. Since

bw0
= 0 and w̃0 ≥ 0, then ∀x̃ ≥ 0, w⊤

0 x ≥ 0 and ∀x̃ < 0, w⊤
0 x < 0. Thus,

σ(w⊤
0 x)σ(v

⊤x) =

{
w̃0x̃ṽ(x̃− z) if x̃ ≥ z

0 if x̃ < z
(16)

From here, we can bound the second term of δ as follows,

Ex[σ(w
⊤
0 x)σ(v

⊤x)] =
1

2L
w̃0ṽ

∫ L

z

y2 − yzdy by (16)

=
1

2L
w̃0ṽ(

L3

3
− L2z

2
+

z3

6
)

Then,

δ = − w̃2
0L

2

12
+ Ex[σ(w

⊤
0 x)σ(v

⊤x)]

= − w̃2
0L

2

12
+

1

2L
w̃0ṽ(

L3

3
− L2z

2
+

z3

6
)

≥ − w̃0L
2

12
+

1

2L
w̃0ṽ(

L3

3
− L3

12
) by

w̃0ṽ

2L
≥ 0, z ∈ [0,

L

6
]

= − w̃2
0L

2

12
+

w̃0ṽ0L
2

8

=
w̃0L

2

4
(− w̃0

3
+

ṽ

2
)

≥ w̃0L
2

24
by ṽ ≥ 1, w̃0 ≤ 1

Thus,

F (w0) = F (0)− δ =≤ F (0)− w̃0L
2

24

Lemma E.7. Suppose that x is sampled according to x ∼ Uniform(−L,L)× {1} ⊆ R2, the target
parameters v = (ṽ, bv) satisfy ṽ ∈ [1, ṽmax] and −L

6 ≤ bv ≤ 0, and initial parameters w0 satisfy
w̃0 ∈ (0, 1] and bw0 = 0. Then there exists some δ ≥ w̃0L

2

24 such that F (w0) ≤ F (0) − δ. Then
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defining γ = δ3

3·122(||w0||+||v||+1)5(L2+1)4 and applying gradient descent according to equation (5)
with learning rate η ≤ γ

(L2+1)2 we have that ∀t ≥ 0

||wt − v||2 ≤ (1− ηγ)t||w0 − v||2 (17)

F (wt) ≤
1

2
(L2 + 1)(1− ηγ)t||w0 − v||2 (18)

Proof. By Lemma E.6, there exists some δ ≥ w̃0L
2

24 such that F (w0) ≤ F (0)−δ. Then (17) follows
by the latter inequality and a slight modification of the proof of Theorem 5.2 (along with Lemma
D.2, Lemma D.4, and Lemma D.6) of Vardi et al. (2021), to extend the result to target parameters v
with arbitrary magnitudes. Specifically, a simple modification of the aforementioned proofs implies
that setting γ = δ3

3·122(||w0||+||v||+1)5c8c′2 where we take c = maxx ||x|| =
√
L2 + 1 and c′ = 1 due

to x ∼ Uniform(−L,L)× {1} guarantees (17). Finally, (18) follows by

F (wt) = Ex[
1

2
(σ(w⊤

t x)− σ(v⊤x))2]

≤ Ex[
1

2
(w⊤

t x− v⊤x)2] by σ(·) 1-Lipschitz continuous, Lemma E.1

≤ 1

2
||wt − v||2Ex[||x||2] by the Cauchy Schwarz inequality

≤ 1

2
(L2 + 1)||wt − v||2 by x ∈ [−L,L]× {1}

≤ 1

2
(L2 + 1)(1− ηλ)t||w0 − v||2 by (17)

E.2.5 NO RESETS AFTER A POSITIVE INITIALIZATION

Lemma E.8. Suppose that x is sampled according to x ∼ Uniform(−L,L)× {1} ⊆ R2, the target
parameters v = (ṽ, bv) satisfy ṽ ∈ [1, ṽmax] and −L

6 ≤ bv ≤ 0. Let ϵ > 0 such that 3(L− z) ≥ ϵ
ṽ ,

then for any w ∈ R2 such that

sup
x∈[−L,L]×{1}

w⊤x ≤ ϵ⇒ F (w) ≥ F (0)− ṽL

2
ϵ

Proof.

F (wt) = Ex[(σ(w
⊤x)− σ(v⊤x))2]

≥ Ex[(σ(w
⊤x)− σ(v⊤x))2I{v⊤x≥ϵ}]

≥ Ex[(σ(v
⊤x)− ϵ)2I{v⊤x≥ϵ}] by sup

x∈[−L,L]×{1}
w⊤x ≤ ϵ

Let z = − bv
ṽ such that v⊤(z, 1) = 0. Then v⊤(z + ϵ

ṽ , 1) = ϵ and since ṽ > 0 then ∀x̃ ≥ z + ϵ
ṽ we

have that v⊤(x, 1) ≥ ϵ. Therefore,

Ex[(σ(v
⊤x)− ϵ)2I{v⊤x≥ϵ}] = Ex[(v

⊤x− ϵ)2I{v⊤x≥ϵ}]

=
1

2L

∫ L

z+ ϵ
ṽ

(ṽy + bv − ϵ)2dy

=
1

2L

∫ L−(z+ ϵ
ṽ )

0

(ṽy)2dy since ṽ ≥ 0

=
ṽ2

6L
(L− z − ϵ

ṽ
)3
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By a similar argument, we have that

F (0) = Ex[σ(v
⊤x)2]

=
1

2L

∫ L

z

(ṽy + bv)
2dy

=
1

2L

∫ L−z

0

(ṽy)2dy

=
ṽ2

6L
(L− z)3

Then,

F (w)− F (0) ≥ ṽ2

6L
((L− z − ϵ

ṽ
)3 − (L− z)3)

=
ṽ2

6L
(−3(L− z)2

ϵ

ṽ
+ 3(L− z)

ϵ2

ṽ2
− ϵ3

ṽ3
)

≥ − ṽ

2L
(L− z)2ϵ since 3(L− z) ≥ ϵ

ṽ

≥ − ṽL

2
ϵ

Hence, we have that

F (w) ≥ F (0)− ṽL

2
ϵ

Lemma E.9. Suppose that x is sampled according to x ∼ Uniform(−L,L) × {1} ⊆ R2 and the
target parameters v = (ṽ, bv) satisfy ṽ ∈ [1, ṽmax] and−L

6 ≤ bv ≤ 0. Let ϵ > 0 be a reset threshold
and suppose that the initial parameters w0 satisfy w̃0 ∈ (w̃min, 1] and bw0

= 0 such that

w̃min >
12ṽϵ

L
(19)

and
3(L− z) ≥ ϵ

ṽ
.

Then there exists a δ ≥ w̃0L
2

24 such that defining γ = δ3

3·122(||w0||+||v||+1)5(L2+1)4 and applying
gradient descent with resets, according to (8) and (9), with learning rate η ≤ γ

(L2+1)2 we have that
Oϵ(ut+1) = False ∀t ≥ 0.

Proof. According to Lemma E.7, there exists some δ ≥ w̃0L
2

24 such that

F (w0) ≤ F (0)− δ

Additionally, Lemma E.7, which utilizes a modified proof of Theorem 5.2 of Vardi et al. (2021),
ensures that

F (ut+1) ≤ F (0)− δ, ∀t ≥ 0

For the sake of contradiction, we suppose that for some t ≥ 0, Oϵ(ut+1) = True, or equivalently,
that

sup
x∈[−L,L]×{1}

u⊤
t+1x ≤ ϵ

Then according to Lemma E.8,

F (ut+1) ≥ F (0)− ṽLϵ

2
However, we note that

w̃0L
2

24
≥ w̃minL

2

24

>
ṽL

2
ϵ by assumption (19)
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Then we have that

− w̃0L
2

24
≥ F (ut+1)− F (0)

≥ − ṽL

2
ϵ

> − w̃0L
2

24

which is a contradiction. Therefore, it must follow that ∀t ≥ 0,Oϵ(ut+1) = False.

E.2.6 PROOF OF THEOREM E.2

Theorem E.3 (Restatement of Theorem E.2). Suppose that x is sampled according to x ∼
Uniform(−L,L) × {1} ⊆ R2 and the target parameters v = (ṽ, bv) satisfy ṽ ∈ [1, ṽmax] and
−L

6 ≤ bv ≤ 0, where we denote vmax = (ṽmax,−L
6 ). Let ϵ > 0 be a reset threshold and sup-

pose that the initial parameters w0 are sampled uniformly from w̃0 ∼ [−1,−w̃min) ∪ (w̃min, 1] and
bw0 = 0 such that

w̃min >
12ṽϵ

L
and

3(L− z) ≥ ϵ

ṽ
.

Then gradient descent with a constant learning rate of

η ≤ w̃3
minL

6

3 · 122 · 243(2 + ||vmax||)5(L2 + 1)6

and with resets, i.e. (8) and (9), attains an average regret of

1

T
E[RT ] ≤

C

T

where

C = ⌈32L
2F ((−1, 0))
ηϵ4

⌉F ((−1, 0)) + 3

2η2

(
(ṽmax − w̃min)

2) + (
L

6
)2
)

Proof. In order to apply Lemmas E.5, E.7, and E.9 we verify that

η ≤ 1

L2 + 1
(20)

and
η ≤ γ

(L2 + 1)2
(21)

where γ = δ3

3·122(||w0||+||v||+1)5(L2+1)4 and δ ≥ w̃0L
2

24 and where w0 is an arbitrary (re)initialization
of w given the prior distribution. For (20) we note that w̃min ≤ 1 ≤ 3 · 122 · 243, (2 + ||vmax||) and
so

η =
w̃3

minL
6

3 · 122 · 243(2 + ||vmax||)5(L2 + 1)6

≤ L6

(L2 + 1)6

≤ (L2 + 1)3

(L2 + 1)6

=
1

(L2 + 1)3

≤ 1

L2 + 1
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As for (21) we proceed as follows

η =
w̃3

minL
6

3 · 122 · 243(2 + ||vmax||)5(L2 + 1)6

≤ w̃3
0L

6

3 · 122 · 243(||w0||+ ||v||+ 1)5(L2 + 1)6

≤ δ3

3 · 122(||w0||+ ||v||+ 1)5(L2 + 1)6
by δ ≥ w̃0L

2

24

=
γ

(L2 + 1)2

We continue by upper bounding the regret as follows

E[RT ] ≤
∞∑
r=0

E[RT |r resets occur]

By Lemma E.5 and Lemma E.9 and the choice of learning rate η, we only ever reset if w̃t is
(re)initialized such that w̃t < 0. Conversely, if we (re)initialize the parameters such that w̃t > 0
then we never reset for subsequent gradient descent updates. Additionally, since wt is reinitialized
by an independent draw from its initial distribution, then for any particular reset count r we have
that

P(r resets occur) = P(w̃0 < 0)r · P(w̃0 > 0) =
1

2r+1

Where P(w̃0 < 0) = P(w̃0 > 0) = 1
2 by the fact w̃0 is sampled uniformly from [−1,−w̃min) ∪

(w̃min, 1]. Hence, we have that

E[RT |r resets occur] ≤ P(r resets occur)(rM− +M+) =
1

2r+1
(rM− +M+) (22)

Where M− is an upper bound on the total loss during any period of consecutive time steps t to t′ such
that wt is a (re)initialization of w such that w̃t < 0 and t′ is the earliest reset after t. While M+ is an
upper bound on the total loss for time periods after and including t where wt is a (re)initialization
of w such that w̃t > 0.

By the choice of learning rate η and Lemma E.5, if w is (re)initialized such that w̃t < 0 then within
Treset ≤ ⌈ 32L

2F ((−1,0))
ηϵ4 ⌉ gradient descent updates w is reset. Moreover, the loss F (wt′) is at most

F ((−1, 0)) for time steps t′ preceding a reset of w as loss is maximized at wt = (−1, 0) over
initializations and choosing learning rate η at most 1

L2+1 , the Lipschitz constant of ∇F (Lemma
E.3), guarantees that loss never exceeds F ((−1, 0)). Thus,

M− ≤ TresetF ((−1, 0)) (23)

As for M+ we can construct the following upper bound

M+ ≤ Ew0
[

∞∑
t=0

F (wt)|w̃0 > 0]

≤
∞∑
t=0

(L2 + 1)(1− ηγ)tEw0 [||w0 − v||2|w̃0 > 0] by Lemma E.7

=
L2 + 1

ηγ
Ew0 [||w0 − v||2|w̃0 > 0] by geometric series

≤ 1

ηγ
(L2 + 1)

(
(ṽmax − w̃min)

2 + (
L

6
)2
)

by assumption on w0, v

≤ 1

η2

(
(ṽmax − w̃min)

2 + (
L

6
)2
)

by η ≤ γ

L2 + 1

Where the use of the geometric series in the third line above is valid by

ηγ < 1
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by the assumptions on η and γ. Then returning to our goal of bounding the average regret, we
observe that

E[RT ] ≤
∞∑
r=0

E[RT |r resets occur]

≤
∞∑
r=0

1

2r+1
(rM− +M+) by (22)

=
1

2
M+ + (M− +M+)

∞∑
r=0

r

2r+1

=
1

2
M+ + (M− +M+) by arithmetico-geometric series

= M− +
3

2
M+

Then defining C = M− + 3
2M+, we have the desired result of

1

T
E[RT ] ≤

C

T
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