
Guide Your Agent with Adaptive Multimodal Rewards

Changyeon Kim1 Younggyo Seo2 Hao Liu3 Lisa Lee4
Jinwoo Shin1 Honglak Lee5,6 Kimin Lee1

1KAIST 2Dyson Robot Learning Lab 3UC Berkeley
4Google DeepMind 5University of Michigan 6LG AI Research

Abstract

Developing an agent capable of adapting to unseen environments remains a difficult
challenge in imitation learning. This work presents Adaptive Return-conditioned
Policy (ARP), an efficient framework designed to enhance the agent’s generaliza-
tion ability using natural language task descriptions and pre-trained multimodal
encoders. Our key idea is to calculate a similarity between visual observations
and natural language instructions in the pre-trained multimodal embedding space
(such as CLIP) and use it as a reward signal. We then train a return-conditioned
policy using expert demonstrations labeled with multimodal rewards. Because the
multimodal rewards provide adaptive signals at each timestep, our ARP effectively
mitigates the goal misgeneralization. This results in superior generalization per-
formances even when faced with unseen text instructions, compared to existing
text-conditioned policies. To improve the quality of rewards, we also introduce
a fine-tuning method for pre-trained multimodal encoders, further enhancing the
performance. Video demonstrations and source code are available on the project
website: https://sites.google.com/view/2023arp.

1 Introduction

Imitation learning (IL) has achieved promising results in learning behaviors directly from expert
demonstrations, reducing the necessity for costly and potentially dangerous interactions with envi-
ronments [32, 59]. These approaches have recently been applied to learn control policies directly
from pixel observations [7, 36, 57]. However, IL policies frequently struggle to generalize to new
environments, often resulting in a lack of meaningful behavior [14, 58, 68, 79] due to overfitting to
various aspects of training data. Several approaches have been proposed to train IL agents capable of
adapting to unseen environments and tasks. These approaches include conditioning on a single expert
demonstration [18, 20], utilizing a video of human demonstration [6, 76], and incorporating the goal
image [16, 23]. However, such prior methods assume that information about target behaviors in test
environments is available to the agent, which is impractical in many real-world problems.

One alternative approach for improving generalization performance is to guide the agent with natural
language: training agents conditioned on language instructions [7, 50, 72]. Recent studies have
indeed demonstrated that text-conditioned policies incorporated with large pre-trained multimodal
models [22, 56] exhibit strong generalization abilities [46, 66]. However, simply relying on text
representations may fail to provide helpful information to agents in challenging scenarios. For
example, consider a text-conditioned policy (see Figure 1a) trained to collect a coin, which is
positioned at the end of the map, following the text instruction “collect a coin”. When we deploy the
learned agent to test environments where the coin’s location is randomized, it often fails to collect
the coin. This is because, when relying solely on expert demonstrations, the agent might mistakenly
think that the goal is to navigate to the end of the level (see supporting results in Section 4.1). This
example shows the simple text-conditioned policy fails to fully exploit the provided text instruction
and suffers from goal misgeneralization (i.e., pursuing undesired goals, even when trained with a
correct specification) [15, 64].
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Figure 1: (a) ARP utilizes the similarity between visual observations and text instructions in the
pre-trained multimodal representation space as a reward and then trains the return-conditioned policy
using demonstrations with multimodal reward labels. (b) Curves of multimodal reward for fine-tuned
CLIP [56] in the trajectory from CoinRun environment. Multimodal reward consistently increases as
the agent approaches the goal, and this trend remains consistent regardless of the training and test
environment, suggesting the potential to guide agents toward target objects in test environments.

In this paper, we introduce Adaptive Return-conditioned Policy (ARP), a novel IL method designed
to enhance generalization capabilities. Our main idea is to measure the similarity between visual
observations and natural language task descriptions in the pre-trained multimodal embedding space
(such as CLIP [56]) and use it as a reward signal. Subsequently, we train a return-conditioned policy
using demonstrations annotated with these multimodal reward labels. Unlike prior IL work that relies
on static text representations [46, 51, 67], our trained policies make decisions based on multimodal
reward signals computed at each timestep (see the bottom figure of Figure 1a).

We find that our multimodal reward can provide a consistent signal to the agent in both training and
test environments (see Figure 1b). This consistency helps prevent agents from pursuing unintended
goals (i.e., mitigating goal misgeneralization) and thus improves generalization performance when
compared to text-conditioned policies. Furthermore, we introduce a fine-tuning scheme that adapts
pre-trained multimodal encoders using in-domain data (i.e., expert demonstrations) to enhance the
quality of the reward signal. We demonstrate that when using rewards derived from fine-tuned
encoders, the agent exhibits superior generalization performance compared to the agent with frozen
encoders in test environments. Notably, we also observe that ARP effectively guides agents in test
environments with unseen text instructions associated with new objects of unseen colors and shapes
(see supporting results in Section 4.3).

In summary, our key contributions are as follows:

• We propose Adaptive Return-conditioned Policy (ARP), a novel IL framework that trains a
return-conditioned policy using adaptive multimodal rewards from pre-trained encoders.

• We introduce a fine-tuning scheme that adapts pre-trained CLIP models using in-domain expert
demonstrations to improve the quality of multimodal rewards.

• We show that our framework effectively mitigates goal misgeneralization, resulting in better
generalization when compared to text-conditioned baselines. We further show that ARP can
execute unseen text instructions associated with new objects of unseen colors and shapes.

• We demonstrate that our method exhibits comparable generalization performance to baselines
that consume goal images from test environments, even though our method solely relies on
natural language instruction.

• Source code and expert demonstrations used for our experiments are available at https:
//github.com/csmile-1006/ARP.git
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2 Related Work
Generalization in imitation learning Addressing the challenge of generalization in imitation
learning is crucial for deploying trained agents in real-world scenarios. Previous approaches have
shown improvements in generalization to test environments by conditioning agents on a robot
demonstration [18, 20], a video of a human performing the desired task [76, 6], or a goal image [16,
44, 23]. However, these approaches have a disadvantage: they can be impractical to adopt in real-
world scenarios where the information about target behaviors in test environments is not guaranteed.
In this work, we propose an efficient yet effective method for achieving generalization even in
the absence of specific information about test environments. We accomplish this by leveraging
multimodal reward computed with current visual observations and task instructions in the pre-trained
multimodal embedding space.

Pre-trained representation for reinforcement learning and imitation learning Recently, there
has been growing interest in leveraging pre-trained representations for robot learning algorithms that
benefit from large-scale data [54, 73, 61, 52]. In particular, language-conditioned agents have seen
significant advancements by leveraging pre-trained vision-language models [46, 66, 78, 38], drawing
inspiration from the effectiveness of multimodal representation learning techniques like CLIP [56].
For example, InstructRL [46] utilizes a pre-trained multimodal encoder [22] to encode the alignment
between multiple camera observations and text instructions and trains a transformer-based behavior
cloning policy using encoded representations. In contrast, our work utilizes the similarity between
visual observations and text instructions in the pre-trained multimodal embedding space in the form
of a reward to guide agents in the test environment adaptively.

We provide more discussions on related work in more detail in Appendix B.

3 Method
In this section, we introduce Adaptive Return-conditioned Policy (ARP), a novel IL framework
for enhancing generalization ability using multimodal rewards from pre-trained encoders. We first
describe the problem setup in Section 3.1. Section 3.2 introduces how we define the multimodal
reward in the pre-trained CLIP embedding spaces and use it for training return-conditioned policies.
Additionally, we propose a new fine-tuning scheme that adapts pre-trained multimodal encoders with
in-domain data to enhance the quality of rewards in Section 3.3.

3.1 Preliminaries

We consider the visual imitation learning (IL) framework, where an agent learns to solve a target
task from expert demonstrations containing visual observations. We assume access to a dataset
D = {τi}Ni=1 consisting ofN expert trajectories τ = (o0, a

∗
0, ..., oT , a

∗
T ) where o represents the visual

observation, a means the action, and T denotes the maximum timestep. These expert demonstrations
are utilized to train the policy via behavior cloning. As a single visual observation is not sufficient
for fully describing the underlying state of the task, we approximate the current state by stacking
consecutive past observations following common practice [53, 74].

We also assume that a text instruction x ∈ X that describes how to achieve the goal for solving
tasks is given in addition to expert demonstrations. The standard approach to utilize this text
instruction is to train a text-conditioned policy π(at|o≤t,x). It has been observed that utilizing
pre-trained multimodal encoders (like CLIP [56] and M3AE [22]) is very effective in modeling
this text-conditioned policy [46, 49, 66, 67]. However, as shown in the upper figure of Figure 1a,
these approaches provide the same text representations regardless of changes in visual observations.
Consequently, they would not provide the agent with adaptive signals when encountering previously
unseen environments. To address this limitation, we propose an alternative framework that leverages x
to compute similarity with the current visual observation within the pre-trained multimodal embedding
space. We then employ this similarity as a reward signal. This approach allows the reward value
to be adjusted as the visual observation changes, providing the agent with an adaptive signal (see
Figure 1b).

3.2 Adaptive Return-Conditioned Policy

Multimodal reward To provide more detailed task information to the agent that adapts over
timesteps, we propose to use the visual-text alignment score from pre-trained multimodal encoders.
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Specifically, we compute the alignment score between visual observation at current timestep t and
text instruction x in the pre-trained multimodal embedding space as follows:

rϕ,ψ(ot,x) = s(f vis
ϕ (ot), f

txt
ψ (x)). (1)

Here, s represents a similarity metric in the representation space of pre-trained encoders: a visual
encoder f vis

ϕ parameterized by ϕ and a text encoder f txt
ψ parameterized by ψ. While our method

is compatible with any multimodal encoders and metric, we adopt the cosine similarity between
CLIP [56] text and visual embeddings in this work. We label each expert state-action trajectory
as τ∗ = (R0, o0, a

∗
0, ..., RT , oT , a

∗
T ) where Rt =

∑T
i=t rϕ,ψ(oi,x) denotes the multimodal return

for the rest of the trajectory at timestep t1. The set of return-labeled demonstrations is denoted as
D∗ = {τ∗i }Ni=1.

Return-conditioned policy Using return-labeled demonstrations D∗, we train return-conditioned
policy πθ(at|o≤t, Rt) parameterized by θ using the dataset D∗ and minimize the following objective:

Lπ(θ) = Eτ∗∼D∗

[∑
t≤T

l(πθ(at|o≤t, Rt), a∗t )

]
(2)

Here, l represents the loss function, which is either the cross entropy loss when the action space is
defined in discrete space or the mean squared error when defined in continuous space.

The main advantage of our method lies in its adaptability in the deployment by adjusting to multimodal
rewards computed in test environments (see Figure 1a). At the test time, our trained policy predicts
the action at based on the target multimodal return Rt and the observation ot. Since the target return
Rt is recursively updated based on the multimodal reward rt, it can provide a timestep-wise signal to
the agent, enabling it to adapt its behavior accordingly. We find that this signal effectively guides
the agent to prevent pursuing undesired goals (see Section 4.1 and Section 4.2), and it also enhances
generalization performance in environments with unseen text instructions associated with objects
having previously unseen configurations (as discussed in Section 4.3).

In our experiments, we implement two different types of ARP using Decision Transformer (DT) [8],
referred to as ARP-DT, and using Recurrent State Space Model (RSSM) [25], referred to as ARP-
RSSM. Further details of the proposed architectures are provided in Appendix A.

3.3 Fine-Tuning Pre-trained Multimodal Encoders

Despite the effectiveness of our method with pre-trained CLIP multimodal representations, there may
be a domain gap between the images used for pre-training and the visual observations available from
the environment. This domain gap can sometimes lead to the generation of unreliable, misleading
reward signals. To address this issue, we propose fine-tuning schemes for pre-trained multimodal
encoders (f vis

ϕ , f txt
ψ ) using in-domain dataset (expert demonstrations) D in order to improve the quality

of multimodal rewards. Specifically, we propose fine-tuning objectives based on the following two
desiderata: reward should (i) remain consistent within similar timesteps and (ii) be robust to visual
distractions.

Temporal smoothness To encourage the consistency of the multimodal reward over timesteps,
we adopt the objective of value implicit pre-training (VIP) [52] that aims to learn smooth reward
functions from action-free videos. The main idea of VIP is to (i) capture long-range dependency
by attracting the representations of the first and goal frames and (ii) inject local smoothness by
encouraging the distance between intermediate frames to represent progress toward the goal. We
extend this idea to our multimodal setup by replacing the goal frame with the text instruction x
describing the task objective and using our multimodal reward R as below:

LVIP(ϕ, ψ) = (1− γ) · Eo1∼O1 [rϕ,ψ(o1,x)]
long-range dependency loss

+ logE(ot,ot+1)∼D[exp(rϕ,ψ(ot,x) + 1− γ · rϕ,ψ(ot+1,x))].
local smoothness loss

(3)

1We assume the discount factor γ as 1 in our experiments, and our method can also be applied in the setup
with the discount factor less than 1.
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Figure 2: Environments from OpenAI Procgen benchmarks [10] used in our experiments. We train
our agents using expert demonstrations collected in environments with multiple visual variations. We
then perform evaluations on environments from unseen levels with target objects in unseen locations.
See Section 4.1 for more details.

Here O1 denotes a set of initial visual observations in D. One can see that the local smoothness
loss is the one-step temporal difference loss, which recursively trains the rϕ,ψ(ot,x) to regress
−1 + γ · rϕ,ψ(ot+1,x). This then induces the reward to represent the remaining steps to achieve the
text-specified goal x [31], making rewards from consecutive observations smooth.

Robustness to visual distractions To further encourage our multimodal reward to be robust to
visual distractions that should not affect the agent (e.g., changing textures or backgrounds), we
introduce the inverse dynamics model (IDM) objective [55, 33, 41]:

LIDM(ϕ, ψ) = E(ot,ot+1,at)∼D[l(g(f
vis
ϕ (ot), f

vis
ϕ (ot+1), f

txt
ψ (x)), a∗t )], (4)

where g(·) denotes the prediction layer which outputs ât, predicted estimate of at, and l represents
the loss function which is either the cross entropy loss when the action space is defined in discrete
space or the mean squared error when it’s defined in continuous space. By learning to predict actions
taken by the agent using the observations from consecutive timesteps, fine-tuned encoders learn to
ignore aspects within the observations that should not affect the agent.

Fine-tuning objective We combine both VIP loss and IDM loss as the training objective to fine-tune
pre-trained multimodal encoders in our model:

LFT(ϕ, ψ) = LVIP(ϕ, ψ) + β · LIDM(ϕ, ψ),

where β is a scale hyperparameter. We find that both objectives synergistically contribute to improving
the performance (see Table 7 for supporting experiments).

4 Experiments
We design our experiments to investigate the following questions:

1. Can our method prevent agents from pursuing undesired goals in test environments? (see
Section 4.1 and Section 4.2)

2. Can ARP follow unseen text instructions? (see Section 4.3)
3. Is ARP comparable to goal image-conditioned policy? (see Section 4.4)
4. Can ARP induce well-aligned representation in test environments? (see Section 4.5)
5. What is the effect of each component in our framework? (see Section 4.6)

4.1 Procgen Experiments

Environments We evaluate our method on three different environments proposed in Di Langosco
et al. [15], which are variants derived from OpenAI Procgen benchmarks [10]. We assess the
generalization ability of trained agents when faced with test environments that cannot be solved
without following true task success conditions.

• CoinRun: The training dataset consists of expert demonstrations where the agent collects a coin
that is consistently positioned on the far right of the map, and the text instruction is “The goal
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Figure 3: Expert-normalized scores on training/test environments. The result shows the mean and
standard variation averaged over three runs. ARP-DT denotes the model that uses pre-trained CLIP
representations, and ARP-DT+ denotes the model that uses fine-tuned CLIP representations (see
Section 3.3) for computing the multimodal reward.

is to collect the coin.”. Note the agent may mistakenly interpret that the goal is to proceed to
the end of the level, as this also leads to reaching the coin when relying solely on the expert
demonstrations. We evaluate the agent in environments where the coin’s location is randomized
(see Figure 2a) to verify that the trained agent truly follows the intended objective.

• Maze I: The training dataset consists of expert demonstrations where the agent reaches a yellow
cheese that is always located at the top right corner, and the text instruction is “Navigate a maze to
collect the yellow cheese.”. The agent may misinterpret that the goal is to proceed to the far right
corner, as it also results in reaching the yellow cheese when relying only on expert demonstrations.
To verify that the trained agent follows the intended objective, we assess the trained agents in the
test environment where the cheese is placed at a random position (see Figure 2b).

• Maze II: The training dataset consists of expert demonstrations where the agent approaches a
yellow diagonal line located at a random position, and the text instruction is “Navigate a maze
to collect the line.”. The agent might misinterpret the goal as reaching an object with a yellow
color because it also leads to collecting the object with a line shape when relying only on expert
demonstrations, For evaluation, we consider a modified environment with two objects: a yellow
gem and a red diagonal line. The goal of the agent is to reach the diagonal line, regardless of its
color, to verify that the agent truly follows the intended objective (see Figure 2c).

Implementation For all experiments, we utilize the open-sourced pre-trained CLIP model2 with
ViT-B/16 architecture to generate multimodal rewards. Our return-conditioned policy is implemented
based on the official implementation of InstructRL [46], and implementation details are the same
unless otherwise specified. To collect expert demonstrations used for training data, we first train
PPG [11] agents on 500 training levels that exhibit ample visual variations for 200M timesteps per
task. We then gather 500 rollouts for CoinRun and 1000 rollouts for Maze in training environments.
All models are trained for 50 epochs on two GPUs with a batch size 64 and a context length of 4.
Our code and datasets are available at https://github.com/csmile-1006/ARP.git. Further
training details, including hyperparameter settings, can be found in Appendix C.

Evaluation We evaluate the zero-shot performance of trained agents in test environments from
different levels (i.e., different map layouts and backgrounds) where the target object is either placed
in unseen locations or with unseen shapes. To quantify the performance of trained agents, we report
the expert-normalized scores on both training and test environments. To report training performance,
we measure the average success rate of trained agents over 100 rollouts in training environments
and divide it by the average success rate from the expert PPG agent used to collect demonstrations.
For test performance, we train a separate expert PPG agent in test environments and compute
expert-normalized scores in the same manner.

Baseline and our method As a baseline, we consider InstructRL [46], one of the state-of-the-art
text-conditioned policies. InstructRL utilizes a transformer-based policy and pre-trained M3AE [22]

2https://github.com/openai/CLIP
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Figure 4: (a) Image observation of training and test environments for Pick Up Cup task in RLBench
benchmarks [34]. (b) Success rates on both training and test environments. The result represents
the mean and standard deviation over four different seeds. ARP-RSSM denotes the model that uses
frozen CLIP representations for computing the multimodal reward, and ARP-RSSM+ denotes the
model that incorporates fine-tuning scheme in Section 3.3.

representations for encoding visual observations and text instructions. For our methods, we use
a return-conditioned policy based on Decision Transformer (DT) [8, 43] architecture, denoted as
ARP-DT (see Appendix A for details). We consider two variations: the model that uses frozen
CLIP representations (denoted as ARP-DT) and the model that uses fine-tuned CLIP representations
(denoted as ARP-DT+) for computing the multimodal reward. We use the same M3AE model to
encode visual observations and the same transformer architecture for policy training. The main
difference is that our model uses sequence with multimodal return, while the baseline uses static text
representations with the concatenation of visual representations.

Comparison with language-conditioned agents Figure 3 shows that our method significantly
outperforms InstructRL in all three tasks. In particular, ARP-DT outperforms InstructRL in test
environments while achieving similar training performance. This result implies that our method
effectively guides the agent away from pursuing unintended goals through the adaptive multimodal
reward signal, thereby mitigating goal misgeneralization. Moreover, we observe that ARP-DT+,
which uses the multimodal reward from the fine-tuned CLIP model, achieves superior performance to
ARP-DT. Considering that the only difference between ARP-DT and ARP-DT+ is using different
multimodal rewards, this result shows that improving the quality of reward can lead to better
generalization performance.

4.2 RLBench Experiments

Environment We also demonstrate the effectiveness of our framework on RLBench [34], which
serves as a standard benchmark for visual-based robotic manipulations. Specifically, we focus on
Pick Up Cup task, where the robot arm is instructed to grasp and lift the cup. We train agents using
100 expert demonstrations collected from environments where the position of the target cup changes
above the cyan-colored line in each episode (see the upper figure of Figure 4a). Then, we evaluate
the agents in a test environment, where the target cup is positioned below the cyan-colored line (see
the lower figure of Figure 4a). The natural language instruction x used is ”grasp the red cup and lift it
off the surface with the robotic arm.” For evaluation, we measure the average success rate over 500
episodes where the object position is varies in each episode.

Setup As a baseline, we consider MV-MWM [62], which initially trains a multi-view autoencoder
by reconstructing patches from randomly masked viewpoints and subsequently learns a world model
based on the autoencoder representations. We use the same procedure for training the multi-view
autoencoders for our method and a baseline. The main difference is that while MV-MWM does
not use any text instruction as an input, our method trains a policy conditioned on the multimodal
return as well. In our experiments, we closely follow the experimental setup and implementation
of the imitation learning experiments in MV-MWM. Specifically, we adopt a single-view control
setup where the representation learning is conducted using images from both the front and wrist
cameras, but world model learning is performed solely using the front camera. For our methods, we
train the return-conditioned policy based on the recurrent state-space model (RSSM) [25], denoted
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as ARP-RSSM (see Appendix A for more details). We consider two variants of this model: the
model utilizing frozen CLIP representations (referred to as ARP-RSSM) and the model that employs
fine-tuned CLIP representations (referred to as ARP-RSSM+). To compute multimodal rewards using
both frozen and fine-tuned CLIP, we employ the same setup as in Procgen experiments. Additional
details are in Appendix D.

Results Figure 4b showcases the enhanced generalization performance of ARP-RSSM+ agents in
test environments, increasing from 20.37% to 50.93%. This result implies that our method facilitates
the agent in reaching target cups in unseen locations by employing adaptive rewards. Conversely,
ARP-RSSM, which uses frozen CLIP representations, demonstrates similar performance to MV-
MWM in both training and test environments, unlike the result in Section 4.1. We expect this is
because achieving target goals for robotic manipulation tasks in RLBench requires more fine-grained
controls than game-like environments.

4.3 Generalization to Unseen Instructions

Training Test

(a) CoinRun-bluegem

Training Test

(b) Maze III

Figure 5: Test environments used for experiments in Section 4.3.

Table 1: Expert-normalized scores on CoinRun-
bluegem test environments (see Figure 5a).

Model Test Performance

InstructRL 63.99% ± 3.07%

ARP-DT (Ours) 77.05% ± 2.09%

ARP-DT+ (Ours) 79.06% ± 6.69%

We also evaluate our method in test environments
where the agent is now required to reach a different
object with an unseen shape, color, and location
by following unseen language instructions associ-
ated with this new object. First, we train agents
in environments with the objective of collecting
a yellow coin, which is always positioned in the
far right corner, and learned agents are tested on
unseen environments where the target object changes to a blue gem, and the target object’s location
is randomized. This new environment is referred to as CoinRun-bluegem (see Figure 5a), and we
provide unseen instruction, “The goal is to collect the blue gem.” to the agents. Table 1 shows that
our method significantly outperforms the text-conditioned policy (InstructRL) even in CoiunRun-
bluegem. This result indicates that our multimodal reward can provide adaptive signals for reaching
target objects even when the color and shape change.

Table 2: Expert-normalized scores on Maze
III test environments (see Figure 5b).

Model Test Performance

InstructRL 21.21% ± 1.52%

ARP-DT (Ours) 33.33% ± 4.01%

ARP-DT+ (Ours) 38.38% ± 3.15%

In addition, we verify the effectiveness of our multi-
modal reward in distinguishing similar-looking dis-
tractors and guiding the agent to the correct goal. To
this end, we train agents using demonstrations from
Maze II environments, where the objective is to col-
lect the yellow line. Trained agents are tested in an
augmented version of Maze II test environments: we
place a yellow gem, a red diagonal line, and a red
straight line in the random position of the map (denoted as Maze III in Figure 5b), and instruct the
trained agent to reach the red diagonal line (x =“Navigate a maze to collect the red diagonal line.”).
Table 2 shows that our method outperforms the baseline in Maze III, indicating that our multimodal
reward can provide adaptive signals for achieving goals by distinguishing distractors.

4.4 Comparison with Goal-Conditioned Agents

We compare our method with goal-conditioned methods, assuming the availability of goal images
in both training and test environments. First , it is essential to note that suggested baselines rely
on additional information from the test environment because they assume the presence of a goal
image during the test time. In contrast, our method relies solely on natural language instruction and
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Figure 6: Expert-normalized scores on training/test environments. The result shows the mean and
standard variation averaged over three runs. ARP-DT shows comparable or even better generalization
ability compared to goal-conditioned baselines.

does not necessitate any extra information about the test environment. As baselines, we consider a
goal-conditioned version of InstructRL (denoted as GC-InstructRL), which uses visual observations
concatenated with a goal image at each timestep. We also consider a variant of our algorithm that
uses the distance of CLIP visual representation to the goal image for reward (denoted as GC-DT).

Figure 6 illustrates the training and test performance of goal-conditioned baselines and ARP-DT.
First, we observe that GC-DT outperforms GC-InstructRL in all test environments. Note that utilizing
goal image is the only distinction between GC-DT and GC-InstructRL. This result suggests that
our return-conditioned policy helps enhance generalization performance. Additionally, we find that
ARP-DT demonstrates comparable results to GC-DT and even surpasses GC-InstructRL in all three
tasks. Importantly, it should be emphasized that while goal-conditioned baselines rely on the goal
image of the test environment (which can be challenging to provide in real-world scenarios), ARP-DT
solely relies on natural language instruction for the task. These findings highlight the potential of our
method to be applicable in real-world scenarios where the agent cannot acquire information from the
test environment.

4.5 Embedding Analysis

To support the effectiveness of our framework in generalization, we analyze whether our proposed
method can induce meaningful abstractions in test environments. Our experimental design aims to
address the key requirements for improved generalization in test environments: (i) the agent should
consistently assign similar representations to similar behaviors even when the map configuration
is changed, and (ii) the agent should effectively differentiate between goal-reaching behaviors and
misleading behaviors. To this end, we measure the cycle-consistency of hidden representation from
trained agents following [3, 42]. For two trajectories τ1 and τ2 with the same lengthN , we first choose
i ≤ N and find its nearest neighbor j = argminj≤N ||h(o1≤i, a1<i) − h(o2≤j , a

2
<j)||2, where h(·)

denotes the output of the causal transformer of ARP-DT (refer to Appendix A for details). In a similar
manner, we find the nearest neighbor of j, which is denoted as k = argmink≤N ||h(o1≤k, a1<k) −
h(o2≤j , a

2
<j)||2. We define i as cycle-consistent if |i− k| ≤ 1, can return to its original point. The

presence of cycle-consistency entails a precise alignment of two trajectories within the hidden space.

In our experiments, we first collect the set of success/failure trajectories from N different levels
in CoinRun test environment, which is denoted as τnsucc or τnfail where n ∈ N . Next, we extract
hidden representations from trained agents at each timestep across all trajectories. We then measure
cycle-consistency across these representations using three different pairs of trajectories (see Figure 7):

1. (τn1
succ, τ

n2
succ) (↑): We compute the cycle-consistency between success trajectories from different

levels. This indicates whether the trained agents behave in a similar manner in success cases,
regardless of different visual contexts.

2. (τn1

fail , τ
n2

fail ) (↑): Similarly, we compute the cycle-consistency between failure trajectories from
different levels.

3. (τn1
succ, τ

n1

fail ) (↓): We measure the cycle-consistency between success trajectory and failure
trajectory from the same level. This evaluates whether the agent can act differently in success
and failure cases.
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   Level

✅

✅

❌

❌

   Level

Figure 7: Visual observations of trajec-
tories in CoinRun environments. We
construct 3 different pairs to evaluate
whether trained agents have well-aligned
hidden representations.

Table 3: We investigate the cycle consistency of trained
agents’ hidden representations on different sets of trajec-
tories in CoinRun environments. The results are presented
as the mean and standard deviation averaged over three
different seeds. Scores within one standard deviation from
the highest average score are marked in bold. (↑) and (↓)
denotes that higher/lower values are better, respectively.

InstructRL ARP-DT ARP-DT+

(τ l1
succ, τ

l2
succ) (↑) 22.66% ± 4.26% 24.75% ± 1.91% 29.07% ± 1.39%

(τ l1
fail, τ

l2
fail) (↑) 14.12% ± 2.18% 24.95% ± 0.46% 24.29% ± 0.90%

(τ l1
succ, τ

l1
fail) (↓) 35.09% ± 2.05% 30.18% ± 1.21% 5.65% ± 0.25%

Note that (↑) / (↓) implies that higher/lower value is better, respectively. For implementation, we first
select ten different levels in CoinRun test environment with different coin locations. We then collect
success and failure trajectories from each level and use the last ten timesteps of each trajectory for
measuring cycle-consistency. Table 3 shows the percentage of timesteps that are cycle-consistent
with other trajectories from different pairs. Similar to results described in Section 4.1, our proposed
methods significantly improve cycle-consistency compared to InstructRL in all cases. Moreover,
ARP-DT+, which utilizes the multimodal reward from the fine-tuned CLIP model, outperforms
ARP-DT with the frozen CLIP.

4.6 Ablation Studies

Table 4: Ablation study of using pre-trained
CLIP representations.

Env Model Train (%) Test (%)

CoinRun ARP-DT+ 90.28% ± 1.59% 72.36% ± 3.48%

ARP-DT+ (scratch) 77.08% ± 1.04% 62.48% ± 5.32%

Maze I ARP-DT+ 75.47% ± 2.33% 36.13% ± 0.78%

ARP-DT+ (scratch) 18.87% ± 5.87% 32.52% ± 2.71%

Maze II ARP-DT+ 64.18% ± 3.62% 40.95% ± 2.97%

ARP-DT+ (scratch) 22.51% ± 9.78% 37.62% ± 8.73%

Effect of pre-trained multimodal representations
To verify the effectiveness of pre-trained multimodal
representations, we compare ARP-DT+ with agents
using multimodal rewards obtained from a smaller-
scale multimodal transformer, which was trained from
scratch using VIP and IDM objectives, denoted as
ARP-DT+ (scratch). Table 4 shows a significant de-
crease in performance for ARP-DT+ (scratch) when
compared to ARP-DT+ across all environments, par-
ticularly in the training performance within Maze environments. These findings highlight the crucial
role of pre-training in improving the efficacy of our multimodal rewards.

Table 5: Ablation study of fine-tuning objec-
tives: LVIP and LIDM in CoinRun.

LVIP LIDM Train (%) Test (%)

✗ ✗ 89.58% ± 2.08% 63.32 % ± 2.01%

✗ ✓ 89.24% ± 6.01% 67.34 % ± 2.66%

✓ ✗ 90.28% ± 2.17% 70.35 % ± 1.01%

✓ ✓ 90.28% ± 1.59% 72.36 % ± 3.48%

Effect of fine-tuning objectives In Table 5, we ex-
amine the effect of fine-tuning objectives by reporting
the performance of ARP-DT fine-tuned with or with-
out the VIP loss LVIP (Equation 3) and the IDM loss
LIDM (Equation 4). We find that the performance of
ARP-DT improves with either LVIP or LIDM, which
shows the effectiveness of the proposed losses that en-
courage temporal smoothness and robustness to visual
distractions. We also note that the performance with
both objectives is the best, which implies that both losses synergistically contribute to improving the
quality of the rewards.

5 Conclusion

In this paper, we present Adaptive Return-conditioned Policy, a simple but effective IL framework
for improving generalization capabilities. Our approach trains return-conditioned policy using the
adaptive signal computed with pre-trained multimodal representations. Extensive experimental results
demonstrate that our method can mitigate goal misgeneralization and execute unseen text instructions
associated with new objects compared to text-conditioned baselines. We hope our framework could
facilitate future research to further explore the potential of using multimodal rewards to guide IL
agents in real-world applications.
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Supplementary Material
Guide Your Agent with Adaptive Multimodal Rewards

A ARP Architecture Details

Transformer-based policy (ARP-DT) To train agents following adaptive multimodal reward
signals in Procgen experiments, we introduce a return-conditioned policy πθ based on Decision
Transformer architecture [8, 43]. Specifically, we train a decoder-only transformer to autoregressively
model the following sequence:

⟨o1, R1, a1, o2, R2, a2, ..., oT , RT , aT ⟩

Given the expert trajectory τ , we first compute the target returns {R∗
i }Ti=1 of expert demonstrations

by computing the multimodal reward in Equation 1, and we tokenize the sequence using embedding
layer for each modality. Our model π parameterized by θ comprises the following components:

Action decoder: πθ(ât|o≤t, a<t, R≤t)

Return decoder: πθ(R̂t|o≤t, a<t, R<t)
(5)

All tokens are fed into the causal transformer, and it produces output embeddings. The action
decoder receives the embedding and predicts action ât and the return decoder takes the embedding
for predicting multimodal return R̂t to encourage the agent to be aware of the multimodal return.
Following Lee et al. [43], we train the model to predict not only the next action but also the next
multimodal return by minimizing the objective below:

Lπ(θ) = Eτ∼D

[∑
t≤T

(πθ(ât|o≤t, a<t, R≤t), a
∗
t ) + λ · MSE(πθ(R̂t|o≤t, a<t, R<t), R∗

t )

]
, (6)

where CE is the cross entropy loss, MSE is the mean squared error, and λ is a hyperparameter that
adjusts the scale of return prediction. We call ARP methods based on this architecture ARP-DT.

RSSM-based policy (ARP-RSSM) To demonstrate the versatility of our framework across different
model architectures, we introduce a return-conditioned policy based on world models [60, 62] for
our RLBench experiments. Specifically, we implement the world model as a variant of the recurrent
state-space model (RSSM; [25]) and condition it on multimodal return. The world model comprises
the following components:

Encoder: st ∼ fθ(st|st−1, at−1, ot, Rt)

Decoder:

{
ôt ∼ pθ(ôt | st)
R̂t ∼ pθ(R̂t | st)

Dynamics model: ŝt ∼ pθ(ŝt | st−1, at−1)

Policy: ât ∼ pθ(ât|st)

(7)

The encoder extracts state st from previous state st−1, previous action at−1, current observation ot,
and the target multimodal return Rt =

∑T
i=tR(oi,x) with a recurrent architecture. The decoder

reconstructs ot to provide a learning signal for model states and predicts Rt to encourage the agent to
be aware of the multimodal return. The policy predicts action at using state st. All model parameters
θ are optimized by minimizing the objective below:

L(θ) = Eτ∼D

[∑
t≤T

− ln pθ(zt | st)− ln pθ(R
∗
t | st)− ln pθ(a

∗
t |st)

+ β KL
[
qθ(st|st−1, at−1, zt, Rt) ∥ pθ(ŝt|st−1, at−1)

]] (8)

We refer to ARP methods based on this architecture as ARP-RSSM.
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B Extended Related Work

Training instruction-following agents Humans excel at understanding and utilizing language
instructions to adapt to unfamiliar situations. Consequently, there has been significant interest in
training policies that incorporate natural language in IL [48, 69, 36, 7] by learning policy conditioned
on both current observation and the text instruction of the task. In parallel, recent studies have
leveraged large language models (LLMs) for generating inner plans over pre-defined skills from
natural language instructions for solving various robotic manipulation tasks [2, 45, 30, 27, 17]. Our
method can be thought of as one of language-conditioned imitation learning, which leverages natural
language instructions as a reward signal by utilizing the similarity between visual observations and
natural language instructions in the pre-trained multimodal embedding space.

Task specification with text instructions Leveraging text instructions for task guidance is a
common practice among humans. Building upon this concept, prior approaches have harnessed text
instructions to direct agents in various ways, including the shaping of reward functions [24, 75, 77,
40, 51], addressing misbehavior correction [65], and exploring human-AI coordination [75, 28]. The
closest work to ours is Ma et al. [51], which extends the objective function of VIP [52] to include text
instructions as goals for training visual-language aligned representations. The primary distinction
is that it uses static text representation concatenated with visual representations for policy learning,
akin to other baselines [46, 67]. In contrast, our approach employs multimodal reward defined
by measuring the similarity between image observations and text instructions in the pre-trained
multimodal embedding space.

Utilizing CLIP [56] for supervision signals Recent work utilize CLIP scores [26] or CLIP-
based perceptual loss [70] for improving image-text alignment in various domains including image
generation [1, 12], image captioning [26, 9], and anomaly detection [37]. Similar to our approach,
some work [13, 19] have also leveraged CLIP scores as supervision signals to address reward-scarce
tasks with reinforcement learning. Fan et al. [19] propose a video-language model that is pre-trained
using large-scale, real-world videos paired with their transcripts, and it utilizes the similarity between
video-text representations as the reward for reinforcement learning. In our study, we focus on
the adaptability of the multimodal reward, which empowers the agent to achieve desired goals in
previously unseen test environments. Furthermore, we employ pre-trained multimodal representations
without the need for resource-intensive pre-training, and we introduce a fine-tuning scheme for better
reward quality that can be easily implemented with a small set of in-domain demonstrations.

C Procgen Experiment Details

This section describes the details for implementing Adaptive Return-conditioned Policy and provides
our source code in the supplementary material.

Environment details We utilize a publicly available implementation3 to replicate the environments
introduced by Di Langosco et al. [15]. We modify the simulator of the environments to render
higher-resolution images to leverage pre-trained multimodal representations for both our method and
baselines. In this particular setup, the observations obtained from the environment at each timestep
t comprise an RGB image with dimensions of 256 × 256 × 3 and a natural language instruction
delineating the desired goal. Throughout our experiments, we adhere to the hard environment difficulty
as described in [10]. Maximum episode length for all tasks is 500. To gather expert demonstrations
used for training data, we train PPG [11] agents on 500 training levels for 200M timesteps per task
using hyperparameters provided in Cobbe et al. [11]. For evaluation purposes, we assess the test
performance on 1,000 different levels, encompassing previously unseen themes and goals that differ
from those employed in training.

Architecture details Both InstructRL (Liu et al., 2022) and ARP employ ViT-B/16 as the
transformer-policy and pre-trained multimodal transformer encoder (M3AE; [22]) in all experi-
ments, unless stated otherwise. For fine-tuning pre-trained multimodal encoders, we adopt the
CLIP-Adapter [21, 80] to effectively fine-tune the pre-trained CLIP embeddings without overfitting.

3https://github.com/JacobPfau/procgenAISC
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In detail, we attach extra linear layers to both the visual and text encoders and use the weighted sum
of the output from the linear layers and the original pre-trained feature for computing visual/text repre-
sentations. Throughout the training, we only apply gradients to the weight of these adapter layers and
freeze both CLIP’s visual and textual encoders. Furthermore, we utilize multi-scale features obtained
by concatenating intermediate layer representations with the final output representation as the input
for the adapter layers, drawing inspiration from Liu et al. [46] and Walmer et al. [71]. Finally, the
multimodal reward is computed using the cosine similarity between the multi-scale features from the
image and text encoders. See Appendix E for qualitative results of our multimodal rewards. Inspired
by Gao et al. [21], we attach an additional 2-layer MLP to the end of a pre-trained multimodal
transformer encoder and use the weighted sum of the output from MLP and the original pre-trained
feature for obtaining image/text representations. In the training phase, we apply gradients only to the
weight of these MLP layers. Through empirical evaluation, we observe that this architecture yields
superior performance in both our method and the baseline.

Training details We resize images to 224× 224× 3 before computing multimodal rewards, and
we use 256 × 256 × 3 RGB observations for training the return-conditioned policy. To stabilize
training, we normalize multimodal returns following the method proposed by Chen et al. (2021),
dividing them by 1000 in all experiments. We use the AdamW optimizer (Loshchilov et al., 2018)
with a learning rate of 5 × 10−4 and weight decay 5 × 10−5. A cosine decay schedule is utilized
to adjust the training learning rate. In CoinRun experiments, data augmentation techniques such as
color jitter and random rotation are applied to the RGB images ot while maintaining alignment in the
context. However, no augmentation is used to RGB images in Maze I/II experiments. For scaling
the return prediction loss in training the return-conditioned policy, we set λ = 0.01 in CoinRun
experiments and λ = 0.001 in Maze I/II experiments. During the fine-tuning of the pre-trained
multimodal encoder, a 2-layer MLP is attached to the end of both CLIP image and text encoders. An
extra 2-layer MLP is added as an action prediction layer for the IDM objective. The model is trained
for 20 epochs, and the one with the lowest validation loss is used for generating multimodal rewards.
To scale the IDM loss in fine-tuning CLIP, we employ β = 1.5 in CoinRun experiments and β = 2.0
in Maze I/II experiments. In evaluation, we choose the target multimodal return as 90% quantile of
the multimodal return from the dataset D∗ in all experiments.

Computation We use 24 CPU cores (Intel Xeon CPU @ 2.2GHz) and 2 GPUs (NVIDIA A100
40GB GPU) for training return-conditioned policy. The training of ARP for 50 epochs takes approxi-
mately 4 hours for CoinRun experiments with the largest dataset size. For fine-tuning CLIP, we use
24 CPU cores (Intel Xeon CPU @ 2.2GHz) and 1 GPU (NVIDIA A100 40GB GPU), which takes
approximately 1.5 hours for Coinrun experiments.

Hypeparameters We report the hyperparameters used in our experiments in Table 6.

Table 6: Hyperparameters of ARP-DT. Unless specified, we use the same hyperparameters used in
InstructRL [46].

Hyperparameter Value
Policy batch size 64
Policy epochs 50
Policy context length 4
Policy learning rate 0.0005
Policy optimizer AdamW [47]
Policy optimizer momentum β1 = 0.9, β2 = 0.999
Policy weight decay 0.00005
Policy learning rate decay Linear warmup and cosine decay (see code for details)
Policy context length 4
Policy transformer size 2 layers, 4 heads, 768 units

Fine-tuned CLIP batch size 64
Fine-tuned CLIP epochs 20
Fine-tuned CLIP learning rate 0.0001
Fine-tuned CLIP weight decay 0.001
Fine-tuned CLIP adapter layer size 2 layers, 1024 units
Fine-tuned CLIP optimizer AdamW [47]
Fine-tuned CLIP optimizer momentum β1 = 0.9, β2 = 0.999
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D RLBench Experiment Details

Environment details Visual observations obtained from RLBench environment at each timestep
t comprise an RGB image with dimensions of 256 x 256 × 3 and a natural language instruction
delineating the desired goal. In Pick Up Cup task, we adjusted the environment to generate the target
cup with different regions in training and evaluation. Specifically, we generate the target cup from
80% of the area of the table in training environments. In evaluation, we generate the cup from the
remaining 20% of the area of the table. We choose an action mode of RLBench that specifies the
delta of joint positions for all experiments.

Training details For training data, we collect 100 expert demonstrations using scripted policy
provided by RLBench simulator. For each demonstration, we extract the keypoints [35] and train
the agent to output the relative change in (x, y, z) position between keypoints. We train the agents
to output the prediction of (x,y,z) position changes. We set the maximum episode length to 500.
We closely follow the implementation details and use the same hyperparameters described in the
imitation learning experiments in MV-MWM [62]. For all experiments, we utilize the open-sourced
pre-trained CLIP model with ViT-B/16 architecture from huggingface transformers library4 and we
fine-tune CLIP based on that model. We train our method for 100K iterations and MV-MWM for
200K iterations until convergence. We apply data augmentation in training, including color jittering
over RGB images. In evaluation, we choose the target multimodal return as 50% quantile of the
multimodal return from training demonstrations in all experiments.

E Qualitative Results of Multimodal Rewards

In Figure 8, 9, 10, we present the curves of multimodal rewards for frozen/fine-tuned CLIP in the
trajectories from training/held-out evaluation environments. We find that the multimodal reward
exhibits an overall increasing trend as the agent approaches the goal in both frozen and fine-tuned
CLIP, irrespective of the training and held-out evaluation environments. Furthermore, we observe
that fine-tuned CLIP not only induces a reward that is temporally smoother in the intermediate
stages compared to frozen CLIP (see Figure 1) but also demonstrates a steeper upward reward curve
(see Figure 9, 10). These results support the claim that the quality of multimodal rewards from
the fine-tuned CLIP outperforms those from the frozen CLIP (Section 4.1). Video examples of the
trajectories are provided in the supplementary material.

4https://huggingface.co/openai/clip-vit-base-patch16
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(a) Multimodal reward curve in the training environment.
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(b) Multimodal reward curve in the held-out evaluation environment.

Figure 8: Qualitative results of multimodal rewards in CoinRun environments.
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(a) Multimodal reward curve in the training environment.
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(b) Multimodal reward curve in the held-out evaluation environment.

Figure 9: Qualitative results of multimodal rewards in Maze I environments.
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(a) Multimodal reward curve in the training environment.
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(b) Multimodal reward curve in the held-out evaluation environment.

Figure 10: Qualitative results of multimodal rewards in Maze II environments.
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F Additional Experiments

Table 7: Ablation study of the return prediction
loss MSE(R̂t, R̂∗

t ) in CoinRun environments.

MSE(R̂t, R̂
∗
t ) LFT Train (%) Test (%)

✗
✗ 90.28% ± 4.21% 56.32% ± 3.55%

✓ 92.01% ± 3.18% 56.28% ± 2.01%

✓
✗ 89.58% ± 2.08% 63.32% ± 2.01%

✓ 90.28% ± 1.59% 72.36% ± 3.48%

Effect of return prediction We investigate the
effect of including the return prediction loss
MSE(R̂t, R̂∗

t ) in Equation 6, which encourages
the policy to be more aware of conditioned re-
turns. In Table 7, we observe that the performance
of ARP-DT becomes much more sensitive to the
quality of multimodal rewards when trained with
the return prediction loss. For instance, without
the return prediction loss, the evaluation perfor-
mance becomes almost the same with or without the fine-tuning scheme, which suggests that the
model is insensitive to the quality of rewards. On the other hand, with the prediction loss, the
performance increases as the quality of reward improves. This implies that the model becomes aware
of the returns and can thus follow the adaptive signal from the multimodal reward.

Table 8: Ablation studies of the hyperparame-
ter λ in CoinRun environments.

λ LFT Train (%) Test (%)

0.001 ✗ 89.93% ± 3.94% 62.65% ± 10.12%

✓ 85.42% ± 1.80% 71.69% ± 5.71%

0.01 ✗ 89.58% ± 2.08% 63.32% ± 2.01%

✓ 90.28% ± 1.59% 72.36% ± 3.48%

0.1 ✗ 87.15% ± 2.62% 62.65% ± 10.31%

✓ 85.76% ± 3.18% 73.37% ± 3.48%

1.0 ✗ 87.15% ± 4.70% 61.64% ± 6.38%

✓ 81.25% ± 1.04% 73.37% ± 2.66%

Effect of scaling return prediction loss We in-
vestigate how the coefficient λ, which determines
the weight of the return prediction loss in training
return-conditioned policy, affects the performance of
ARP-DT. To this end, we test various values of λ in
CoinRun environments. Table 8 shows the perfor-
mance of ARP in training/held-out evaluation envi-
ronments with different λ. We find that performance
is not significantly different according to the value
of λ in the held-out evaluation environments. These
results indicate that ARP is robust to the choice of
hyperparameter λ.
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Figure 11: Expert-normalized scores on training/evaluation environments of ARP trained using
multimodal rewards generated with (i) instructive text (i.e., Inst) and (ii) random text (i.e., Random).
The result shows the mean and standard deviation averaged over three runs.

Ablation studies on text instructions To investigate whether ARP-DT makes decisions based
on the adaptive signal from the multimodal reward, we evaluate the quality of rewards generated
with (i) instructive text (i.e., Inst) and (ii) random text (i.e., Random) in three different environments.
Specifically, we use a natural language instruction for each environment, as described in Section 4 for
Inst, and ”NeurIPS 2023 will be held again at the New Orleans Ernest N. Morial Convention Center”
for Random. We find that using random text instructions significantly declines performance in both
training and evaluation environments. These results highlight the importance of using the instructive
text and demonstrate that ARP-DT indeed depends on the adaptive signal from the multimodal reward
for solving tasks at deployment time.
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G Limitation and future work

One limitation of our work is that we currently rely on a single image-text pair to compute the multi-
modal reward at every timestep t. Although our approach has shown effectiveness both quantitatively
and qualitatively, there are tasks where rewards depend on the history of past observations (i.e.,
non-Markovian) [4, 5, 39]. To address this limitation, it would be valuable to explore the extension
of our method to incorporate video-text pairs for calculating multimodal rewards. Another aspect
to consider is that the tasks we have examined so far are relatively simple, as they involve only a
single condition for success. To tackle more complex problems, we are interested in investigating
approaches that leverage large language models [29, 30, 2, 17] with our method.

H Potential negative impacts

We do not anticipate significant negative societal impacts in that our method is now limited to
applying in simulated environments. However, if our method is applied in real-world scenarios,
privacy concerns may arise, considering that behavior cloning agents used in such applications, like
autonomous driving [63] or real-time control [7, 17], require large amounts of data, which often
contain controversial information. Additionally, a behavior cloning policy presents a challenge as it
imitates specified demonstrations, potentially including undesirable actions. If some evil actions are
included in expert demonstrations (e.g., behaviors that may be violent to the pedestrians are contained
in the training data for mobile manipulation tasks), the policy could have significant negative impacts
on users. To address this concern, future directions should focus on developing agents with safe
adaptation in addition to performance enhancement efforts.
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