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Guide Your Agent with Adaptive Multimodal Rewards346

A Experiment Details347

In this section, we describe the details for implementing Multimodal Reward Decision Transformer,348

and we provide our source code in the supplementary material.349

Procgen details We utilize a publicly available implementation3 to replicate the environments350

introduced by Di Langosco et al. [9]. We modify the simulator of the environments to render351

higher-resolution images to leverage pre-trained multimodal representations for both our method and352

baselines. In this particular setup, the observations obtained from the environment at each timestep t353

comprise an RGB image with dimensions of 256× 256× 3 and a natural language instruction that354

delineates the desired goal. Throughout our experiments, we adhere to the hard environment difficulty355

as described in [7]. Maximum episode length for all tasks is 500. To gather expert demonstrations356

used for training data, we train PPG [8] agents on 500 training levels for 200M timesteps per task357

using hyperparameters provided in Cobbe et al. [8]. For evaluation purposes, we assess the test358

performance on 1000 different levels, encompassing previously unseen themes and goals that differ359

from those employed in training.360

Architecture details Both InstructRL (Liu et al., 2022) and MRDT employ ViT-B/16 as the361

transformer-policy and pre-trained multimodal transformer encoder (M3AE; [12]) in all experiments,362

unless stated otherwise. Inspired by Gao et al. [11], we attach an additional 2-layer MLP to the end363

of a pre-trained multimodal transformer encoder and perform residual-style feature blending with364

the pre-trained features. In the training phase, we apply gradients only to the weight of these linear365

layers. Through empirical evaluation, we observe that this architecture yields superior performance366

in both our method and the baseline.367

Training details We use 256×256×3 RGB observations for training the return-conditioned policy.368

To stabilize training, we normalize multimodal returns following the method proposed by Chen et al.369

(2021), dividing them by 1000 in all experiments. We use the AdamW optimizer (Loshchilov et al.,370

2018) with a learning rate of 5×10−4 and weight decay 5×10−5. A cosine decay schedule is utilized371

to adjust the training learning rate. In CoinRun experiments, data augmentation techniques such as372

color jitter and random rotation are applied to the RGB images ot while maintaining alignment in the373

context. However, no augmentation is applied to RGB images in Maze I/II experiments. For scaling374

the return prediction loss in training the return-conditioned policy, we set λ = 0.01 in CoinRun375

experiments and λ = 0.001 in Maze I/II experiments. During the fine-tuning of the pre-trained376

multimodal encoder, a 2-layer MLP is attached to the end of both CLIP image and text encoders.377

Additionally, an extra 2-layer MLP is added as an action prediction layer for the IDM objective. The378

model is trained for 20 epochs, and the one with the lowest validation loss is used for generating379

multimodal rewards. To scale the IDM loss in fine-tuning CLIP, we employ β = 1.5 in CoinRun380

experiments and β = 2.0 in Maze I/II experiments.381

Computation We use 24 CPU cores (Intel Xeon CPU @ 2.2GHz) and 2 GPUs (NVIDIA A100382

40GB GPU) for training return-conditioned policy. The training of MRDT for 50 epochs takes383

approximately 4 hours for CoinRun experiments with the largest dataset size. For fine-tuning CLIP,384

we use 24 CPU cores (Intel Xeon CPU @ 2.2GHz) and 1 GPU (NVIDIA A100 40GB GPU), and it385

takes approximately 1.5 hours for Coinrun experiments.386

3https://github.com/JacobPfau/procgenAISC
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Hypeparameters We report the hyperparameters used in our experiments in Table 3.

Table 3: Hyperparameters of Multimodal Reward Decision Transformer (MRDT). Unless specified,
we use the same hyperparameters used in InstructRL [16].

Hyperparameter Value
Policy batch size 64
Policy epochs 50
Policy context length 4
Policy learning rate 0.0005
Policy optimizer AdamW [18]
Policy optimizer momentum β1 = 0.9, β2 = 0.999
Policy weight decay 0.00005
Policy learning rate decay Linear warmup and cosine decay (see code for details)
Policy context length 4
Policy transformer size 2 layers, 4 heads, 768 units

Fine-tuned CLIP batch size 64
Fine-tuned CLIP epochs 20
Fine-tuned CLIP learning rate 0.0001
Fine-tuned CLIP weight decay 0.001
Fine-tuned CLIP adapter layer size 2 layers, 1024 units
Fine-tuned CLIP optimizer AdamW [18]
Fine-tuned CLIP optimizer momentum β1 = 0.9, β2 = 0.999

387

B Qualitative Results of Multimodal Rewards388

In Figure 9, 10, 11, we present the curves of multimodal rewards for frozen/fine-tuned CLIP on the389

trajectories from training/held-out evaluation environments. We find that the multimodal reward390

exhibits an overall increasing trend as the agent approaches the goal in both frozen and fine-tuned391

CLIP, irrespective of the training and held-out evaluation environments. Furthermore, we observe392

that fine-tuned CLIP not only induces a reward that is temporally smoother in the intermediate stages393

compared to frozen CLIP (see Figure 9) but also demonstrates a steeper upward reward curve (see394

Figure 10, 11). These results support the claim that the quality of multimodal rewards from the395

fine-tuned CLIP outperforms those from the frozen CLIP (Section 4.2). Video examples of the396

trajectories are provided in the supplementary material.397
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(a) Multimodal reward curve on the training environment.

1 2 3 4

21

4
3

(b) Multimodal reward curve on the held-out evaluation environment.

Figure 9: Qualitative results of multimodal rewards in CoinRun environments.
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(a) Multimodal reward curve on the training environment.
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(b) Multimodal reward curve on the held-out evaluation environment.

Figure 10: Qualitative results of multimodal rewards in Maze I environments.
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(a) Multimodal reward curve on the training environment.
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(b) Multimodal reward curve on the held-out evaluation environment.

Figure 11: Qualitative results of multimodal rewards in Maze II environments.
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C Additional Experiments398

Table 4: Expert-normalized scores on training/evaluation CoinRun environments investigating the
effect of hyperparameter λ adjusting the scale of return prediction loss in training return-conditioned
policy. The result shows the mean and standard variation averaged over three runs.

λ LFT Train (%) Eval (%)

0.001 ✗ 89.93% ± 3.94% 62.65% ± 10.12%

✓ 85.42% ± 1.80% 71.69% ± 5.71%

0.01 ✗ 89.58% ± 2.08% 63.32% ± 2.01%

✓ 90.28% ± 1.59% 72.36% ± 3.48%

0.1 ✗ 87.15% ± 2.62% 62.65% ± 10.31%

✓ 85.76% ± 3.18% 73.37% ± 3.48%

1.0 ✗ 87.15% ± 4.70% 61.64% ± 6.38%

✓ 81.25% ± 1.04% 73.37% ± 2.66%
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Figure 12: Expert-normalized scores on training/evaluation environments of MRDT trained using
multimodal rewards generated with (i) instructive text (i.e., Inst) and (ii) random text (i.e., Random)
in Maze I environments (left) and Maze II environments (right). The result shows the mean and
standard deviation averaged over three runs.

Effect of scaling return prediction loss We investigate how the coefficient λ, which determines399

the weight of the return prediction loss in training return-conditioned policy, affects the performance400

of MRDT. To this end, we test various values of λ in CoinRun environments. Table 4 shows the401

performance of MRDT in training/held-out evaluation environments with different λ. We find that402

performance is not significantly different according to the value of λ in the held-out evaluation403

environments. These results indicate that MRDT is robust to the choice of hyperparameter λ.404

Extra ablation study on text instructions In Figure 12, we further investigate whether MRDT405

leverages adaptive signals from multimodal rewards in decision-making. We evaluate the quality406

of rewards generated with instructive text (i.e., Inst) and random text (i.e., Random) in Maze I/II407

environments. Specifically, we use a natural language instruction for each environment, as described408

in Section 4 for Inst, and ”NeurIPS 2023 will be held again at the New Orleans Ernest N. Morial409

Convention Center” for Random. We find that using random text instructions results in a decline410

in performance in both training and evaluation environments. These findings align with the trend411

observed in Figure 8.412
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D Limitation and Future Work413

One limitation of our work is that we currently rely on a single image-text pair to compute the414

multimodal reward at every timestep t. Although our approach has shown effectiveness both quanti-415

tatively and qualitatively, there are tasks where rewards depend on the history of past observations416

(i.e., non-Markovian) [2, 3, 15]. To address this limitation, it would be valuable to explore the417

extension of our method to incorporate video-text pairs for calculating multimodal rewards. This418

extension could involve generating multimodal rewards using pre-trained video-text multimodal419

representations [17, 19, 24, 21], which presents an intriguing avenue for better generalization across420

various goals in behavior learning. Another aspect to consider is that the tasks we have examined421

so far are relatively simple, as they involve only a single condition for success. To tackle more422

complex problems, we are interested in investigating approaches that leverage large language mod-423

els [13, 14, 1, 10] in conjunction with our method. Finally, an interesting direction to explore would424

be the utilization of multimodal rewards in combination with extrinsic rewards [22, 20, 5].425

E Potential Negative Societal Impacts426

We do not anticipate significant negative societal impacts in that our method is now limited to playing427

simple simulation games. However, if our method is applied in real-world scenarios, privacy concerns428

may arise considering that behavior cloning agents used in such applications, like autonomous driv-429

ing [23] or real-time control [4, 10], require large amounts of data, which often contain controversial430

information. Additionally, a behavior cloning policy presents a challenge as it imitates specified431

demonstrations, potentially including undesirable actions. If some bad actions are included in expert432

demonstrations (e.g., behaviors that may be violent or harmful to the pedestrians are contained in433

the training data for mobile manipulation tasks), the policy could have significant negative impacts434

on users. To address this concern, future directions should focus on developing agents with safe435

adaptation in addition to performance enhancement efforts.436
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[23] Shah, Dhruv, Osiński, Błażej, Levine, Sergey, et al. Lm-nav: Robotic navigation with large504

pre-trained models of language, vision, and action. In Conference on Robot Learning, pp.505

492–504. PMLR, 2023.506

[24] Wang, Yi, Li, Kunchang, Li, Yizhuo, He, Yinan, Huang, Bingkun, Zhao, Zhiyu, Zhang, Hongjie,507

Xu, Jilan, Liu, Yi, Wang, Zun, et al. Internvideo: General video foundation models via generative508

and discriminative learning. arXiv preprint arXiv:2212.03191, 2022.509

18

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

	Experiment Details
	Qualitative Results of Multimodal Rewards
	Additional Experiments
	Limitation and Future Work
	Potential Negative Societal Impacts

