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Abstract - We show experimentally that a deep 
learning-enabled analysis of intensity patterns of 
diffracted light allows three-dimensional metrology 
of subwavelength objects with precision reaching 
λ/467. This remarkable precision is helped by the 
information provided by the training process that 
prior to the measurement gathers prior information 
on the diffraction patterns from similar objects. 
 
1. Introduction 
    Retrieving physical parameters of nanoscale 
objects from the diffracted light corresponds to 
inverse scattering problem and solving it involves 
various approximations and assumptions chosen 
carefully for the specific problem under 
consideration. In deep learning-enabled analysis, 
such prior assumptions or approximations can be 
replaced with a priori examinations of similar class of 
objects and it has demonstrated superb measurement 
precision of a fraction of hundreds to thousands of 
the wavelength in retrieving physical parameters of 
one- (1D) and two-dimensional (2D) systems such as 
nano-gaps and nano-holes under various forms of 
light illumination. Here, we extend the approach to 
three-dimensional (3D) systems and explore the 
optical metrology of subwavelength objects with the 
extra degrees of freedom. In proof of principle 
experiments, we show that precision exceeding 
λ/467 can be achieved in retrieving the dimensions of 
platinum nanopillars. 

 
2. Results and Discussion 
    In deep super-resolution optical metrology enabled 

by deep learning analysis, a beam of light illuminates 
a set of similar class of objects and the recorded 
diffraction patterns are fed into a neural network for 
training (Fig. 1). The network trained with a set of 
optical diffraction patterns from similar class of 
objects can predict the physical parameters of an 
unseen object of similar kind and the precision of a 
fraction of hundreds to thousands of the wavelength 
has been demonstrated in 1D systems such as 
nanoslits.  
    As the systems evolve into a more complicated and 
realistic configuration such as three-dimensional 
(3D) sub-wavelength objects, the increase in the 
degrees of freedom and noise challenges the neural 
network’s capability of retrieving the physical 
parameters. Here, we explore how neural networks 
perform with 3D sub-wavelength objects and ways to 
augment the networks in solving the inverse 
scattering problem.  
    As a representative 3D object, we consider 
platinum nanopillars, which presents two degrees of 
freedom, i.e. diameter, d, and height, h (see Fig. 1b). In 
contrast to the previously considered nanostructures 
where only the geometrical parameters along the 
plane transverse to the light propagation were 
considered, nanopillars possess an additional degree 
of freedom along the propagation direction of light. 
The platinum nanoparticles were patterned on ITO-
coated glass substrates with focused-electron-beam-
induced deposition which patterns nanostructures by 
irradiating focused electron beam while flowing a 
precursor gas near the target region.  

 
 

 
Fig. 1: Super-resolution metrology of 3D nanoscale objects. (a) A beam of laser radiation illuminates a sample and the 

resulting diffraction pattern is recorded, then fed into a neural network.  The trained network can predict the geometrical 
parameters of unseen objects of similar kind. (b) SEM images of platinum pillars fabricated by focused electron beam-induced 
deposition on a glass substrate. Ground truth values of d and h were prepared from AFM topography. (c) Comparison of 
predicted and truth values of diameter and height of nanopillars are shown for an imaging distance, H = 75 λ. 

 

 
 

 
 



Super-resolution optical metrology and imaging of 3D nano-scale objects 

 

Jin-Kyu So1*, Eng Aik Chan1, Giorgio Adamo1, and Nikolay I. Zheludev2 

1 The Photonics Institute & Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 
637371 

2 Optoelectronics Research Centre & Centre for Photonic Metamaterials, University of Southampton, SO17 1BJ, UK 

  
    A dataset of light diffraction patterns for 
nanoparticles was prepared by illuminating a 
Gaussian beam of coherent light (λ = 635 nm, FWHM 
= 1.1 λ) on the sample through a microscope 
objective lens (NA = 0.9) and recording the resulting 
diffraction patterns at a distance, H, away from the 
sample (Fig. 1a) by another microscope objective lens 
(NA = 0.9) and an sCMOS camera. The effective pixel 
size of the imaging system was 41.7 nm on the 
sample plane. 
The dataset of optical diffraction patterns was 
collected from three sets of samples: dataset#1) 500 
nanopillars with d = 356-440 nm and h = 91-356nm, 
dataset#2) 500 nanopillars with d = 465-529 nm and 
h = 94-393 nm, dataset#3) 500 nanopillars with d = 
545-615 nm and h = 101-419 nm. For each nanopillar, 
diffraction patterns were taken at H = 0, 2, 5, 10, 15, 
20, 50, 75, 100 λ to study the relationship between 
the information content and imaging distance. To 
prevent the neural network from learning the 
background intensity patterns instead of the 
contribution from the light scattered by the 
nanoparticles, the diameter and height of 
nanoparticles were randomized in the given range of 
the dataset.  
 

 
 

Fig. 2: Subwavelength optical metrology of nanopillars. 
Measurement precision of retrieving (a) diameter, σd, and 
(b) height, σh, of nanopillars are shown for imaging 
distances, H = 0 - 100 λ.  

 

To retrieve the physical parameters from the 
intensity patterns of diffracted light, we used an 
artificial neural network, ResNet-34 [1], which is a 
convolutional neural network made up of 34 layers 
widely used in image recognition. In the neural 
network analysis, 80%, 10%, and 10% of the dataset 
was used for training, validation, and test of the 
network, respectively. 

As a measure of the metrology’s accuracy, we 
present the standard deviation, σ, between the 
retrieved parameters and the ground truth obtained 
from AFM measurement. Figure 2a shows the 
calculated precision for retrieving the diameter, d, as 
a function of imaging distance, H. For all the three 
datasets, an optimum precision is observed for H = 
50-75 λ while the best measurement precision of  
λ/467 was achieved at H = 75 λ for nanopillars with d 
= 465-529 nm. A similar dependence is observed for 
the height measurement where a precision of λ/96 
was achieved at H = 75 λ (Fig. 2b). The observed 
dependence of the measurement precision on the 
imaging distance is supported by the Fisher 
information analysis of the diffraction patterns. 
 
3. Conclusion 
    In conclusion, we report on a deeply sub-
wavelength optical metrology technique of 3D 
nanoscale objects by using Gaussian beam 
illumination and deep learning analysis. With the 
reported metrology, a measurement precision as high 
as λ/467 was achieved for retrieving the diameter of 
platinum nanopillars at imaging distance of H = 75 λ. 
An optimum imaging distance for diffraction patterns, 
~ 75 λ, existed to yield the best precision and this is 
corroborated by the lowest Cramer-Rao bound at the 
optimum imaging distance.  The application of the 
reported optical metrology technique to more 
complicated 3D nanoscale objects and its extension to 
the imaging of such objects will be discussed further. 
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