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A PROOFS

A.1 PROOF OF LEMMA[3

Proof of Lemma[3} Let 2 C R™ be the set of values where V. xi(€) is undefined. 4 is differentiable
a.e. and €2 has Lebesgue measure 0.

Recapitulating (5) from the proof of Lemmal[I] we have

Vofulz) = — / F(@+ € Voule) de. (14)

Replacing V. pi(¢€) by any of the weak derivatives v of u, which exists and is integrable due to absolute
continuity, we have

Vo fulx) = - / S+ € v(e) de (15)

—/ flea+e)vie)de — | f(xz+e€)v(e)de. (16)
R7\Q Q
Because (i is absolutely continuous and as the Lebesgue measure of (2 is 0, per Holder’s inequality
[t +ovialde< [ if@+olde- [ polde= [ f@+alde-0=0 an
Q Q Q Q

where [, |v(€)| de = 0 follows from absolute continuity of 1. Thus,

/ flx+e)v(e)de=0. (18)
Q

Asv = V,u(e) foralle € R\ Q2
Vi fe(z) = —/Rn\Q flx+e)v(e)de —/Qf(x—i—e) v(e)de = —/Rn\Q flz+e€) Veu(e) de, (19)

showing that for all possible choices of v, the gradient estimator coincides. Thus, we complete our
proof via

vxfe<x) == /R”\Q f(x + 6) :u(e) Ve IOg U(E) de = Esfvu f('r + 6) ' 1029 - Ve— IOg ILL(E) - (20)

After completing the proof, we remark that, if the density was not continuous, e.g., uniform ([0, 1]),
eNO

then f{o} Vep(e) de = [u(e)} 0 1. This means that the weak derivative is not defined (or
e, 0

loosely speaking “the derivative is infinity”), thereby violating the assumptions of Holder’s inequality
(Eq.[T7). This concludes that continuity is required for the proof to hold. [
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A.2 PROOF OF LEMMA [6]

Proof of Lemmal6]
va'ye(x) = VVEGNM [f(x +7- 6)]
= v, [ fla oo
(u:;rJr(-”, = €= “ﬂ;l %:ﬁ, = de = %(]11)
= v, [ () ddu
= [ H V)

= [ ) (14 (Ve log (@) Te) - 1 (o) de

= Ecwul[f@+7-6)- (~1+ (Ve—logu(e)) " -€) /7]

A.3 PROOF OF THEOREM[]]

Proof of Theorem[7}
Part 1: Ofy.(z) / Ox

We perform a change of variables, u = z + Le = ¢ =L~ (u — z) and
_du de dL=(u — z) dL~1

Zde = —du = — u, —1
de-dudE— dudu T du " du = det(L™") du

Thus,

o) = [ flo+ Lot de = [ fu)-p(L = 2) - det(L ) du.
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Now,

— [ #: - V(L (- 2)) - det(L )
= [ i L (V@) - det(L ) d
:/f(erLe)l- L7 V.—pu(e) de

— [ # 4L L 0 Vo log e de

—E.p [f(:c +Le); L' V.—log ,u(e)}

Part 2: 0fy.(z) /OL

We use the same change of variables as above.
Vi Eeop [f(z + L €)i]
= VL/f(sc + Le); - pu(e) de

=i [ fu)s p(L - 0) - det(L ) du
- /f(u)i (L 0~ ) - det (L)) du
- /f(x +Le); - Vi (N(Lfl(u —2))- det(L’1)> /det(LY) de

= Ecoa| /(o + Le)i - Vi (L7 (u = 2)) - det(L 7)) - det(L) /pu(e)|

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

Now, while Vi, ( (L~ (u — z)) - det(Lfl)) may be computed via automatic differentiation, we can

also solve it in closed-form. Firstly, we can observe that
Ven(L ™ (u - ) = Vorp(e) - V(L' - (u— 2))
= VL(Verpu(e) - L1 (u— )
L -Veu(e) - (w-a)T LT
and
Vi det(L™) = —det(L)™' - L™
We can combine this to resolve it in closed form to:
Vi (M(Lfl(u —2))- det(L’l)) =L V() (u—=)" LT - det(LY)
— (L (u—2))-det(L)" - LT
— LT Vou(e) (L (u—=)) " - det(L1)
— p(e) -det(L)™ - LT
=L " -V.ule) e -det(L71)
— u(e) - det(L) LT

=—det(L™) - (L™ - Veule) - e +pule) - L")
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Combing this with equation ([@9), we have
\Y =P [f(x +L- e)z}

= Eev| (o 4+ Le)s - Vo (L (u = ) - det(L ) ) - det(L) /u(e)]

=Ecop|f(z+Le); - —det(L™Y) - (L7 - Vep(e) € +p(e) -L7T) - det(L)/ u(€)] (58)

=Ecuu |fl@+Le); - (L7 - Vep(e) e +p(e) - LT / ple) (59)
=Eeuu|f(@+Le); - —(L7T-Vep(e) € /u(e) +L7T) (60)
=Ecp|f(xz+ Le); - L. (— 14+ V.—log u(e) - eT)} . (61)

[

B DISCUSSION OF PROPERTIES OF f FOR FINITELY DEFINED f. AND V f,

When we have a function f that is not defined with a compact range with f : R™ — R, and have a
density p with unbounded support (e.g., Gaussian or Cauchy), we may experience f. or even V f.
to not be finitely defined. For example, virtually any distribution with full support on R leads to the
smoothing f. of the degenerate function f : x — exp(exp(exp(exp(x?)))) to not be finitely defined.

We say a function, as described via an expectation, is finitely defined iff it is defined (i.e., the
expectation has a value) and its value is finite (i.e., not infinity). For example, the first moment of
the Cauchy distribution is undefined, and the second moment is infinite; thus, both moments are not
finitely defined.

We remark that the considerations in this appendix also apply to prior works that enable the real
plane as the output space of f. We further remark that writing an expression for smoothing and the
gradient of a arbitrary function with non-compact range is not necessarily false; however, e.g., any
claim that smoothness is guaranteed if the gradient jumps from —oo to co (e.g., the power tower in
the first paragraph) is not formally correct. We remark that characterizing valid fs via a Lipschitz or
other continuity requirement is not applicable because this would defeat the goal of differentiating
non-differentiable and discontinuous f.

In the following, we discuss when f, or V f, are finitely defined. For this, let us cover a few
preliminaries:

Let a function f(x) be called O(b(x)) bounded if there exist ¢c,v € O(b(x)) and ¢, v € R such that
c+e(r) < f(x) <v+v(x) V. (62)

For example, a function may be called polynomially bounded (wrt. a polynomial b(z)) if (but not
only if) —b(x) < f(z) < b(x).

Moreover, let a density p with support R be called decaying faster than b(z) if u(z) €
example, the standard Gaussian density decays faster than exp(—|z|), i.e., u(z) € o(exp
Additionally, we can say that Gaussian density decays at rate exp(—xz?), i.e., u(x) €

Now, we can formally characterize finite definedness of f. and V f:
Lemma 8 (Finite Definedness of f.). f. is finitely defined if there exists an increasing function b(-)

such that f(l’) is bounded by O(b(:l:)) and u(e) S O(l/b(E + ae)/€(1+oz)) (63)
for some o > 0.

Proof. To show that f. exists, we need to show that

/R |f(z+€) - p(e)| de (64)
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is finite for all z. Let f be an absolutely upper bound of f, and w.l.o.g. let us choose f(y) = b(y) +b

with b(y) > 1 for y € R. Further, as per the assumptions j(€) < m w for all € < wy as

well as all € > wy for some w, w1, ws. Let us restrict wy, wy to wy < —|z|/a and wy > |z|/c. Tt is
trivial to see that

w2
/ |f(@+€) - ple)|de < oo (65)
w1
W.Lo.g., let us consider the upper remainder:
/ ‘fx—i—e ’de</ |fx+6 ‘de (66)
w2 w2
e - 1
< b b) - ~w| d 67
—/m G+ I+ e o w‘ ‘ “
° b(x + ¢) b
= ~w| d 68
/wz (6(1+°‘) - b(e + ) + e(1+e) . b(e + ae) v e (68)
b b(x +¢€) b
< cw| d 69
- /WQ (e(H“) ~b(e+ |z]) + e(l+a) . p(e + ae)) w‘ ¢ )
* 1 b
= /wz (€(1+a) * c(+a) . b(€+a€)> | de (70)
>l 1 b
</‘;2 W—FW de - w (71)
oo 1 _
That [ iy de is finite for the step in (72) can be shown via
* 1 >~ —1l—a 1 —a - 1 . —a 1 —a 1 —«
/w2 6(1_~_a)ale—/w26 de—{—ae ]wz—{—aelggoe —|—Ew2 = _wy
The same can be shown analogously for the integral | f;c This completes the proof. O

Lemma 9 (Finite Definedness of V f.). V f is finitely defined if there exists an increasing function
b(-) such that

f(x) is bounded by O(b(x)) and |1u(€) - Ve—log p(e)| € O(1/b(e + ae)/e1T)(73)
for some o > 0.

Proof. The proof of Lemma E also applies here, but with ‘ u(e) - Ve—log u(e)| <
for all € < wy as well as all € > wo for some w, wy, ws.

1 .
e(1+a).p(e+ae) w

Example 10 (Cauchy and the Identity). Let p be the density of a Cauchy distribution and let
f(z) = z. The tightest b for f(z) € O(b(x)) isb(z) ==

We have yi(e) € 0(1/€?) and thus p(e€) ¢ o(1/€?). f., i.e., the mean of the Cauchy distribution is not
defined.

However, its gradient V f. = 1 is indeed finitely defined. In particular, we can see that

2e
V.1 — €
N(E) Ogu(e) T (1 n 62) . (1 n 62)
This is an intriguing property of the Cauchy distribution (or other edge cases) where f. is undefined
whereas V f. is finitely and well-defined. In practice, we often only require the gradient for stochastic
gradient descent, which means that we often only require V f. to be well defined and do not necessarily
need to evaluate f. depending on the application.

0(1/€%). (714)

Additional discussions for the Cauchy distribution and an extension of stochastic smoothing to the
k-sample median can be found in the next appendix.

18



Under review as a conference paper at ICLR 2025

C STOCHASTIC SMOOTHING, MEDIANS, AND THE CAUCHY DISTRIBUTION

In this section, we provide a discussion of a special case of stochastic smoothing with the Cauchy
distribution, and provide an extension of stochastic smoothing to the k-sample median. This becomes
important if the range of f is not subset of a compact set, and thus E., [ flz+ e)] becomes undefined
for some choice of distribution .. For example, for f(z + €¢) = € and p being the density of a Cauchy
distribution, Ec,,[f(z + €)] = Ec~,[€] is undefined. Nevertheless, even in this case, the gradient
estimators discussed in this paper for V,E., [ flz+ e)] remain well defined. This is practically
relevant because E.,, | f(z + €)| does not need to be finitely defined as long as V,Ec, [f(z + €)]

is well defined. Further, we remark that the undefinedness of E., [ flz+ e)} requires the range of f
to be unbounded, i.e., if there exists a maximum / minimum possible output, then it is well defined.
Moreover, there exist f with unbounded range for which E..., [ flxz+ e)} also remains well defined.

To account for cases where E., [ flx+ e)] may not be well defined or not a robust statistic, we
introduce an extension of smoothing to the median. We begin by defining the k-sample median.

Definition 11 (k-Sample Median). For a number of samples k£ > 1, and a distribution (, we say that

EZI)ZZ).,,’ZkNC{median {z1, 22, ...,zk}} (75)
is the k-sample median. For multivariate distributions, let median be the per-dimension median.

Indeed, for & > 5, the k-sample median estimator is shown to have finite variance for the Cauchy
distribution (Theorem 3 and Example 2 in [56]]), which implies a well defined k-sample median.
Moreover, for any distribution with a density of the median bounded away from 0, the first and second
moments are guaranteed to be finitely defined for sufficiently large k. This is important for non-trivial
f with f(e) # € for at least one € with € ~ p, which implies ¢ # . Thus, rather than computing and
differentiating the expected value, we can differentiate the k-sample median.

Lemma 12 (Differentiation of the k-Sample Median). With the k-sample median smoothing as
JIN@) = By sepmo| median {f (@ + €1), ., flz+ 1)} ] (76)
we can differentiate fe(k) (z) as

wae(k) (l‘) = Ee1,...,ek~u |:f(l‘ + €T(e)) : Ver(e) —log M(er(e))] (77)

where r(€) is the arg-median of the set { f (x + €1), ..., f(x + €x) }, which is equivalent to the implicit
definition via f(x + €,(¢)) = median { f(x + €1), ..., f(2 + €x)}.

Proof. We denote ey, ~ p***) such that e1,, = [e ...,eg]T and €; ~ pu Vi € {1,....k}.

vﬂcfe(k) (z) = ViEe .. epmp {median {fle+er),..., flz+ 61@)}} (78)
= VoEq,  pim [median {flx+e), ... flz+ ek)}} (79)
=V, median{f(z + €1), ..., f(z + €x)} -,u(l:k)(q:k) deq.x, (80)
Rn-k
k
(z1,.an =2) = Z Ve, /R median {f(x1 + €1), ..., f(zr + €x)} -u(lzk)(el;k) deq.g, (81)
]=1 n-k
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As a shorthand, we abbreviate the indicator 17, ¢, )=median{f(z1+e1),....f(zp+er)} @ Ljer., and
abbreviate lf(uj):median{f(u1),...,f(uk)} as 1j,u1;k:

k
Vel @) =D Ve, | Syt ) Ly i en) dev (82)
i=1 "
k
-3 / 7 Tyt 1 g~ 2) du (33)
k
= Z/ " g ul:k * va: ,U/ )(ul:k - 37) dul:k (84)
k
= Z/ . (x+€) Ljen - —Veju(lzk)(elzk) deq.p; (85)
: R’Vl
We have
Ve, 1 (1) = pB (en) - Ve, log ™ (ern) = u™ (er) - Ve, logpley) . (86)
Thus,
V f(k) Z N f .’I,' + 6]) 1j,61;k : _:u(l:k) (Ellk}) : vej lOgM(EJ) dE];k (87)
R'n.

k
/NZ jeve Pt €) - Ve, —log p(e)] - " (er) dev (88)
n j:l

Indicating the choice of median in dependence of €;.x, we define 7(e;.x) s.t. 1T(6M)7€1:k = 1. Thus,

Vo ¥ (z) = - @+ €rger)  Ver, ) — 108 1ler(ern)) - 158 (e1.4,) dey.y, (89)

= B¢, mpaio) [f(x + €r(ern)) - Vere,, — 108 M(Gr(elzk))} (90)

This concludes the proof. O
Empirically, we can estimate V,, fe(k) (x) for s propagated samples (s > k) without bias as

ACICESS 6 fla+e) Va—logu(e)| e e~ o1

i=1
where ¢; is the probability of f(z + ¢;) being the median in a subset of k samples, i.e., under
uniqueness of g;s, we have

Z 1(g; = median{h, ..., hy})

{h1,...;hi}C{g1,--,95}

()

We remark that, in case of non-uniqueness, it is adequate to split the probability among the candidates;
however, under non-discreteness assumptions on f (density of { < oo, the converse typically implies
the range of f being a subset of a compact set), this almost surely (with probability 1) does not occur.

9i = flz+e). 92)

We have shown that the k-sample median fe(k) (z) is differentiable and demonstrated an unbiased
gradient estimator for it. A straightforward extension for the case of f being differentiable is
differentiating through the median via a k — oo-sample median, e.g., via setting s = k2. The
k — oo extension for differentiating through the median itself requires f being differentiable because,

for discontinuous f, fe(k) (x) is differentiable only for k£ < co. (As an illustration, the median of the
Heaviside function under a symmetric perturbation y with density at 0 bounded away from O is the
exactly the Heaviside function.)
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D EXPERIMENTAL DETAILS

MNIST Sorting Benchmark Experiments We train for 100 000 steps at a learning rate of 0.001
with the Adam optimizer using a batch size of 100. Following the requirements of the benchmark, we
use the same model as previous works [7], [8]], [11]. That is, two convolutional layers with a kernel
size of 5 x 5, 32 and 64 channels respectively, each followed by a ReLU and MaxPool layer; after
flattening, this is followed by a fully connected layer with a size of 64, a ReLU layer, and a fully
connected output layer mapping to a scalar. For each distribution and number of samples, we choose
the optimal v € {1,1/3,0.1}.

Warcraft Shortest-Path Benchmark Experiments Following the established protocol [17], we
train for 50 epochs with the Adam optimizer at a batch size of 70 and an initial learning rate of 0.001.
The learning rate decays by a factor of 10 after 30 and 40 epochs each. The model is the first block of
ResNet18. The hyperparameter v = 1/ as specified in Figures and

Utah Teapot Camera Pose Optimization Experiments We initialize the pose to be perturbed by
angles uniformly sampled from [15°, 75°]. The ground truth orientation is randomly sampled from
the sphere of possible orientations. The ground truth camera angle is 20°, and the ground truth camera
distance is uniformly sampled from [2.5, 4]. The initial camera distance is sampled as being uniformly
offset by [—0.5, 6], thus the feasible set of initial camera distance guesses lies in [2, 10]. The initial
camera angle is uniformly sampled from [10°,30°]. We optimize for 1000 steps with the Adam
optimizer [(S1, f2) = (0.5,0.99)] and the CosineAnnealingLR scheduler with an initial learning
rate of 0.3. We schedule the diagonal of L to decay exponentially from [0.1, 5°,5°,0.25°] - 107
to [0.1,5°,5°,0.25°] - 10~ 175 (the dimensions are camera distance, 2 pose angles, and the camera
angle). As discussed, the success criterion is finding the angle within 5° of the ground truth angle.
There is typically no local minimum within 5° and it is a reliable indicator for successful alignment.

Differentiable Cryo-Electron Tomography Experiments The ground truth values of the parame-
ters are set to 300 kV for acceleration voltage, 3 mm for the focal length, and the ground truth sample
specimen is centered as (z,y) = (0,0) nm units. For reporting errors, the acceleration voltages are
normalized by a factor of 100 to ensure that all parameters vary over commensurate ranges. For the
2-parameter optimization, the feasible set of acceleration voltage varied over a range of [0, 1000] kV
and the feasible set of the specimen’s x-position varied over the range [—5, 5]. For the 4-parameter
optimization, the feasible set of acceleration voltage varied over a range of [0, 600] kV, the focal
length ranges over [0, 6] mm, the z- and y-positions range over [—3, 3]. We use the Adam optimizer
for both experiments, with [(51, 82) = (0.5,0.9)]. For the MC Search baseline, we generate sets of
n uniform random points in the feasible region of the parameters, generate micrographs for these
random parameter tuples using the TEM simulator [53]], and identify the parameter tuple in the set
having the lowest mean squared error with respect to the ground truth image. The RMSE between
this parameter tuple and the ground truth parameters is the metric for the specific set of n randomly
generated values. This is repeated 20 times to obtain the mean and standard deviation of the RMSE
metric at that n.

D.1 ASSETS
List of assets:

 The sixth platonic solid (aka. Teapotahedron or Utah tea pot) [[57] [License N/A]

e Multi-digit MNIST [8]], which builds on MNIST [58] [MIT License / CC License]
* Warcraft shortest-path data set [17] [MIT License]

PyTorch [59] [BSD 3-Clause License]

e TEM-simulator [|53] [GNU General Public License]

D.2 RUNTIMES

The runtimes for sorting and shortest-path experiments are for one full training on 1 GPU. The
pose optimization experiment runtimes are the total time for all 768 seeds on 1 GPU. For the TEM-
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simulator, we report the CPU time per simulation sample, which is the dominant and only the
measureable component of the total optimization routine time. The choice of distribution, covariate,
and choice of variance reduction does not have a measurable effect on training times.

* MNIST Sorting Benchmark Experiments [1 Nvidia V100 GPU]

— Training w/ 256 samples: 65 min
— Training w/ 1 024 samples: 67 min
— Training w/ 2048 samples: 68 min
— Training w/ 8 192 samples: 77 min
— Training w/ 32768 samples: 118 min
» Warcraft Shortest-Path Benchmark Experiments [1 Nvidia V100 GPU]

— Training w/ 10 samples: 9 min

— Training w/ 100 samples: 19 min

— Training w/ 1 000 samples: 26 min

— Training w/ 10 000 samples: 101 min

» Utah Teapot Camera Pose Optimization Experiments [1 Nvidia A6000 GPU]

— Optimization on 768 seeds w/ 16 samples: 25 min

— Optimization on 768 seeds w/ 64 samples: 81 min

— Optimization on 768 seeds w/ 256 samples: 362 min

Differentiable Cryo-Electron Tomography Experiments [CPU: 44 Intel Xeon Gold 5118]

— Simulator time per sample on 1 CPU core: 67 sec

E ADDITIONAL EXPERIMENTAL RESULTS

Table 3: Extension of Tablewith additional numbers of samples and standard deviations.

Baselines Neu.S. Soft.S. L.DSN C.DSN E.DSN OT.S.
— 71.3 70.7 77.2 84.9 85.0 81.1
Sampling #s Gauss. Logis.  Gumbel  Cauchy  Laplace Trian.

vanilla 256 82.3+2.0 82.840.9 79.249.7 68.1£19.3 82.64+0.8 81.3%+1.2
best (cv) 256 83.1£1.6 82.7£1.8 81.6£3.6 55.6£13.3 83.7+£0.8 82.7+1.1

vanilla 1024 81.3+9.1 83.7£0.7 82.0£1.6 68.5£24.8 80.6+9.0 82.8%1.0
best (cv) 1024 83.9£0.6 84.0+£0.5 84.2+0.6 73.0+£12.6 84.3£0.6 82.4+£1.6

vanilla 2048 84.1+0.6 83.6+0.8 84.0+0.5 75.7£11.6 83.840.7 83.24+0.6
best (cv) 2048 84.2+0.5 84.2+0.6 84.6+0.4 82.0+2.2 84.84+0.5 83.4+0.5

vanilla 8192 84.0+£0.6 84.2+0.8 84.0£0.6 83.6+1.0 83.9+1.0 83.6+0.7
best (cv) 8192 84.4+0.6 84.5£0.5 84.1+£0.7 84.3+0.5 84.3£0.4 83.7£0.4

vanilla 32768 84.2+0.5 84.1+£0.4 84.5+0.7 84.94+0.5 84.4£0.5 83.4£0.8
best (cv) 32768 84.4+0.4 84.4+04 84.8+0.5 85.1+0.4 84.44+04 84.0+0.3
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Figure 14: Warcraft shortest-path experiment. Left: 1000 samples. Right:
10000 samples. Averaged over 5 seeds. Brighter is better. Values between
subplots are comparable. The displayed range is [70%, 96.5%)].
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Figure 15: Cryo-Electron Tomography Experiments: RMSE with respect to Ground Truth parameters for
different number of parameters optimized and for different number of samples per optimization step: (Top
Left) 2-parameters & number of samples=9, (Top Right) 2-parameters & number of samples=25, (Bottom Left)
2-parameters & number of samples=36, (Bottom Right) 4-parameters. No marker lines correspond to Gaussian,
x corresponds to Laplace, and A corresponds to Triangular distributions. Ascertaining optimal parameters
with minimal evaluations is important not just for high resolution imaging, but also to minimize radiation
damage to the specimen. In this light, of the covariate choices, LOO generally leads to best improvement and
none consistently leads to deterioration in performance. The Laplace and Triangular distributions lead to best
performance. For the Gaussian distribution, Cartesian RQMC is generally exhibiting best results.
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Table 4: Individual absolute values from the variance simulations for differentiable sorting in Figure |3} The
minimum and values within 1% of the minimum are indicated as bold.

(a) values for Gaussian (n = 3)

(b) values for Gaussian (n = 5)

none f(x) LOO f(z) LOO

none

regular antithetic

none f(xz) LOO none f(z) LOO

regular antithetic

MC 0.0084 0.0079 0.0046 0.0055 0.0054 0.0053
QMC (lat.) 0.0029 0.0030 0.0030 0.0036 0.0036 0.0036
RQMC (1.) 0.0030 0.0030 0.0030 0.0036 0.0035 0.0036
RQMC (c.) 0.0012 0.0013 0.0012 0.0014 0.0014 0.0014

MC 0.0241 0.0308 0.0171 0.0192 0.0192 0.0192
QMC (lat.) 0.0143 0.0144 0.0144 0.0164 0.0164 0.0164
RQMC (1.) 0.0145 0.0145 0.0144 0.0164 0.0164 0.0162
RQMC (c.) 0.0103 0.0116 0.0097 — — —

(c) values for Logistic (n = 3)

(d) values for Logistic (n = 5)

none LOO LOO

f(=@) f(=)

none

regular antithetic

none f(z) LOO mnone f(z) LOO

regular antithetic

MC 0.0028 0.0030 0.0016 0.0019 0.0019 0.0019
QMC (lat.) 0.0012 0.0012 0.0012 0.0014 0.0014 0.0014
RQMC (1.) 0.0012 0.0012 0.0012 0.0014 0.0013 0.0014
RQMC (c.) 0.0003 0.0003 0.0003 0.0004 0.0004 0.0004

MC 0.0081 0.0114 0.0061 0.0067 0.0067 0.0067
QMC (lat.) 0.0053 0.0053 0.0054 0.0060 0.0060 0.0060
RQMC (1.) 0.0053 0.0054 0.0053 0.0060 0.0060 0.0059
RQMC (c.) 0.0033 0.0036 0.0033 — — —

(e) values for Gumbel (n = 3)

(f) values for Gumbel (n = 5)

none f(z) LOO none f(z) LOO none f(z) LOO none f(z) LOO

regular antithetic regular antithetic
MC 0.0086 0.0082 0.0048 — — — MC 0.0243 0.0323 0.0177 — - —
QMC (lat.) 0.0033 0.0033 0.0032 — — —  QMC (lat.) 0.0151 0.0149 0.0150 — — —
RQMC (1.) 0.0033 0.0033 0.0033 — — — RQMC (1.) 0.0150 0.0151 0.0150 — — —
RQMC (c.) 0.0017 0.0018 0.0014 — — — RQMC(c.) 0.0124 0.0148 0.0109 — - —

(g) values for Cauchy (n = 3) (h) values for Cauchy (n = 5)

none f(xz) LOO none f(z) LOO none f(xz) LOO none f(z) LOO

regular antithetic regular antithetic

MC 0.0043 0.0044 0.0026 0.0030 0.0030 0.0030
QMC (lat.) 0.0022 0.0022 0.0022 0.0027 0.0027 0.0027
RQMC (1.) 0.0022 0.0022 0.0022 0.0027 0.0026 0.0027
RQMC (c.) 0.0006 0.0006 0.0005 0.0006 0.0006 0.0006

MC 0.0123 0.0169 0.0094 0.0102 0.0101 0.0102
QMC (lat.) 0.0088 0.0087 0.0088 0.0098 0.0098 0.0098
RQMC (1.) 0.0088 0.0088 0.0087 0.0098 0.0097 0.0097
RQMC (c.) 0.0061 0.0070 0.0056 — — —

(i) values for Laplace (n = 3)

(j) values for Laplace (n = 5)

none LOO LOO

f(=@) f(=)

none

regular antithetic

none f(z) LOO none f(z) LOO

regular antithetic

MC 0.0086 0.0074 0.0044 0.0054 0.0054 0.0054
QMC (lat.) 0.0037 0.0037 0.0038 0.0046 0.0046 0.0047
RQMC (1.) 0.0037 0.0037 0.0037 0.0047 0.0046 0.0046
RQMC (c.) 0.0009 0.0009 0.0009 0.0010 0.0011 0.0010

MC 0.0245 0.0305 0.0176 0.0191 0.0192 0.0192
QMC (lat.) 0.0159 0.0160 0.0160 0.0182 0.0180 0.0182
RQMC (1.) 0.0160 0.0159 0.0159 0.0182 0.0181 0.0181
RQMC (c.) 0.0091 0.0091 0.0091 — — —

(k) values for Triangular (n = 3)

(1) values for Triangular (n = 5)

none LOO none LOO

f(=) f(=)

regular antithetic

none LOO none LOO

f(=@) f(x)

regular antithetic

MC 0.1191 0.0683 0.0490 0.0659 0.0624 0.0602
QMC (lat.) 0.0166 0.0169 0.0166 0.0189 0.0188 0.0188
RQMC (1.) 0.0498 0.0358 0.0352 0.0444 0.0417 0.0431
RQMC (c.) 0.0682 0.0494 0.0361 0.0435 0.0461 0.0452

MC 0.3329 0.2779 0.1857 0.2255 0.2157 0.2149
QMC (lat.) 0.0844 0.0845 0.0851 0.0932 0.0931 0.0928
RQMC (1.) 0.1768 0.1872 0.1479 0.1827 0.1765 0.1737
RQMC (c.) 0.2251 0.2325 0.1430 — — —
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Table 5: Individual absolute values from the variance simulations for differentiable shortest-paths in Figure@
The minimum and values within 1% of the minimum are indicated as bold.

(a) values for Gaussian (8 x 8) (b) values for Gaussian (12 x 12)

none f(xz) LOO none f(z) LOO none f(z) LOO none f(x) LOO

regular antithetic regular antithetic
MC 1330.01 4.17 4.17 832 832 8.34 MC 6800.98 20.93 20.95 41.82 41.78 41.88
QMC (lat.) 4.04 4.04 4.04 8.04 8.04 8.07 QMC (lat.)  20.60 20.60 20.65 41.12 41.11 41.18
RQMC (1) 425 4.05 4.05 8.10 8.09 8.12 RQMC (1)  21.69 20.66 20.68 41.31 41.33 41.42

(c) values for Logistic (8 X 8) (d) values for Logistic (12 x 12)

none f(xz) LOO none f(x) LOO none f(z) LOO none f(x) LOO

regular antithetic regular antithetic
MC 1449.44 453 4.53 9.04 9.04 9.05 MC 7447.38 22.83 22.86 45.62 45.61 45.75
QMC (lat.) 442 442 443 8.80 8.80 8.83 QMC (lat.)  22.56 22.56 22.61 45.01 44.99 45.07
RQMC (1.) 444 444 4.44 8.88 8.87 8.90 RQMC (1)  22.66 22.65 22.68 45.30 45.32 45.41

(e) values for Gumbel (8 x 8) (f) values for Gumbel (12 x 12)

none f(x) LOO none f(z) LOO none f(x) LOO none f(z) LOO

regular antithetic regular antithetic
MC 227531 1035 9.08 — — — MC 11642.74 52.89 46.11 — — —
QMC (lat) 9.11 8.84 885 — — QMC (lat.)  46.88 45.41 4548 — — —
RQMC (1) 11.33 891 891 — — RQMC (1.) 58.12 45.74 4580 — —
(g) values for Cauchy (8 x 8)
none f(x) LOO none f(x) LOO
regular antithetic
MC 249027.67 263426.66 255440.59 507004.19 525973.88 509764.25
QMC (lat.) 2533.24 253293 2537.32 2531.24 253292 2537.35
RQMC (1.) 251018.28 267124.91 264146.84 476293.00 507766.00 529030.06
(h) values for Cauchy (12 x 12)
none f(z) LOO none f(z) LOO
regular antithetic
MC 1316801.88 1284078.38 1297748.25 2657888.00 2631427.25 2633413.50
QMC (lat.)  12922.79 1292231 12948.75 12931.28 1292822  12945.27

RQMC (1.) 1318297.38 1299869.75 1365709.75 2606723.50 2615697.50 2529304.00

(i) values for Laplace (8 x 8) (j) values for Laplace (12 x 12)

none f(z) LOO none f(z) LOO

none f(z) LOO none f(z) LOO

regular antithetic regular antithetic
MC 2641.38 8.15 8.15 16.28 16.27 16.29 MC 13593.82 41.40 41.45 82.73 82.71 82.92
QMC (lat.) 8.04 8.05 8.06 16.01 16.00 16.04 QMC (lat.) 41.06 41.07 41.16 81.78 81.75 81.92
RQMC (1) 8.09 8.09 8.10 16.19 16.17 16.22 RQMC (1) 41.32 41.31 41.36 82.62 82.64 82.80

(k) values for Triangular (8 x 8)

(1) values for Triangular (12 x 12)

none f(z) LOO none f(x) LOO none f(z) LOO none f(z) LOO
regular antithetic regular antithetic
MC 3090.80 10.21 10.11 20.27 20.43 20.07 MC 15975.60 49.73 49.89 99.81 99.32 100.31

QMC (lat.)

5.57 5.57 5.57 10.17 10.18 10.20
RQMC (1) 884.22 9.88 9.82 19.14 19.71 19.76

QMC (lat.) 28.28 28.28 28.34 51.79 51.79 51.86
RQMC (1.) 4606.71 49.01 49.47 98.56 98.66 98.01
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