
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MIMOUDIFF: A UNIFIED MULTI-SOURCE DATA FU-
SION FRAMEWORK VIA MIMO UNET AND REFINED
DIFFUSION FOR PRECIPITATION NOWCASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Precipitation nowcasting is a vital spatio-temporal prediction task essential for
various meteorological applications, but it faces significant challenges due to the
chaotic property of precipitation systems. Mainstream methods primarily rely on
radar data for echo extrapolation, but over longer lead times, radar echoes mainly
exhibit translation, failing to capture precipitation generation and dissipation pro-
cesses. This results in blurry predictions, attenuation of high-value echoes, and
positional inaccuracies issues. In the other hand, deterministic models using MSE
loss often produce blurry forecasts, while probabilistic models struggle with lo-
calization accuracy. To address these challenges, we propose a multi-source data
fusion framework, which integrates satellite and radar data, with former effec-
tively complementing limitations of latter. In this framework, we leverages global
motion fields to capture echo dynamics and introduces a residual diffusion mech-
anism to reduce memory usage by non-residual features. Various spatio-temporal
models (e.g. RNN-based, CNN-based, and ConvRNN-based models) can seam-
lessly integrated into this framework. Extensive experiments on a Jiangsu dataset
demonstrates significant improvements over state-of-the-art methods, particularly
in short-term forecasts. The code and models will be released.

1 INTRODUCTION

Precipitation nowcasting has long been a challenging part of weather forecasting, focusing on pro-
viding highly localized, short-term (e.g., 0-2 hours) predictions of rainfall intensity using radar
echoes and other observational data Nai et al. (2024). It is crucial for a variety of applications,
including issuing emergency rainfall alerts and providing weather-related guidance for agriculture
and transportation Qi-liang et al. (2024). The complexity of atmospheric dynamics and associated
processes complicates the accurate prediction of precipitation at both large scales and fine resolu-
tions, making it a key area of research interest Zhang et al. (2023).

Figure 1: The temporal evolution of radar echoes and Himawari-8 satellite infrared water vapor
channel C13 data, where ”sat” denotes satellite and ”rad” denotes radar. Mainstream models for
chaotic precipitation nowcasting predominantly rely on single radar echo extrapolation. Our Uni-
Diff method enhances forecasting by incorporating satellite data to improve predictions of strong
convective development and dissipation.

Traditional numerical weather prediction (NWP) methods are computationally demanding and often
impractical for very short-term forecasts due to the complexity of simulating atmospheric physical
equations Tolstykh & Frolov (2005). In contrast, radar echo extrapolation methods Han et al. (2023)
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Figure 2: Illustration of our UniDiff framework for precipitation nowcasting. The framework inte-
grates radar and satellite data through an attention-guided multi-source fusion process and applies a
spatiotemporal guided UNet for diffusion-based prediction refinement. Here, s represents satellite
data, and r denotes radar data. Both s and r undergo shallow feature extraction. The extracted
features are then passed through a cross-attention module (CR-ATT) and a self-attention module
(SE-ATT), which guide the multi-source fusion process. The fused features are further processed
by the ST-Guided UNet, where a base predictor Pθ1 generates initial coarse predictions µ. During
training, the difference y − µ represents the portion that the denoising ST Guided-UNet needs to
reconstruct, with the fused features serving as guiding conditions. During inference, the framework
samples the residual distribution from Gaussian noise, which is then added to the coarse prediction
µ to obtain the final output ŷ. This diagram represents both the training and inference processes.

offer a more computationally efficient alternative by predicting future echo patterns based on pre-
vious sequences. However, these methods typically rely on a straightforward temporal translation
of radar echoes, which can result in blurring, attenuation of high-intensity echoes, and positional
inaccuracies issues, particularly in extended forecasts Leinonen et al. (2023).

Over the past few years, applying deep learning techniques to precipitation nowcasting has
gained significant traction, with models such as the RNN-based PredRNN++ Wang et al. (2018),
ConvRNN-based TrajGRU Shi et al. (2017), and ConvLSTM Shi et al. (2015), as well as hybrid
models like Rainformer Bai et al. (2022) and AA-TransUNet Yang & Mehrkanoon (2022), showing
considerable promise. Nevertheless, these models are either deterministic models or probabilistic
models, and all have defects to varying degrees. Deterministic models often struggle to produce
sharp predictions, while probabilistic models frequently encounter challenges in achieving localiza-
tion accuracy.

More recently, advancements in diffusion models have been investigated for their potential to en-
hance precipitation forecasting. Models like PredDiff Blücher et al. (2022), MCVD Voleti et al.
(2022), Diffcast Yu et al. (2024), and SRNDiff Ling et al. (2024) integrate diffusion mechanisms
to better capture the uncertainty and stochastic nature of precipitation processes. Despite these im-
provements, even advanced diffusion models face challenges in balancing the trade-offs between
detail preservation and forecast accuracy, particularly under complex meteorological conditions.

To address these challenges, we propose a novel, flexible, and unified end-to-end framework dubbed
as UniDiff, specifically designed for precipitation nowcasting. UniDiff seamlessly integrates radar
and satellite data via an attention-guided multi-source fusion, effectively capturing and merging
the complementary strengths of diverse data. Furthermore, the combined features are processed
by a spatio-temporal sequence prediction module to model the primary motion patterns of the pre-
cipitation system and perform coarse forecasting. To further enhance forecast precision, UniDiff
incorporates a diffusion residual component based on the RST-Unet architecture. This component
leverages both deterministic models, known for their ability to capture broad spatiotemporal dy-
namics, and probabilistic diffusion models, which provide fine-grained accuracy, thereby generating
highly refined and accurate precipitation predictions.

In summary, our main contributions are as follows:
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• We introduce a novel multi-source fusion approach that effectively integrates radar and
satellite data, significantly improving the accuracy of short-term precipitation forecasts by
leveraging the complementary strengths of these data sources.

• We employ an RST-Unet-based diffusion residual component to refine coarse predictions,
fully utilizing the strengths of deterministic models in capturing spatiotemporal dynamics
and the fine-grained precision of diffusion probabilistic models.

• We design the coarse and fine processes within UniDiff to be interactive, with multi-source
fusion features and coarse prediction residuals serving as conditional cues that guide the
diffusion model in generating detailed and accurate predictions. This interactive approach
also helps to alleviate the computational and memory demands typically associated with
diffusion models.

Section II describes the related work. Section III details the architecture of our model. Section IV
presents the experimental results. Conclusions are provided in Section V.

2 RELATED WORK

2.1 DEEP LEARNING-BASED PRECIPITATION NOWCASTING

Deep learning has garnered significant attention in the domain of weather pattern analysis, offering
new possibilities for precipitation nowcasting. Initially, RNN/LSTM-based methods were exten-
sively utilized to tackle weather forecasting challenges Salman et al. (2018). Shi et al. advanced this
area by integrating convolutional operations within recurrent architectures, leading to the develop-
ment of the Convolutional LSTM (ConvLSTM) model Shi et al. (2015). In this model, convolutional
layers replaced fully connected layers for LSTM state transitions, capturing spatiotemporal depen-
dencies more effectively. Subsequently, Shi et al. introduced the Trajectory GRU (TrajGRU) model,
which incorporates a subnetwork to dynamically learn location-variant structures for recurrent con-
nections, achieving superior predictive accuracy on the HKO-7 precipitation benchmark Shi et al.
(2017).

Further advancements in this field include the Predictive Recurrent Neural Network (PredRNN)
Wang et al. (2017) and its enhanced version, PredRNN++ Wang et al. (2018). These models intro-
duced novel mechanisms, such as the Gradient Highway Unit and Causal LSTM, to address gradient
propagation challenges, thereby improving spatiotemporal prediction performance on both synthetic
and real-world datasets. Following these developments, various ConvLSTM variants, such as MIM
Wang et al. (2019), PFST Luo et al. (2021), and ATMConvGRU Yu et al. (2022), have been pro-
posed. However, these RNN-based methods continue to struggle with gradient vanishing issues and
require memory-intensive computations, particularly in handling long sequences Che et al. (2022).

In recent years, research has shifted towards exploring architectures that offer more efficient training
and reduced computational demands. For example, Han et al. Han et al. (2020) proposed a CNN-
based method that reframed the convective storm nowcasting problem as a classification task. Build-
ing on this, a UNet-based fully convolutional network (FCN) model was introduced for precipitation
nowcasting Han et al. (2021), demonstrating that even simple FCN architectures can achieve per-
formance comparable to ConvLSTM. SmaAt-UNet Trebing et al. (2021), which integrates attention
modules and depthwise-separable convolutions, further enhanced predictive accuracy on real-world
datasets, such as those from the Netherlands. Additionally, non-recurrent architectures like SimVP
Gao et al. (2022) and PhyDNet Guen & Thome (2020) have been explored, leveraging encoding-
decoding processes to make predictions. Furthermore, hybrid models combining CNNs and Trans-
formers, such as Rainformer Bai et al. (2022) and AA-TransUNet Yimin & Mehrkanoon (2020),
have shown promise in precipitation nowcasting. Despite these advances, a common challenge per-
sists: deterministic models tend to produce blurred predictions, particularly during high-intensity
precipitation events.

2.2 CONDITIONAL DIFFUSION IN PRECIPITATION NOWCASTING

Diffusion models have emerged as a pivotal framework in generative modeling, driven by their
unique approach of progressively diffusing and reconstructing noise. The foundational concepts of
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diffusion models were first introduced in Sohl-Dickstein et al. (2015), but it was the introduction
of Denoising Diffusion Probabilistic Models (DDPM) Ho et al. (2020) that brought widespread
attention to this field. These models function by iteratively denoising Gaussian noise to learn a
target distribution, allowing for content generation conditioned on various inputs, such as labels,
text, or image features. The denoising network is trained to minimize the error defined by:

E
[
|ϵ− ϵθ(

√
ᾱx0 +

√
1− ᾱϵ, t, c)|2

]
, (1)

where X0 denotes the noise-free image, ϵ ∼ N (0, 1) represents Gaussian noise, α is a time-
dependent function, and c signifies the conditioning information. The training process is centered
on accurately predicting the noise added to the system, while the reverse process reconstructs the
original image X0 from the noise distribution N (0, 1) through iterative denoising.

As diffusion models have matured, they have proven to be invaluable tools in short-term precipita-
tion forecasting, particularly due to their denoising capabilities, which allow for the reconstruction
of precise target images or sequences from noisy inputs under various conditions. For instance, the
SRNDiff model Ling et al. (2024) integrates a conditional encoder to extract features from radar im-
ages, which are subsequently processed by a denoising network to produce high-resolution precipi-
tation forecasts. This end-to-end training approach has been shown to improve prediction accuracy,
especially in scenarios involving moderate to heavy rainfall. Expanding on this, the ExtDM model
Zhang et al. (2024) introduces a distribution extrapolation mechanism, predicting future frames by
extending the distribution of current frame features. Although initially designed for video prediction,
this methodology’s emphasis on temporal consistency makes it highly applicable to precipitation
forecasting.

Moreover, the PredDiff model Blücher et al. (2022) combines condition-guided diffusion with
domain-specific knowledge, ensuring that the forecasts not only align with historical data but also
adhere to physical principles, thereby enhancing the reliability of predictions in extreme weather
conditions. The Generative Diffusion Ensemble (GDE) model Asperti et al. (2023) further show-
cases the potential of diffusion models in handling high levels of uncertainty in weather forecasting.
By generating multiple forecast scenarios based on conditional guidance, and refining these through
post-processing, GDE underscores the ability to synthesize a range of potential outcomes, leading
to more accurate and consistent precipitation predictions.

3 METHODOLOGY

3.1 UNIDIFF: A COARSE-TO-FINE MULTI-SOURCE FUSION FRAMEWORK FOR
PRECIPITATION NOWCASTING

The UniDiff framework is developed as a novel coarse-to-fine approach to address the challenges
in short-term precipitation nowcasting by leveraging both the radar and satellite data. The frame-
work generates initial coarse predictions, which are subsequently refined to produce highly accu-
rate precipitation forecasts. Formally, the inputs are represented by two spatiotemporal sequences
R = {r1, r2, . . . , rn} and S = {s1, s2, . . . , sn}, consisting of n radar and satellite images, respec-
tively, with consistent spatial and temporal resolutions (10 min and 1 km). The goal of the UniDiff
is to predict a sequence of m future radar echo frames Ŷ = {ŷ1, ŷ2, . . . , ŷm}, formulated as:

Ŷ = fUniDiff(R,S), (2)

where fUniDiff represents the proposed model that first generates coarse predictions and then progres-
sively refines them using integrated multi-source data.

The UniDiff framework consists of three core components: (1) an Attention-guided Multi-source
Fusion Module, which integrates spatiotemporal features from radar and satellite data; (2) a base-
line predictor responsible for generating the initial coarse prediction; and (3) a ST-Guided UNet
Diffusion Module, which refines these coarse predictions to produce the final, high-resolution out-
puts.

4
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3.2 ATTENTION-GUIDED MULTI-SOURCE FUSION MODULE

The Attention-guided Multi-source Fusion Module is crucial for integrating complementary spa-
tiotemporal features from radar echo maps and satellite infrared images, thereby improving the
accuracy and reliability of precipitation nowcasting.

3.2.1 SHALLOW ENCODER.

To extract relevant features from the input sequences R = {r1, r2, . . . , rn} and S =
{s1, s2, . . . , sn}, we employ the shallow encoding process. This process produces high-dimensional
feature representations Fr and Fs, defined as follows:

Fr = Φr(R), Fs = Φs(S), (3)

where Fr and Fs ∈ RH′×W ′×T ′×d are the resulting high-dimensional feature maps corresponding
to radar and satellite inputs, respectively.

3.2.2 CROSS-SOURCE ATTENTION (CR-ATT) LAYER.

The Cross-source Attention (CR-ATT) Layer fuses features across all dimensions by computing
queries, keys, and values through linear projections:

{Qr,Kr, Vr} = FrWr, {Qs,Ks, Vs} = FsWs, (4)

where Wr and Ws are weight matrices corresponding to radar and satellite features, respectively.

The spatial interaction between radar and satellite features is facilitated by exchanging queries and
computing attention-weighted values:

F att
r = softmax

(
QrK

⊤
s√

dk

)
Vs, (5)

F att
s = softmax

(
QsK

⊤
r√

dk

)
Vr, (6)

where dk denotes the dimensionality of the queries and keys. The fused features are concatenated
to form the final cross-source fused feature map:

F cross
fused = Concat

(
F att
r , F att

s

)
. (7)

3.2.3 INTERACTION FUSION DECODER.

Following the fusion of features, the Interaction Fusion Decoder further refines the combined fea-
tures through a self-attention mechanism (SE-ATT):

F self
fused = softmax

(
QfK

⊤
f√

dk

)
Vf , (8)

where Qf ,Kf , Vf are derived from the concatenated feature map F cross
fused .

The refined fused features are then passed to the ST-Guided UNet module to generate fine-grained
predictions.

5
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Algorithm 1 Condition DDPM Training for UniDiff
Input: Dataset of samples q(x0), total timesteps T
Output: Trained model parameters θ

1: Initialize: Model parameters θ
2: while training not converged do
3: Sample x0 ∼ q(x0)
4: Sample timestep t ∼ Uniform({1, . . . , T})
5: Sample noise ϵ ∼ N (0, I)
6: Compute the noisy sample:

xt =
√
αtx0 +

√
1− αtϵ

7: Take a gradient descent step on:

∇θ∥ϵ− ϵθ(xt, t,Condition)∥2

8: end while
9: return Trained model parameters θ

3.3 ST-GUIDED UNET: A MULTI-SOURCE SPATIOTEMPORAL FEATURE-GUIDED DIFFUSION
MODULE

The ST-Guided UNet is the cornerstone of the UniDiff framework, responsible for refining the coarse
predictions generated by the baseline predictor. This module is specifically designed to handle
the complex spatiotemporal dependencies inherent in precipitation nowcasting, and it employs a
diffusion process to progressively refine the predictions.

ST-Guided UNet Architecture. The ST-Guided UNet leverages a hierarchical UNet architecture
enhanced with spatiotemporal attention mechanisms, allowing it to effectively capture and model the
intricate spatial and temporal dependencies within the data. This architecture is particularly advan-
tageous for tasks that require the integration of multi-source data, such as precipitation nowcasting.

The ST-Guided UNet takes the fused features F self
fused as input, processing them through a series of

convolutional layers and attention mechanisms. These operations generate a refined residual predic-
tion p, which is used to enhance the initial coarse prediction µ provided by the baseline predictor
Pθ1 . The final prediction Ŷ is obtained through the following refinement process:

Ŷ = µ+ p, (9)

where p = E(F self
fused) represents the residual prediction refined by the ST-Guided UNet.

3.3.1 LOSS FUNCTION.

The UniDiff framework’s overall loss function is designed to optimize both the coarse prediction and
the refined prediction generated by the ST-Guided UNet. The total loss function LUniDiff is defined
as:

LUniDiff = αLcoarse + (1− α)Lrefine, (10)

where Lcoarse represents the loss associated with the coarse prediction µ, and Lrefine corresponds to
the loss incurred by the refined prediction Ŷ . The parameter α serves as a balance factor, adjusting
the contributions of the coarse and refined predictions in the total loss, thereby ensuring that the
model optimizes both components effectively during training.

Latent Diffusion in UniDiff. To further enhance the coarse predictions generated by the baseline
predictor, the UniDiff model employs a latent space approach for reconstructing the residual. This
process involves two main stages: first, the residual p = y − µ is computed using the coarse pre-
diction µ and the ground truth y; second, a conditional diffusion model reconstructs this residual

6
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within the latent space, using the multi-source fused features obtained from the attention-guided
fusion module as guiding conditions.

Conditional Diffusion Process: The latent diffusion model predicts the one-step-ahead noisy latent
residual zt−1 using the conditioned latent feature zcond derived from the fused features:

p(z0 : T | zcond) = p(zT )

T∏
t=1

pθ(zt−1 | zt, zcond), (11)

where zcond represents the conditioned latent feature vector derived from the multi-source fused
features, and pθ represents the diffusion model responsible for generating the residual prediction.

The training of UniDiff, including the training process for the diffusion model, follows the steps
outlined in Algorithm 1. The training objective in this latent space is expressed as:

Lrefine = E(x,y),t,ϵ∼N (0,I)∥ϵ− ϵθ(zt, t, zcond)∥2, (12)

where ϵθ represents the noise predictor within the diffusion model, and zcond serves as the condition-
ing information derived from the fused multi-source features.

This approach ensures that the diffusion model effectively reconstructs the residual p within the
latent space, thereby refining the final precipitation nowcasting output by leveraging the comple-
mentary strengths of radar and satellite data.

3.3.2 INFERENCE PROCESS.

The inference process follows a similar sequence to the training phase, with the primary distinction
being the application of the diffusion model for prediction. Initially, the latent state zT is sampled
from a standard Gaussian distribution N (0, I). A series of denoising steps is then performed using
the learned noise predictor ϵθ, which iteratively refines the residual state p̂. The final prediction Ŷ is
obtained by combining the denoised residual with the coarse prediction µ, as described in Eq. (9).

4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

4.1.1 DATASET.

The dataset utilized in this study comprises radar and satellite data collected over three years, from
June to August, during the period 2019 to 2021, totaling 9 months. Both radar and satellite data are
captured at a spatial resolution of 1 km and a temporal resolution of 10 minutes, producing images
with dimensions of 300×300 pixels.

For the purposes of this experiment, we leverage radar echo data in conjunction with infrared chan-
nel C13 from the Himawari-8 satellite. The dataset is divided into training and testing sets based
on temporal segmentation: the training set includes data from August 2019 to August 2021 (en-
compassing 7 months), while the testing set is derived from data collected during June and July
2019 (a total of 2 months). Following preprocessing steps, such as denoising and interpolation, a
sliding window approach is employed to segment the dataset into distinct events, with each event
comprising 6 frames of radar and satellite inputs, followed by 6 frames of radar outputs.

To focus specifically on significant precipitation events, the dataset is filtered by computing the mean
radar reflectivity across the 6 input frames. Events where the mean value exceeds a threshold of 1
dBZ are selected for further analysis. As a result, the training set contains 5859 precipitation events,
while the testing set includes 1068 precipitation events.

The data preprocessing and event selection process is detailed in Algorithm 2, which outlines the
steps involved in filtering and selecting valid precipitation events based on the criteria mentioned.

7
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Algorithm 2 Precipitation Event Filtering
Input: Radar frames R and satellite frames S (10-minute resolution, 2019-2021), Threshold
Tavg = 1 dBZ, Input frames Lin = 6, Output frames Lout = 6
Output: Set of valid precipitation events event set

1: event set← {} {Initialize empty set for events}
2: i← 1 {Initialize the index}
3: while i+ Lin + Lout − 1 ≤ len(R) do
4: is valid event← True {Assume event is valid}
5: for j ← 0 to Lin − 1 do
6: if Mean(R[i+ j]) ≤ Tavg then
7: is valid event← False {Invalidate event}
8: break
9: end if

10: end for
11: if is valid event then
12: event← (R[i : i+ Lin − 1], S[i : i+ Lin − 1], R[i+ Lin : i+ Lin + Lout − 1])
13: add event to event set
14: end if
15: i← i+ 3
16: end while
17: return event set

Figure 3: Qualitative comparison of predicted radar echoes between UniDiff and other SOTA mod-
els.

4.1.2 EVALUATION METRICS.

The performance of our precipitation nowcasting model is evaluated using several metrics across
different reflectivity thresholds (25, 35, 40, 45, 50 dBZ). Specifically, we employ the Critical Suc-

8
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Table 1: Performance comparison of different deep learning models under CSI and HSS indexes.
The best result for each metric is highlighted in bold, where ”↑” imply that higher, and lower values
are better.

Models CSI↑ HSS↑
25dBZ 35dBZ 40dBZ 45dBZ 50dBZ 25dBZ 35dBZ 40dBZ 45dBZ 50dBZ

TrajGRU 0.588 0.406 0.283 0.184 0.139 0.690 0.545 0.421 0.301 0.238
SmaAt-Unet 0.657 0.505 0.350 0.235 0.188 0.755 0.647 0.500 0.364 0.298

AA-TransUnet 0.639 0.475 0.296 0.215 0.168 0.738 0.619 0.439 0.339 0.275
PhyDnet 0.639 0.476 0.296 0.215 0.168 0.738 0.619 0.339 0.339 0.275

Earthformer 0.649 0.450 0.167 0.027 0.001 0.754 0.605 0.280 0.052 0.002
DiffCast 0.605 0.476 0.400 0.315 0.206 0.516 0.496 0.464 0.408 0.306

Our w/o MSFusion 0.656 0.520 0.437 0.342 0.222 0.592 0.551 0.510 0.445 0.330
Our w/o RST-Unet 0.630 0.605 0.543 0.469 0.388 0.743 0.732 0.684 0.623 0.549

Our 0.529 0.433 0.335 0.263 0.174 0.652 0.580 0.479 0.395 0.276

cess Index (CSI), Heidke Skill Score (HSS), False Alarm Ratio (FAR), and Probability of Detection
(POD) to assess the accuracy of precipitation predictions. Additionally, the Structural Similarity
Index Measure (SSIM) and Learned Perceptual Image Patch Similarity (LPIPS) are used to eval-
uate the quality of the generated radar images. Together, these metrics provide a comprehensive
evaluation of the model’s ability to accurately forecast precipitation and generate high-quality radar
imagery.

4.1.3 TRAINING DETAILS.

We train the UniDiff framework for 200,000 iterations using the Adam optimizer with a learning
rate of 0.0001. The diffusion model follows standard configurations with 1000 diffusion steps and
250 denoising steps for inference, utilizing the DDIM Song et al. (2020) sampler. To balance the
contributions of deterministic loss and denoising loss during training, we set the loss weight factor
α = 0.5. All experiments are conducted on a system equipped with a single Tesla V100 GPU.

Table 2: Performance comparison of different deep learning models under FAR and Image Quality
indexes. The best result for each metric is highlighted in bold, where ”↑” imply that higher, and
lower values are better.

Models FAR↓ Image Quality
25dBZ 35dBZ 40dBZ 45dBZ 50dBZ SSIM ↑ LPIPS ↓

TrajGRU 0.345 0.563 0.689 0.778 0.809 0.513 0.629
SmaAt-Unet 0.230 0.398 0.509 0.610 0.661 0.563 0.527

AA-TransUnet 0.270 0.392 0.511 0.620 0.622 0.548 0.568
PhyDnet 0.269 0.392 0.511 0.620 0.708 0.548 0.102

Earthformer 0.175 0.240 0.240 0.140 0.087 0.291 0.610
DiffCast 0.222 0.286 0.339 0.397 0.501 0.180 0.272

Our w/o MSFusion 0.181 0.242 0.290 0.341 0.441 0.189 0.284
Our w/o RST-Unet 0.182 0.214 0.243 0.284 0.331 0.285 0.382

Our 0.265 0.160 0.139 0.120 0.167 0.137 0.393

4.2 COMPARISON WITH SOTAS

4.2.1 VISUALIZATION COMPARISON.

Figure 3 presents a qualitative comparison of the predicted radar echoes between UniDiff and sev-
eral state-of-the-art (SOTA) models, including TrajGRU, SmaAt-Unet, AA-TransUNet, Phydnet,
and MCVD. The visual results clearly demonstrate that UniDiff outperforms the other models in
maintaining finer details and better capturing the spatiotemporal structures of precipitation events
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Figure 4: Comparison of CSI and HSS metrics for different SOTA models at various dBZ thresholds.

over time. The enhanced visual fidelity is a direct result of the attention-guided multi-source fusion
and the diffusion-based refinement processes integrated within UniDiff, which enable more realistic
and accurate precipitation nowcasting.

4.2.2 PER-FRAME AND THRESHOLD-BASED COMPARISON.

To further evaluate UniDiff’s performance, we conducted per-frame and threshold-based compar-
isons, as illustrated in Figure 4 and detailed in Tables 1 and 2. UniDiff consistently achieves higher
scores in Critical Success Index (CSI) and Heidke Skill Score (HSS) across various dBZ thresholds
(25, 35, 40, 45, 50 dBZ) compared to the SOTA models. Notably, UniDiff demonstrates superior
performance at higher dBZ thresholds, which are crucial for accurately predicting intense precipi-
tation events. In addition to these improvements, UniDiff also exhibits a lower False Alarm Ratio
(FAR) and a higher Probability of Detection (POD) across different thresholds, further validating its
robustness and reliability in diverse precipitation intensity scenarios. These results underscore Uni-
Diff’s effectiveness in both temporal stability and accuracy across different lead times and thresh-
olds, making it a reliable model for real-world forecasting tasks.

4.3 ABLATION STUDIES

To assess the importance of individual components within the UniDiff framework, we performed
ablation studies by systematically removing key modules, specifically the satellite data input (Our
w/o satellite), the attention-guided multi-source fusion module (Our w/o MSFusion), and the ST-
Guided UNet (Our w/o RST-Unet). The results, presented in Tables 1 and 2, reveal that the removal
of any of these components significantly degrades the model’s performance, particularly in CSI and
HSS metrics. The absence of the MSFusion module, which refers to the attention-guided multi-
source fusion process (replaced by simple element-wise addition of the two data sources), resulted
in the most substantial drop in performance, highlighting its critical role in effectively integrating
radar and satellite data to enhance prediction accuracy. These ablation studies confirm that each
component within the UniDiff framework is essential for achieving the high levels of accuracy and
robustness observed in our experiments.
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5 CONCLUSION

In this paper, we introduced UniDiff, an innovative end-to-end framework tailored for precipitation
nowcasting, which harnesses the power of multi-source data integration and diffusion-based refine-
ment. By effectively fusing radar and satellite data through an attention-guided multi-source fusion
mechanism, UniDiff capitalizes on the complementary strengths of these heterogeneous data sources
to enhance the accuracy and robustness of precipitation predictions. The framework’s coarse-to-
fine refinement strategy, utilizing an RST-Unet-based diffusion residual component, bridges the
gap between deterministic and probabilistic approaches, enabling the model to capture broad spa-
tiotemporal dynamics while preserving fine-grained details. This interactive process ensures that
the coarse predictions are progressively refined, guided by conditional cues from the multi-source
fusion, resulting in superior forecasting performance. Extensive evaluations on the Jiangsu dataset
have demonstrated that UniDiff outperforms existing state-of-the-art models, particularly in main-
taining higher accuracy as the lead time increases.
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