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ABSTRACT

Designing on-sensor compression scheme for efficient information acquisition has
always been a challenging task. Compressive sensing is a state-of-the-art sensing
scheme used for on-sensor compression. However, the undesired computational
complexity involved in the sensing stage of compressive sensing limits its prac-
tical application in resource-constrained sensor devices or high-data-rate sensor
devices dealing with high-dimensional signals. In this paper, we propose a selec-
tive sensing framework that adopts the novel concept of data-driven nonuniform
subsampling for acquiring signal information in a compressive and computation-
free fashion. Selective sensing adopts a co-optimization methodology to co-train
a selective sensing operator with a subsequent information decoding neural net-
work. We take image as the sensing modality and reconstruction as the informa-
tion decoding task to demonstrate the 1st proof-of-concept of selective sensing.
The experiment results on CIFAR10, Set5 and Set14 datasets show that selective
sensing can achieve an average reconstruction accuracy improvement in terms
of PSNR/SSIM by 3.73dB/0.07 and 9.43dB/0.16 over compressive sensing and
uniform subsampling counterparts across the compression ratios of 4-32x, respec-
tively.

1 INTRODUCTION

In the era of Internet-of-things (IoT) data explosion Biookaghazadeh et al.| (2018)), efficient in-
formation acquisition and on-sensor data compression techniques are in great need. Compressive
sensing is a state-of-the-art compressive information acquisition technique that is applicable to on-
sensor data compression. Compressive sensing performs the sensing and compression of a signal
simultaneously [Hegde & Baraniuk|(2009) by performing a linear mapping of the signal onto a low-
dimensional space. Due to the high computational complexity of the linear transformation (O(n?)),
its implementation on sensor devices requires either a high cost (implemented in the analog domain)
or large computation resources (implemented in the digital domain). To mitigate this problem, sev-
eral approaches have been proposed to reduce the computational complexity of sensing stage in
compressive sensing by constraining the sensing matrices to be sparse, binary, or ternary [Wang et al.
(2016); Nguyen et al.[ (2017); Zhao et al.| (2018)); Hong et al.| (2019). These approaches can re-
duce the computational complexity by a constant factor (O(cn?), where ¢ can be as low as 1072).
Nonetheless, the reduced computational complexity can be still too high thus hardly affordable for
resource-constrained sensor devices, e.g., low-cost IoT sensors Djelouat et al.| (2018)), or high-data-
rate sensor devices dealing with high-dimensional signals, e.g., LIDAR and depth map |Chodosh
et al. (2019).

In this paper, we propose a selective sensing framework that fundamentally addresses the above-
mentioned problem. Selective sensing adopts the novel concept of data-driven nonuniform subsam-
pling for acquiring signal information in a compressive and computation-free fashion. Specifically,
the sensing process in selective sensing is a nonuniform subsampling (or selection) process that
simply selects the most informative entries of a signal vector based on an optimized selection index
vector informed by training data. Since no computation is involved for any form of data encod-
ing, the computational complexity of the selective sensing operator is simply O(1), leading to the
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computation-free acquisition of the signal information of interestﬂ Selective sensing adopts a co-
optimization methodology to co-train a selective sensing operator with a subsequent information
decoding neural network. As the trainable parameters of the sensing operator (the selection in-
dex) and the information decoding neural network are discrete- and continuous-valued, respectively,
the co-optimization problem in selective sensing is a mixed discrete-continuous optimization prob-
lem that is inherently difficult to solve. We propose a feasible solution to solve it by transforming
the mixed discrete-continuous optimization problem into two continuous optimization subproblems
through interpolation and domain extension techniques. Both of the subproblems can be then effi-
ciently solved using gradient-descent-based algorithms. We take image as the sensing modality and
reconstruction as the information decoding task to demonstrate the 1st proof-of-concept of selective
sensing. The experiments on CIFARI10, Set5 and Setl4 datasets show that the selective sensing
framework can achieve an average reconstruction accuracy improvement in terms of PSNR/SSIM
by 3.73dB/0.07 and 9.43dB/0.16 over compressive sensing and uniform subsampling counterparts
across the compression ratios of 4-32x, respectively.

The contributions of this paper are summarized as follows:

1. We propose a new information acquisition method—selective sensing. To the best of our knowl-
edge, this is the first work that proposes a computation-free sensing operator for efficiently acquir-
ing signal information of interest in a compressive format. The computation-free nature of selective
sensing makes it a highly suitable solution for performing compressive information acquisition on
resource-constrained sensor devices or high-data-rate sensor devices dealing with high-dimensional
signals.

2. We propose and apply the novel concept of data-driven nonuniform subsampling. Specifically,
we first formulate the problem of co-optimizing a selective sensing operator with a subsequent in-
formation decoding neural network as a mixed discrete-continuous optimization problem. Further-
more, we propose a viable solution that transforms the problem into two continuous optimization
subproblems that can be efficiently solved by gradient-descent-based algorithms, which makes the
co-training feasible.

3. We empirically show that data-driven nonuniform subsampling can well preserve signal informa-
tion under the presence of the co-trained information decoding network.

2 RELATED WORK

2.1 MODEL-BASED NONUNIFORM SUBSAMPLING

Model-based nonuniform subsampling has been proposed in |Chepuri et al.| (2016) in the name of
sparse sensing. It should be noted that there is a vast difference between sparse sensing and selec-
tive sensing. Sparse sensing requires a hand-crafted sparsity model of a signal as a prior knowledge.
Consequently, the process to learn a model of a signal from data is not needed. Differently, selective
sensing requires no prior knowledge about the sparsity model of a signal as all the necessary infor-
mation needed for reconstruction can be learned from data through the training process. Therefore,
selective sensing has a much broader range of applications, especially in IoT, than sparse sensing,
considering a vast majority of IoT signals are not well studied nor understood yet, but huge amount
of IoT data are already available for training and learning.

2.2  SENSING MATRIX SIMPLIFICATION METHODS

Various approaches have been proposed to reduce the computational complexity of the sensing stage
in compressive sensing. The computational complexity of the linear transformation in compressive
sensing is O(n2). Some recent work Zhao et al.| (2018); Hong et al.| (2019) proposes model-based
methods to construct sparse sensing matrices. \Wang et al.| (2016); [Nguyen et al.| (2017) propose
data-driven methods to build binary or ternary sensing matrices. However, all these approaches

'From the hardware implementation perspective, the selection operation can be simply implemented in the
digital domain with a counter and a mux that already exists in the control logic of most sensors. We consider
such operations as control rather than computation as no data needs to be computed during the process. For
spatial signals such as images, the selective sensing operator can be also implemented as a low-cost masked
sensor array with no computation involved.
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could only reduce the computational complexity by constant factors, i.e. O(cn?), where ¢ can be
as low as 1072). A key differentiator of selective sensing is that its sensing stage adopts the novel
concept of data-driven non-uniform subsampling, while is computation-free and has a computational
complexity of O(1).

2.3 DATA-DRIVEN COMPRESSIVE SENSING

Several approaches [Kulkarni et al.| (2016); Mousavi & Baraniuk| (2017); |Yao et al.| (2019) propose
to directly learn the inverse mapping of compressive sensing through the training of reconstruc-
tion neural network models. In addition, [Mousavi et al.| (2017; [2018)); Wu et al.| (2018) propose to
co-train a customized sensing scheme with a reconstruction neural network to improve the recon-
struction accuracy. These approaches inspired us to develop a framework that co-trains a selective
sensing operator and a subsequent information decoding network to acquire signal information in a
compressive format while keeping the sensing process computation-free.

3 METHODOLOGY

In this section, we first formulate the co-optimization of a selective sensing operator and a subse-
quent information decoding network as a mixed discrete-continuous optimization problem. Then, by
applying continuous interpolation and domain extension on the integer variables, we reformulate the
mixed discrete-continuous optimization problem into two continuous optimization problems, both
of which can be solved by conventional gradient-descent-based algorithms. Based on the new for-
mulation, we extend the conventional backpropagation(BP) algorithm to derive a general co-training
algorithm to co-optimize a selective sensing operator and a subsequent information decoding net-
work. At last, by taking images as the sensing modality and using reconstruction as the information
decoding task, we propose a practical approach, referred to as SS+Net, to compose a selective sens-
ing framework for image selective sensing and reconstruction.

In this paper, a lowercase letter denotes a scalar or a scalar-valued function, and a uppercase letter
denotes a vector, a matrix, a tensor, or a vector-valued function. We use brackets to index the
element of a vector, a matrix, or a tensor. For example, assume X denotes a n-dimensional vector
X =[zo, ..., Tp_1], then X[i] = x; fori =0, -+ ,n— 1.

3.1 PROBLEM FORMULATION

Consider the original signal X is an n-dimensional vector, the subsampling rate is 7*, and the
subsampled measurement Y is a m-dimensional vector. The selective sensing of X is a nonuniform
subsampling or a selection process that can be formulated as

Y = S(X, 1) = [X[[0]}, -+, X[I[m — 1]]], (D

where S(X, I) is a function that stands for the selective sensing operator. [ is a m-dimensional
vector denoting the selection set, which contains the indices (integer values between 0 and n — 1) of
the elements to be selected. Consider N (Y, ©) is a subsequent information decoding network and
O is the trainable parameters. o is a differentiable objective function that measures the information
loss throughout the entire selective sensing process with respect to a information acquisition task.
For instance, in a signal reconstruction task, the objective function can be defined as a loss function
which measures the difference between the reconstructed signal and the original signal. The co-
optimization problem of the sensing operator S and the information decoding network NV can be
formulated as
Iopt, Oopt = argmino(N(S(X, I),0)),
1,0 )
subject to 4o, . . . , i,,—1 are integers within interval [0, n — 1]

Given the entries of © are continuous variables, and the entries of I are constrained to be integer
variables within [0, n — 1], the problem in (2) is a mixed discrete-continuous optimization problem
that can not be directly solved with conventional gradient-descent-based algorithms. This is because
the gradient of o with respect to I does not exist.
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3.2 REFORMULATION BY CONTINUOUS INTERPOLATION AND DOMAIN EXTENSION

By applying the continuous interpolation on S with respect to I and the extension on the domain of
S, we can reformulate the problem in (2) into two subproblems. For simplicity, we adopt a linear
interpolation in our method. However, nonlinear interpolation methods can be also applied.

We define a piece-wise linear function f (X, ) as

(X, i) = (X[ro] = X[ra]) (i —ia) + X[rd],
where i, = floor(i) + 1, iq = floor(i), ry, =i, mod n and rq = ig mod n.

3)

In , i is a real-valued scalar, floor() is the flooring function returning the closest integer that is
less than or equal to the input, and mod is the modulo operation. f(X,) essentially interpolates
the value of X over a continuous index 7 in a piece-wise linear fashion and extends the range of ¢
to (—oo,00). Given a X, f(X,1) is periodic over every n-length interval of 7. At integer values
of i, we have f(X,4) = X[i mod n], which returns the original value of the [i mod n]-th element
of X. Specifically, when i is an integer in interval [0,n — 1], we have f(X,7) = X[i]. Due to the
continuous interpolation and domain extension, f(X, %) is almost everywhere differentiable over 4
except for all the integer points. The choice of the gradient value at integer points turn out to be
insensitive to the algorithm performance. For simplicity, we define the derivatives of f(X,i) at
integer values of ¢ as zero. As such, we have the gradient value of f with respect to ¢ in the whole
space which can be expressed as

0] 0, if 4 is a integer,
o { ¢ 4)

0i | (X[ru] — X[rd)), otherwise.
Based on (@), we define a continuous selective sensing operator function S’ as
S/(X,I):[f(X,ZO),,f(X,'mel)} (5)

Leveraging (3) and (3)), we reformulate the mixed discrete-continuous optimization problem in (2]
into two subproblems defined as

IR,Or = argmino(N(S'(X,I),0)), (6)
7,0

and
Iopt = [round(i) mod n for each entry ¢ in Ip),

Oopt = argmin o(N(S(X, Iopt), O)), @
©

where round)() is an even rounding function that returns the closest integer value of the input, and the
initial values of © in (7) is © . Note that both the subproblems in (6) and (7) are unconstrained and
the gradient of o with respect to I and © can be calculated over the whole space in (6). Therefore,
we can solve the subproblems in (6] and sequentially using gradient-descent based algorithms.
For the brevity of illustration, we refer to the process of solving the subproblem in (6)) and (7) as the
initial-training and the fine-tuning step, respectively, in the rest of this paper.

3.3 EXTENSION OF THE BACKPROPAGATION ALGORITHM

Generally, neural network models are trained over multiple training samples and the gradients of
trainable parameters are calculated using the BP algorithm. We extend the BP algorithm and derive
the gradient calculation (with respect to I) over a batch of training samples as follows.

Given a batch of b samples X7, --- , X} of the signal X for training, the forward pass of the BP
algorithm in the initial-training step can be derived as

b
1
Y; = 8(Xi, ), Z; = N(Y:,0), 0i = 0(Z;), ovaten = 5 > o, (®)
i=1
where: = 1,--- | b, Z; is the representation of the information decoded by the network and oy, is

the loss function that measures the average information loss throughout the selective sensing process.
One can also choose to use the total information loss here.
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Algorithm 1 Main algorithm

Input: training samples X, --- , X, number of iterations maziters for initial-training step,
batch size b
Initialize I, ©
Initial-training
for iter = 1 to maxiters do
for batch =1 to % do

Forward pass

Execute (8)

Backward pass

Using the BP algorithm to calculate the gradient with respect to ©

Execute (9)

Execute (I0) to calculate the gradient with respect to [

Optimize I and O using the calculated gradients

end for

end for
Ir,©r=1,0.
Execute the rounding and modulo operations over entries of I as in (7) to get ;.
Fine-tuning
Initialize ® = Op, further optimize © with the gradients calculated by the BP algorithm while
keeping I = I,
End
Iopta eopt =1,0

In the backward pass of the BP algorithm, the gradient calculation with respect to © is the same as
in regular neural network training. The gradient calculation with respect to I can be derived using
the chain rule of derivative. Specifically, the gradient calculation of oy, With respect to Y; can be
derived as
aObatch o laoz
Y b'Y;
Subsequently, the gradient calculation of 0p4t.p, With respect to I over a batch of training samples
can be derived as

fori =1,---,b. 9

b
O0paten 1 = Doj DY
=52

oI £~ 9Y; 0l
1<~ do; Of(X;,1[0]) 1J_ i) Of (X, Ilm —1]) o
- EZ:: Y;[0] [0] »g;(gyj[mj_ 1 alm—11

Leveraging the gradient calculations in (9) and (I0)), the subproblem in (6)) can be therefore solved by
using gradient-descent-based algorithms. The outputs from the initial-training step include the opti-
mized selection set I and the corresponding reconstruction network parameters © . As the entries
of I are continuous over interval (—oo, c0), one needs further convert I to an integer selection
set I, as shown in . To compensate for the accuracy loss due to rounding, the reconstruction
network shall be further fine tuned in the fine-tuning step while keeping I, fixed as shown in (7).

The entire algorithm of co-training a information decoding network /N and a selective sensing oper-
ator S is summarized in Algorithm I

3.4 IMAGE SELECTIVE SENSING AND RECONSTRUCTION

In the rest of the paper, we take image as the sensing modality and reconstruction as the informa-
tion decoding task to demonstrate the first proof-of-concept of selective sensing. The prior work
discussed in subsection shows that neural network models can be trained to directly approx-
imate the inverse mapping of compressive sensing to perform the reconstruction. Therefore, we
hypothesize that there exists a direct mapping from the selective sensed (nonuniformly subsampled)
domain to the original image domain, and such a mapping can be well approximated by a neural
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network co-trained with the selective sensing operator. Furthermore, we hypothesize that the exist-
ing image compressive sensing reconstruction networks can be also used for image selective sensing
reconstruction.

Based on our hypotheses, we use the loss function Z(X , X)) as the objective function in , where [
is a function that measures the distance between X and X , e.g. a mean-square-error function, and
X is the output (Z in ) of the information decoding network N. As such, N is trained to directly
reconstruct the original image from the selective sensing measurement as

s’ y N >

X X. 1L

Sensing Reconstruction

We refer to the image selective sensing and reconstruction frameworks composed in such way as
SS+Net.

To evaluate the performance of SS+Net, we compare it against the compressive sensing and uniform
subsampling counterparts referred to as CS+Net and US+Net, respectively. CS+Net and US+Net use
same reconstruction networks but replace the selective sensing operator in SS+Net with a Gaussian
random sensing matrix and a uniform subsampling operator, respectively. Additionally, we set all
the hyper-parameters in SS+Net, CS+Net, and US+Net to be the same during the training for a
fair comparison. The purpose of using CS+Net and US+Net as the reference methods is to reveal
the true impact of selective sensing on compressive information acquisition in comparison to the
compressive sensing and uniform subsampling counterparts.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We conduct experiments on two datasets with two different reconstruction networks at the measure-
ment/subsampling rates ranging from 0.03125 to 0.25 (corresponding to the compression ratios of
32-4x). The first dataset is CIFAR10 [Krizhevsky et al.| (2009)). The second dataset is composed in
the same way as illustrated in [ Xu et al.| (2018)), which has 228,688 training samples and 867 testing
samples. The training samples are the patches of the augmented (rotation and flip) images from
Arbelaez et al.| (2010) and Yang et al.|(2010). The testing samples are the non-overlapped image
patches from Set5 Bevilacqua et al.| (2012) and Set14 Zeyde et al.|(2010). All the samples are of
size 64x64 with three color channels(RGB). Therefore, the sensing is performed channel-wise in all
the experiments, i.e. for each framework of SS-Net, CS-Net and US-Net, there will be three sens-
ing operators in parallel corresponding to three color channels and the sensed measurements from
three color channels are grouped together then fed into the reconstruction network. In both training
sets, 5% of the training samples are randomly selected and separated out prior to the training as the
validation set.

The two reconstruction networks we experimented with are DCNet and ReconNetKulkarni et al.
(2016). DCNet is the generator network of DCGAN [Radford et al.|(2015)). As ReconNet is designed
to reconstructs grayscale images, we made some modifications to the network structure of ReconNet
in order to reconstruct color images. Specifically, we replace the first layer of ReconNet, which is
a fully-connected layer, with three fully-connected layers in parallel to generate the feature map
corresponding to each of the three color channels. In addition, we modify the third and the sixth
convolutional layers to have three convolution kernels each in order to maintain the dimensionality
of the original image. The batch normalization layers are also added right behind each convolutional
layer (except for the last convolutional layer which is the output layer) to accelerate the training.

In the training process of SS+Net, we co-train the selective sensing operator and the reconstruction
network for 300 iterations, of which the first 150 iterations are used for the initial-training step and
the rest are used for the fine-tuning step. The models are stored and tested on the validation set
at the end of each training iteration. The stored model with the highest validation performance is
used for testing. We use two different optimizers to optimize different components of SS+Net: An
Adam optimizer with a learning rate of 0.001 is used to optimize reconstruction networks and A
SGD optimizer with a learning rate of 100000 is used to optimize sensing operators. Using a high
learning rate for training the selective sensing operators is because the gradient values with repsect
to index variables I turns out to be orders of magnitude smaller than the the rest of the gradient



Under review as a conference paper at ICLR 2021

Network: DCNet ReconNet 4 DCNet ReconNet
45-

Reconstruction Accuracy

. . 06-" o ®  — sS(Ours)
06- . - N S —cCs
° ° ° o -- Us
0.06 0.12 0.18 0.24 0.06 0.12 0.18 0.24 0.06 0.12 0.18 0.24 0.06 0.12 0.18 0.24
Measurement Rate
Dataset: CIFAR10 Set5 and Set14

Figure 1: Comparison of information acquisition performance among selective sensing (SS), com-
pressive sensing (CS), and uniform subsampling (US) measured in PSNR and SSIM. The results of
different combinations of reconstruction networks(DCNet and ReconNet) and datasets(CIFAR10,
Set5 and Set14) are plotted in different columns. The average PSNR and SSIM improvements of SS
over CS and US across all eight measurement rates are annotated on the figure.

values and the learning rate of 100000 performs well in the experiments. For the training of the
CS+Net and US+Net counterparts, except that there is no optimizer for sensing operators, all the
other experiment setups remain the same with SS+Net.

4.2 RESULTS AND ANALYSIS

The reconstruction accuracy is measured as the average reconstruction PSNR and SSIM over all
the testing cases. The experiment results of PSNR and SSIM are plotted in Figure [ As shown
in Figure [T] selective sensing achieves up to 44.92dB/0.9952 reconstruction PSNR/SSIM at the
measurement rate of 0.25 (compression ratio of 4). Even at the low measurement rate of 0.03125
(compression ratio of 32), selective sensing still achieves at least 23.35dB/0.6975 reconstruction
PSNR/SSIM. The experiment results validate our hypothesis that the direct mapping from the selec-
tive sensed domain to the original image domain can be well approximated by existing reconstruc-
tion neural networks co-trained with the selective sensing operator, and data-driven nonuniform
subsampling can well preserve signal information under the presence of the co-trained information
decoding neural network. Furthermore, the experiment results show that selective sensing consis-
tently outperforms compressive sensing and uniform subsampling, especially at higher compression
ratios. The average PSNR/SSIM improvement of selective sensing over compressive sensing and
uniform subsampling across all the experiments is 3.73dB/0.07 and 9.43dB/0.16, respectively. As
the only difference between SS+Net, CS+Net, and US+Net is the sensing operator used, the ex-
periment results imply that selective sensing better preserves signal information than compressive
sensing and uniform subsampling as a result of the co-optimization of the sensing and reconstruction
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Figure 2: Visual reconstruction quality comparison among selective sensing, compressive sensing
and uniform subsampling. The reconstruction network used is ReconNet, and the example image is
from the Set14. Across all the compression ratios, selective sensing produces a sharper image with
finer details presented, e.g. the beard and the skin textures.

stages. The detailed numerical PSNR and SSIM results are presented in Table [I] Table 2] Table 3]
and Tabled]in the appendix.

Compared with the images in CIFARI10, the images in Set5 and Set14 have more details, which
makes the reconstruction of the images in Set5 and Setl4 inherently more difficult. We take one
image from Setl4 as an example to illustrate the visual reconstruction quality comparison. As
shown in Figure [2] selective sensing reconstructs the image with finer and sharper details, such as
the beard and the textures of the skin, than compressive sensing and uniform subsampling across
all compression ratios. More visual reconstruction quality comparison showing the same results are
illustrated in Figure 3] Figure 4] and Figure [3]in the appendix. These visual reconstruction quality
comparisons show strong evidence that selective sensing better preserves signal information than
compressive sensing and uniform subsampling.

5 CONCLUSION

In this paper, we propose a selective sensing framework that adopts the novel concept of data-driven
nonuniform subsampling for acquiring signal information in a compressive and computation-free
fashion. Selective sensing adopts a co-optimization methodology to co-train a selective sensing op-
erator with a subsequent information decoding neural network. The co-training of selective sensing
is first formulated as a mixed-discrete-continuous optimization problem. By applying continuous
interpolation and domain extension to the sensing index domain with quantization and fine-tuning
techniques, we reformulate the problem into two continuous optimization subproblems that can be
solved by gradient-descent-based algorithms. This is the key to enabling the co-training of the
selective sensing operator with the subsequent information decoding neural network. The exper-
iments of image selective sensing empirically show that data-driven nonuniform subsampling can
well preserve signal information under the presence of the co-trained information decoding neural
network. The experiments on CIFARI1O, Set5, and Setl4 datasets show that the proposed selec-
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tive sensing framework can achieve an average reconstruction accuracy improvement in terms of
PSNR/SSIM of 3.73dB/0.07 and 9.43dB/0.16 over compressive sensing and uniform subsampling
counterparts across the compression ratios of 4-32x, respectively. The computation-free nature of
selective sensing makes it a highly suitable solution for performing compressive information acqui-
sition on resource-constrained sensor devices or high-data-rate sensor devices dealing with high-
dimensional signals.



Under review as a conference paper at ICLR 2021

REFERENCES

Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection and hi-

erarchical image segmentation. IEEFE transactions on pattern analysis and machine intelligence,
33(5):898-916, 2010.

Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie Line Alberi-Morel. Low-
complexity single-image super-resolution based on nonnegative neighbor embedding. 2012.

Saman Biookaghazadeh, Ming Zhao, and Fengbo Ren. Are fpgas suitable for edge computing? In
{USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 18), 2018.

Sundeep Prabhakar Chepuri, Geert Leus, et al. Sparse sensing for statistical inference. Foundations
and Trends®) in Signal Processing, 9(3—4):233-368, 2016.

Nathaniel Chodosh, Chaoyang Wang, and Simon Lucey. Deep convolutional compressed sensing
for lidar depth completion. In Computer Vision — ACCV 2018, pp. 499-513, 2019.

Hamza Djelouat, Abbes Amira, and Faycal Bensaali. Compressive sensing-based iot applications:
A review. Journal of Sensor and Actuator Networks, 7(4), 2018.

Chinmay Hegde and Richard G Baraniuk. Compressive sensing of streams of pulses. In 2009 47th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 44-51.
IEEE, 2009.

Tao Hong, Xiao Li, Zhihui Zhu, and Qiuwei Li. Optimized structured sparse sensing matrices for
compressive sensing. Signal Processing, 159:119-129, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Kuldeep Kulkarni, Suhas Lohit, Pavan Turaga, Ronan Kerviche, and Amit Ashok. Reconnet: Non-
iterative reconstruction of images from compressively sensed measurements. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 449—458, 2016.

Ali Mousavi and Richard G Baraniuk. Learning to invert: Signal recovery via deep convolutional
networks. In 2017 IEEE international conference on acoustics, speech and signal processing
(ICASSP), pp. 2272-2276. IEEE, 2017.

Ali Mousavi, Gautam Dasarathy, and Richard G Baraniuk. Deepcodec: Adaptive sensing and re-
covery via deep convolutional neural networks. arXiv preprint arXiv:1707.03386, 2017.

Ali Mousavi, Gautam Dasarathy, and Richard G Baraniuk. A data-driven and distributed approach
to sparse signal representation and recovery. 2018.

Duc Minh Nguyen, Evaggelia Tsiligianni, and Nikos Deligiannis. Deep learning sparse ternary
projections for compressed sensing of images. In 2017 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), pp. 1125-1129. IEEE, 2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Yuhao Wang, Xin Li, Kai Xu, Fengbo Ren, and Hao Yu. Data-driven sampling matrix boolean
optimization for energy-efficient biomedical signal acquisition by compressive sensing. IEEE
transactions on biomedical circuits and systems, 11(2):255-266, 2016.

Shanshan Wu, Alexandros G Dimakis, Sujay Sanghavi, Felix X Yu, Daniel Holtmann-Rice, Dmitry
Storcheus, Afshin Rostamizadeh, and Sanjiv Kumar. Learning a compressed sensing measure-
ment matrix via gradient unrolling. arXiv preprint arXiv:1806.10175, 2018.

Kai Xu, Zhikang Zhang, and Fengbo Ren. Lapran: A scalable laplacian pyramid reconstructive ad-
versarial network for flexible compressive sensing reconstruction. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 485-500, 2018.

10



Under review as a conference paper at ICLR 2021

Jianchao Yang, John Wright, Thomas S Huang, and Yi Ma. Image super-resolution via sparse
representation. IEEE transactions on image processing, 19(11):2861-2873, 2010.

Hantao Yao, Feng Dai, Shiliang Zhang, Yongdong Zhang, Qi Tian, and Changsheng Xu. Dr2-net:
Deep residual reconstruction network for image compressive sensing. Neurocomputing, 359:
483-493, 2019.

Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-
representations. In International conference on curves and surfaces, pp. 711-730. Springer, 2010.

Wenfeng Zhao, Biao Sun, Tong Wu, and Zhi Yang. On-chip neural data compression based on
compressed sensing with sparse sensing matrices. IEEE transactions on biomedical circuits and
systems, 12(1):242-254, 2018.

A APPENDIX

The code, datasets and pretrained models can be downloaded from:
https://figshare.com/s/860b61bl24c92a8cb3le.

The experiments are conducted in parallel on four RTX 2080 Ti GPU cards. One training pro-
cess(300 iterations) runs on one GPU card takes around 80 minutes.
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Table 1: Reconstruction performance comparison on CIFAR10 using DCNet as the reconstruction

network.
Metrics \ PSNR (dB)
Sensing operator \ SS CS uUsS SS over CS  SS over US
0.03125 | 28.055576 23.678496 17.903165 43770796  10.152411
0.0625 | 3376353 27.567673 20432642 6.1958566  13.330888
0.09375 | 37.788893 30.687367 22436043 7.1015266  15.352851
0.125 | 404781 33434791 24314229  7.043309  16.163872
0.15625 | 41.843324 35391706 25.934857 64516183 15908467
Measurement rate 175 | 42.571765  37.023333 27796602  5.5484323  14.775163
0.21875 | 43.227788 38326256 29525659 4.9015314 13702128
025 | 43928165 38.693752 31793804 52344128 12134361
Metrics \ SSIM
Sensing operator \ SS CS US SS over CS  SS over US
0.03125 | 0.8785 0.745 05759  0.1335 0.3026
0.0625 | 0.957 08542 0.6638 0.1028 0.2932
0.09375 | 09789 09132 0.732 0.0657 0.2469
0125 | 0987 09473 07899  0.0397 0.1971
0.15625 | 09899 09652 08334 00247 0.1565
Measurementrate = 1e75 | 09913 09747 08779 00166 0.1134
021875 | 09923 09795 09084 00128 0.0839
025 | 09932 09809 09381 0.0123 0.0551
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Table 2: Reconstruction performance comparison on CIFAR10 using ReconNet as the reconstruction

network.
Metrics \ PSNR (dB)
Sensing operator \ SS CS uUsS SS over CS  SS over US
0.03125 | 28.510575 24.162001 17.833156 43485742  10.677419
0.0625 | 33.835395 28244744 2037912 55906511 13456275
0.09375 | 37.465897 31460441 22615043 6005456  14.850854
0.125 | 40.505386 34.428422 24.507658 6.0769649  15.997729
0.15625 | 41.91067 37.112229 26295812 47984413  15.614858
Measurement rate o7 | 42.64523  39.830833 28173974 2.8143966  14.471256
0.21875 | 44.613196 41.977892 30068614 26353032  14.544581
025 | 44922706 43377697 32.157417 1.5450004  12.765289
Metrics \ SSIM
Sensing operator \ SS CS US SS over CS  SS over US
003125 | 08916 07629 05733 0.1287 0.3183
00625 | 09602 08683 06694 00919 0.2908
0.09375 | 09793 09225 07474 00568 0.2319
0125 | 0988 09549 08046  0.0331 0.1834
015625 | 09918 09731  0.8548 0.0187 0.137
Measurement rale = 75| 09935 0.9849 0.889 0.0086 0.1045
021875 | 09952 09903 09199  0.0049 0.0753
025 | 09952 09932 09427 0.002 0.0525
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Table 3: Reconstruction performance comparison on Set5 and Set14 using DCNet as the reconstruc-

tion network.

Metrics \ PSNR (dB)
Sensing operator \ SS CS uUsS SS over CS  SS over US
0.03125 | 23.356654 21.988134 19158458 13685191  4.1981953
0.0625 | 25.020666 23655472 21.360483 13651944  3.6601834
0.09375 | 25.821571 24320524 22.822223 15010468 29993483
0.125 | 29.330996 24941122 24.049497 43898736  5.2814991
0.15625 | 30.142491 26.041837 25.023534 4.1006538  5.1189574
Measurement rate 75| 30.798615 28254278 25.973201  2.5443367  4.8254134
0.21875 | 31402867 28782112 26572408 2.6207543  4.8304582
025 | 32040132 29214131 27364247 2.8260015  4.6758851
Metrics \ SSIM
Sensing operator \ SS CS US SS over CS  SS over US
003125 | 06975  0.6131 0.539 0.0844 0.1585
00625 | 07696 06672 05995 0.1024 0.1701
0.09375 | 0.8079 07041  0.6448 0.1038 0.1631
0.125 | 0.8493 0.731 0.688 0.1183 0.1613
015625 | 0.8674 07559 07193 0.1115 0.1481
Measurement rale = 75| 0.8811  0.7866 0.75 0.0945 0.1311
0.21875 | 0.8919 0.803 07719  0.0889 0.12
025 | 09005 08159 07969  0.0846 0.1036
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Table 4: Reconstruction performance comparison on Set5 and Set14 using ReconNet as the recon-

struction network.

Metrics \ PSNR (dB)
Sensing operator \ SS CS uUsS SS over CS  SS over US
003125 | 2514523 23492886 19.141701 1652344  6.0035286
0.0625 | 27.002097 2527621 21.385219 1725887  5.6168772
0.09375 | 28276923 2641306 22907161 18638628 53697623
0.125 | 29357467 272674 24135962 2.0900672 52215052
0.15625 | 30.240035 27.814269 25232525 24257659  5.0075104
Measurementrate = 1 e75 | 3118125 28651692 26099135  2.5205576  5.0821148
0.21875 | 31.844453  29.195588 26796003 2.6488653  5.0484498
025 | 32397313 29.493561 27412122 29037527 49851912
Metrics \ SSIM
Sensing operator \ SS CS US SS over CS  SS over US
0.03125 | 0.7256 0.625 05444  0.1006 0.1812
00625 | 07924 06816 06019  0.1108 0.1905
009375 | 0.8314 07218 06547  0.1096 0.1767
0.125 | 08575 07519 0.698 0.1056 0.1595
015625 | 0.8783 07678 07354  0.1105 0.1429
Measurementrate ) 1e75 | 08932 07891 07607 0.1041 0.1325
021875 | 09026 08106  0.7832 0.092 0.1194
025 | 09107 08194 08038 00913 0.1069
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Figure 3: Visual reconstruction quality comparison among selective sensing, compressive sensing
and uniform subsampling. The reconstruction network used is ReconNet, and the example image is
from the Set5 dataset. Across all the compression ratios, selective sensing produces a sharper image
with finer details presented, e.g. the eyelashes and the textures of the hat.
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Original

Compression
Ratio
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Sensing(Ours)

Compressive
Sensing

Uniform
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(22.19,0.82) (17.16,0.62) (14.63,0.46) (13.39,0.38)

Figure 4: Visual reconstruction quality comparison among selective sensing, compressive sensing
and uniform subsampling. The reconstruction network used is ReconNet, and the example image is
from the Set5 dataset. Across all the compression ratios, selective sensing produces a sharper image
with finer details presented, e.g. the textures on the wings.
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Figure 5: Visual reconstruction quality comparison among selective sensing, compressive sensing
and uniform subsampling. The reconstruction network used is ReconNet, and the example image
is from the Setl4 dataset. Across all the compression ratios, selective sensing produces a sharper
image with finer details presented, e.g. the edges of the stripes.
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