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Abstract

Natural–gradient methods markedly accelerate the training of Physics-Informed Neural Net-
works (PINNs), yet their Gauss–Newton update must be solved in the parameter space,
incurring a prohibitive O(n3) time complexity, where n is the number of network trainable
weights. We show that exactly the same step can instead be formulated in a generally
smaller residual space of size m =

∑
γ Nγdγ , where each residual class γ (e.g. PDE interior,

boundary, initial data) contributes Nγ collocation points of output dimension dγ .
Building on this insight, we introduce Dual Natural Gradient Descent (D-NGD). D-NGD
computes the Gauss–Newton step in residual space, augments it with a geodesic-acceleration
correction at negligible extra cost, and provides both a dense direct solver for modest m
and a Nyström-preconditioned conjugate-gradient solver for larger m.
Experimentally, D-NGD scales second-order PINN optimization to networks with up to
12.8 million parameters, delivers one- to three-order-of-magnitude lower final error L2 than
first-order (Adam, SGD) and quasi-Newton methods, and —crucially —enables full natural
gradient training of PINNs at this scale on a single GPU.

1 Introduction

Partial Differential Equations (PDEs) Partial Differential Equations (PDEs) form the backbone of
mathematical models used to describe a wide array of physical phenomena—ranging from fluid flow and
heat transfer to the behavior of advanced materials. Conventional discretization-based techniques, such as
finite element and spectral methods, often demand highly refined meshes or basis expansions to attain the
desired level of accuracy. This refinement drives up computational costs, especially in engineering scenarios
that call for numerous simulations with varying boundary conditions or parameter sets. In recent years,
machine learning approaches—most notably those employing neural networks—have emerged as a promising
complement or substitute for these traditional solvers, offering potential gains in efficiency and flexibility
Raissi et al. (2019); Li et al. (2021).

Physics-Informed Neural Networks (PINNs) PINNs are a machine learning tool to solve forward
and inverse problems involving partial differential equations (PDEs) using a neural network ansatz. They
have been proposed as early as Dissanayake & Phan-Thien (1994) and were later popularized by the works
Raissi et al. (2019); Karniadakis et al. (2021). PINNs are a meshfree method designed for the seamless
integration of data and physics. Applications include fluid dynamics Cai et al. (2021); Jnini et al. (2025a;b),
solid mechanics Haghighat et al. (2021) and high-dimensional PDEs Hu et al. (2023) to name but a few
areas of ongoing research.

Despite their popularity, PINNs are notoriously difficult to optimize Wang et al. (2020) and fail to provide
satisfactory accuracy when trained with first-order methods, even for simple problems Zeng et al. (2022);
Müller & Zeinhofer (2023). Recently, second-order methods that use the function space geometry to design
gradient preconditioners have shown remarkable promise in addressing the training difficulties of PINNs Zeng
et al. (2022); Müller & Zeinhofer (2023); Ryck et al. (2024); Jnini et al. (2024); Müller & Zeinhofer (2024).
While second-order optimizers, such as those based on Gauss-Newton (GN) principles, can harness curvature
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information for improved convergence, their canonical forms entail O(n3) per-iteration complexity and O(n2)
memory for n parameters, rendering them impractical for large-scale deep neural networks. Matrix-free
methods have been proposed to compute Gauss-Newton directions without explicitly forming the Hessian
Martens (2010); Schraudolph (2002); Zeng et al. (2022); Jnini et al. (2024). Despite reducing computational
costs, these methods suffer from ill-conditioning, leading to slow convergence for large networks without
efficient preconditioners.

To address these challenges, this work proposes Dual Natural Gradient Descent, a novel optimization
framework incorporating the following key features:

• We propose a primal–dual viewpoint of the Gauss–Newton step: instead of solving the
usual n-dimensional normal equations in parameter space, we work with their dual in the m-
dimensional residual feature space, where m =

∑
γ Nγdγ , with each residual class γ (e.g. PDE

interior, boundary, initial data) contributing Nγ collocation points of dimension dγ , and since m≪ n
in practical PINNs this dual system is far cheaper to assemble, store, and solve than the original
parameter-space system.

• We propose an efficient geodesic-acceleration correction within the same dual frame-
work. A second-order (geodesic) term is obtained by solving one additional linear system with the
same left-hand side and reuses the factorisation already built for the primary dual operator, adding
negligible overhead while improving step quality.

• We propose a low-rank Nyström spectral preconditioner for large batch sizes. When
m is too large for direct factorisation, we propose using a Hessian-Free iterative method with a
preconditioned conjugate gradient, we provide an efficient Nyström preconditioner based on column
sampling for the dual problem.

• We demonstrate scalability and accuracy on several PDE benchmarks. The resulting dual
natural-gradient method trains PINNs with tens of millions of parameters and dimensions in the
hundreds of thousands, consistently outperforming first-order and quasi-Newton baselines by more
than an order of magnitude across several representative problems. To the best of our knowledge,
our contribution is the first to extend Natural-Gradient methods to PINNs of this scale.

Related Works

Second-order Optimization in PINNs The challenge of effectively training PINNs has spurred signif-
icant research, with a growing consensus underscoring the necessity of second-order optimization methods.
Recent literature highlights this trend: approaches leveraging an infinite-dimensional perspective, for in-
stance, have demonstrated the potential to achieve near single-precision accuracy Zeng et al. (2022); Müller
& Zeinhofer (2023); Ryck et al. (2024); Jnini et al. (2024); Zampini et al. (2024). However, the practical
application of these methods is often constrained by their high per-iteration cubic computational cost, partic-
ularly when scaling to larger network architectures due to the need to solve substantial linear systems in the
parameter space. Exploration into more scalable alternatives includes quasi-Newton methods, which Kiyani
et al. (2025) evaluate for their efficiency and accuracy across stiff and non-linear PDEs by leveraging historical
gradient information. Complementing this, Wang et al. (2025) provide a theoretical framework for gradient
alignment in multi-objective PINN training, demonstrating how second-order information, through Hessian
preconditioning, can resolve directional conflicts between different loss components, thereby demanding more
sophisticated curvature-aware approaches.

Hessian-Free Curvature Approximation Matrix-free methods have been proposed to compute Gauss-
Newton directions without explicitly forming the Hessian Martens (2010); Schraudolph (2002); Zeng et al.
(2022); Jnini et al. (2024). Despite reducing computational costs, these methods suffer from ill-conditioning,
leading to slow convergence for large networks without efficient preconditioning Jnini et al. (2024). Our
algorithm addresses this by proposing an efficient preconditioner for the dual system, significantly improving
the inner solver convergence. This idea of cutting large gaps within the leading eigenvalues of the Hes-
sian spectrum is also aligned with recent advances in preconditioning techniques, such as volume sampling
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Rodomanov & Kropotov (2020), polynomial preconditioning Doikov & Rodomanov (2023), and spectral
preconditioning Doikov et al. (2024); Frangella et al. (2023).

2 Preliminaries

2.1 Physics-Informed Neural Networks

For a given domain Ω ⊂ Rd (or ΩT = I×Ω for time-dependent problems, where I is a time interval), consider
a general PDE of the form

Lu = f in Ω,
subject to initial and boundary conditions, collectively denoted as u = g on ∂Ω (where ∂Ω here generally
refers to the spatio-temporal boundary). PINNs approximate the solution u of the PDE using a neural
network ansatz uθ, parameterized by θ. The loss function is defined as:

L(θ) = 1
2NΩ

NΩ∑
n=1

(Luθ(xn)− f(xn))2 + 1
2N∂Ω

N∂Ω∑
n=1

(uθ(xn)− g(xn))2
, (1)

where {xn ∈ Ω}NΩ
n=1 are the collocation points in the interior of the domain and {xn ∈ ∂Ω}N∂Ω

n=1 are the points
on which initial and boundary conditions are enforced.

2.2 Gauss–Newton method for PINNs

Residuals and Jacobian. Let i = 1, . . . , NΩ and j = 1, . . . , N∂Ω. Define the discrete residual map to
r : (θ)→ Rm to be

r(θ) =
(
rΩ(θ), r∂Ω(θ)

)
∈ Rm, m = NΩdΩ +N∂Ωd∂Ω,

with
rΩ(θ)i = 1√

NΩ

(
Luθ(xi)− f(xi)

)
∈ RdΩ , r∂Ω(θ)j = 1√

N∂Ω

(
uθ(xb

j)− g(xb
j)

)
∈ Rd∂Ω .

Its Jacobian is J(θ) = ∂θr(θ) ∈ Rm×n and the loss is

L(θ) = 1
2∥r(θ)∥

2
2.

Gauss–Newton natural gradient descent. First-order optimizers, such as gradient descent and Adam,
often fail to provide satisfactory results due to the ill-conditioning and non-convexity of the loss landscape, as
well as the complexities introduced by the differential operator LWang et al. (2020). Instead, function-space-
inspired second-order methods have lately shown promising results Zeng et al. (2022). For the remainder of
this paper, we adopt Gauss–Newton Natural Gradient Descent (GNNG) Jnini et al. (2024). Linearizing the
residual map in function space and pulling the resulting Gauss–Newton operator onto the tangent space of
the ansatz yields the Gauss–Newton Gramian:

G(θ) = J(θ)⊤J(θ), (2)

and update rules at iteration k:

θk+1 = θk −G(θk)†∇θL(θk), k = 0, 1, 2, . . . . (3)

It was shown that the Gauss–Newton direction in function space corresponds exactly to the Gauss–Newton
step for L(θ) = 1

2∥r(θ)∥2
2 in parameter space when the same quadrature points are employed Jnini et al.

(2024); Müller & Zeinhofer (2024).

Least–squares characterisation.

Equivalently, the Gauss–Newton increment is the solution of the linearized problem

∆θ⋆ = arg min
∆θ∈Rn

1
2
∥∥r(θk) + J(θk) ∆θ

∥∥2
2, (4)
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whose first-order optimality conditions give the normal equations

J(θk)⊤J(θk) ∆θ⋆ = − J(θk)⊤r(θk), (5)

Given that ∇θL(θk) = J(θk)⊤r(θk),we recover the update equation 3.

3 Optimization in the Residual Space

In this section we propose a primal–dual viewpoint on Gauss–Newton updates for PINNs: the same parameter
update can be cast either as an n × n linear system in parameter space or as an m ×m system in residual
space (where in typical cases m ≪ n), allowing the residual-space system—which can be solved by a dense
factorization or a matrix-free iterative method—to scale to problems with large batch sizes. In Section 3.3 we
detail the iterative solver and the low-rank Nyström preconditioner that accelerates it. We incorporate the
classic Levenberg–Marquardt damping λ > 0 Levenberg (1944); Marquardt (1963) into the Gauss–Newton
model equation 4, defining the Tikhonov-regularised problem

min
∆θk∈Rn

Fλ(∆θk) := 1
2
∥∥r(θk) + J(θk) ∆θk

∥∥2
2 + λ

2 ∥∆θk∥2
2.

Proposition 3.1 (Primal normal equations). For any parameter vector θk ∈ Rn, define the primal Gramian

G(θk) := J(θk)⊤J(θk).

The unique minimiser ∆θ⋆
k ∈ Rn of the damped least-squares subproblem then satisfies(

G(θk) + λIn

)
∆θ⋆

k = −∇θL(θk).

Here, ∇θL(θk) = J(θk)⊤r(θk) is the gradient of the unweighted least-squares loss 1
2∥r(θk)∥2

2.

Proof Outline: The proof follows by standard differentiation of the objective function Fλ(∆θk) with respect
to ∆θk and setting the result to zero. The objective is strictly convex for λ > 0, guaranteeing a unique
minimizer. The detailed derivation is provided for completeness in Appendix A.1.1.

The linear system given in Proposition 3.1 corresponds to the classical Levenberg–Marquardt update in
the n-dimensional parameter space. Forming and factorizing the matrix J(θk)⊤J(θk) + λIn in equation 3.1
requires O(mn2 + n3) time and O(n2) memory, which becomes impractical when n is large.

3.1 Dual Formulation via KKT in Residual Space

An alternative formulation to the system equation 3.1 can be derived by working in the m-dimensional
residual space.
Definition 3.1 (Residual Gramian). Let the residual Gramian matrix be defined as

Kk := J(θk) J(θk)⊤ ∈ Rm×m.

We introduce an auxiliary variable yk := J(θk) ∆θk ∈ Rm and enforce the constraint yk = J(θk) ∆θk

using Lagrange multipliers νk ∈ Rm. The Lagrangian for the subproblem of minimizing Fλ(∆θk) (from
Proposition 3.1) becomes

L (∆θk, yk, νk) = 1
2∥r(θk) + yk∥2

2 + λ
2 ∥∆θk∥2

2 + ν⊤
k

(
yk − J(θk) ∆θk

)
.

Applying the Karush–Kuhn–Tucker (KKT) conditions for optimality provides the dual formulation.
Theorem 3.1 (Dual Normal Equations). Let yk := J(θk) ∆θk ∈ Rm be the predicted residual decrement
associated with a parameter step ∆θk ∈ Rn. Applying the KKT conditions to the minimization of Fλ(∆θk)
yields the dual linear system for the optimal y⋆

k:

(Kk + λIm) y⋆
k = − J(θk)∇θL(θk). (6)
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The parameter update can then be recovered by

∆θ⋆
k = − 1

λ

(
J(θk)⊤y⋆

k +∇θL(θk)
)
. (7)

Conversely, any pair (∆θk, yk) satisfying equation 6 and equation 7 constitutes the unique primal–dual opti-
mum of the Levenberg-Marquardt subproblem.

Proof Outline: The KKT conditions are derived by setting the partial derivatives of the Lagrangian
L (∆θk, yk, νk) with respect to ∆θk, yk, and νk to zero. Algebraic manipulation of these conditions yields the
dual system and the recovery formula for the parameter update. The full proof is available in Appendix A.1.2.

Primal vs Dual Perspectives. We have derived two equivalent formulations for the LM step: the primal
system in the n-dimensional parameter space, involving the n×n primal Gramian G+λIn (with G = J⊤J),
and the dual system in the m-dimensional residual space, involving the m × m matrix Kk + λIm (with
Kk = J(θk)J(θk)⊤). In practice one solves the smaller system directly—using the primal when n ≪ m
(cost O(n3)) or the dual when m ≪ n (cost O(m3))—or resorts to an iterative, matrix-free Preconditioned
Conjugate Gradient solver with preconditioning for large-scale problems.

3.2 Geodesic Acceleration

When interpreting the Levenberg–Marquardt step as a velocity vk along a geodesic in parameter space, one
can improve the update by adding a second-order correction that accounts for an acceleration ak along that
same geodesic:

θk+1 = θk + vk + 1
2 ak,

where ak satisfies
J(θk) ak = − fvv,

and

fvv := d2

dt2
r
(
θk + tvk

)∣∣∣∣
t=0
∈ Rm

is the second directional derivative of the residual along vk. Computing fvv involves two Jacobian-vector
products, capturing curvature beyond the standard LM step. Below we show that this geodesic-acceleration
term can also be computed using our proposed primal–dual formalism.
Definition 3.2 (Geodesic-Acceleration Subproblem). At iteration k, the acceleration correction ak is the
minimiser of the damped system

min
a∈Rn

1
2
∥∥J(θk) a + fvv

∥∥2
2 + λ

2 ∥a∥
2
2, (8)

where fvv is defined above.
Proposition 3.2 (Primal and Dual GA Characterizations). Let Kk = J(θk)J(θk)⊤. The unique solution
ak of equation 8 admits both a primal and a dual formulation:

(Primal)
(
J(θk)⊤J(θk) + λIn

)
ak = − J(θk)⊤fvv, (9)

(Dual) (Kk + λIm) ya,k = −Kk fvv, ak = − 1
λ J(θk)⊤(

ya,k + fvv

)
. (10)

Remark 3.1 (Implementation Cost of GA). Solving for ak via the dual system equation 10 reuses the same
operator Kk + λIm as the primary LM step. Hence, once a factorization or preconditioner for the dual solve
is available, the only extra costs are for computing fvv (one Hessian–vector product or two JVPs) and solving
one additional linear system with the existing operator. If using an iterative solver, the preconditioner may
be shared; with a direct method, only an extra back-substitution is needed.
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3.3 Hessian-Free Solution of the Dual System

We aim to solve the dual linear system, previously stated in equation 6. For moderate residual dimension m,
one can assemble K∥ and solve equation 6 with a dense Cholesky factorisation. When the total number of
residual evaluations m (which can be thought of as batch size in this context) is very large, however, building
K∥ explicitly is not tractable. In such cases, we turn to the Conjugate-Gradient (CG) method (Hestenes &
Stiefel, 1952; Shewchuk, 1994; Saad, 2003). CG only requires repeated applications of the linear operator
v 7→ (K∥ + λIm)v and the right-hand side vector.
Definition 3.3 (Kernel–Vector Product). For v ∈ Rm the action of the operator is obtained in three
automatic-differentiation passes:

1. Reverse mode: u := J⊤v ∈ Rn.

2. Forward mode: w̃ := J u = J J⊤v ∈ Rm.

3. Tikhonov shift: w := w̃ + λ v.

We denote this composite map by w = kvp(v).

A CG iteration therefore invokes kvp(·) once, allowing us to solve equation 6 Hessian-free: neither J nor K
is ever formed explicitly, yet the exact solution is recovered through operator evaluations alone.

3.3.1 Low-Rank Nyström Spectral Preconditioner for the Dual System

Both the primal and residual Gramians share the same eigenvalues. In typical PINN application, they often
show rapidly decaying spectra and a large spread between the top and bottom eigenvalue Ryck et al. (2024),
which leads to severe ill-conditioning. To address this, we propose a spectral preconditioner. Inspired by
the Nyström ideas of Frangella et al. (2023); Martinsson & Tropp (2020), we approximate the kernel K
through a rank-truncated eigendecomposition K ≈ U Λ̂U⊤. Here, the columns of U ∈ Rm×ℓ′ are approximate
eigenvectors and Λ̂ ∈ Rℓ′×ℓ′ contains the corresponding approximate eigenvalues, where ℓ′ is the effective
rank determined by the Nyström procedure (typically ℓ′ ≤ ℓ, the initial number of landmarks). We then
build the operator

P−1 = U(Λ̂ + λIℓ′)−1U⊤ + 1
λ

(
Im − UU⊤)

, (11)

which damps the leading Nyström modes by the regularised factors (λ̂i + λ)−1 and acts as λ−1I on the
orthogonal complement. We employ P−1 as a left preconditioner in Conjugate Gradient, one application of
the preconditioner requires only two dense matrix–vector products with U or U⊤. Empirically, this spectral
preconditioner compresses the spread of eigenvalues and reduces CG iterations.

4 Algorithmic Implementation

This section outlines the implementation of the dense and iterative dual solvers. Detailed algorithms are
provided in Appendix A.2.

4.1 Dense Dual Solver

For problems where the residual dimension m is considerably smaller than the parameter dimension n
(m ≪ n), a direct approach to solving the dual system (Equation equation 6) is feasible. This involves
explicit formation of the regularized residual Kernel, K̃, and a Cholesky decomposition.

Residual–Kernel Assembly Let the residual vector introduced in Sestion 2.2 be

r(θ) =
(
rΩ(θ), r∂Ω(θ)

)⊤
, m = NΩdΩ +N∂Ωd∂Ω,
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with Jacobian split J(θ) = (JΩ; J∂Ω). The Gramian required by the dual formulations (Sections 3.1–3.3) is

K = J J⊤ =
(
KΩΩ KΩ∂Ω
K∂ΩΩ K∂Ω∂Ω

)
, K∂ΩΩ = K⊤

Ω∂Ω.

The Kernel K = JJ⊤ is built on-the-fly, block-wise, and in parallel (Algs. 3, 2). Vector-Jacobian products
(VJPs) provide Jacobian components for K entries; these components are then discarded, avoiding storage
of the full m×n Jacobian J . Through Jax Bradbury et al. (2018) just-in-time compilation, The Accelerated
Linear Algebra (XLA) compiler optimizes these on-the-fly computations; its operator fusion capabilities en-
hance speed and reduce memory overhead by preventing the explicit materialization of complete intermediate
Jacobian arrays before their consumption. Moreover, symmetry is exploited for diagonal blocks. The final
matrix used by the dense solver is the regularized residual Gramian K̃k = Kk + λIm.

Dense Dual Solver Steps With the fully assembled and regularised Gramian K̃k in hand, we perform a
single Cholesky factorisation and two back-substitutions to obtain both the Gauss–Newton velocity and its
geodesic correction. The procedure is detailed in Algorithm 4 .

Overall cost. Assembly is O(m2n) (assuming JVPs/VJPs for kernel entries), Cholesky 1
3m

3, and each
triangular solve O(m2); memory is O(m2). This remains efficient for m up to a few thousand.

4.2 Iterative Dual Solver

When the residual dimension m becomes too large for the dense solver outlined in Section 4.1, forming and
factorizing the m × m residual Gramian K (Definition 3.1) becomes computationally prohibitive. In such
scenarios, we resort to an iterative method to solve the dual linear system presented in equation 6. Specifi-
cally, we employ the Preconditioned Conjugate Gradient (PCG) algorithm. For efficient PCG convergence,
we employ the Nyström-based spectral preconditioner detailed in Section 3.3.1. This approach relies on
the approximation K ≈ U Λ̂U⊤ and was proposed in Arcolano (2011), the practical construction of which is
outlined next. First, a small subset of ℓ≪ m residual components are selected as landmarks. In the context
of PINNs, a landmark corresponds to a specific scalar residual value, evaluated at a single col-
location point and for a single output dimension of the residual map. Let I = {i1, . . . , iℓ} denote
the set of indices for these ℓ landmark residuals.

Using these landmarks, we form two key submatrices of the full Gramian K:

• KII ∈ Rℓ×ℓ: The Gramian matrix computed between the landmark residual components themselves.

• KCI ∈ R(m−ℓ)×ℓ: The Gramian matrix computed between the non-landmark residual components
(indexed by C = {1, . . . ,m} \ I) and the landmark residual components.

An eigendecomposition is performed on the (typically small) landmark Gramian: KII = QΛQQ
⊤, where

Q ∈ Rℓ×r contains r orthonormal eigenvectors corresponding to the r positive eigenvalues in the diagonal
matrix ΛQ ∈ Rr×r (where r ≤ ℓ is the effective rank of KII).

An extended, non-orthogonal basis Ũ ∈ Rm×r for the Nyström approximation is then constructed. The rows
of Ũ corresponding to the landmark indices are set to Q (i.e., ŨI ← Q), while the rows corresponding to
non-landmark indices are computed as ŨC ← KCIQΛ−1

Q . The Nyström approximation of the Gramian is
then given by K̂ = ŨΛQŨ

⊤.

To obtain an orthonormal eigendecomposition U Λ̂U⊤ for this approximation K̂, which is beneficial for
constructing the preconditioner, we proceed as follows. Define M = ŨΛ1/2

Q ∈ Rm×r. Performing a Singular
Value Decomposition (SVD) onM yieldsM = V ΣW⊤, where V ∈ Rm×r has orthonormal columns, Σ ∈ Rr×r

is diagonal with singular values, and W ∈ Rr×r is orthogonal. Then, the Nyström approximation can be
expressed as K̂ = MM⊤ = (V ΣW⊤)(V ΣW⊤)⊤ = V Σ2V ⊤. Thus, the desired orthonormal eigenvectors are
U ← V , and the corresponding eigenvalues are Λ̂← Σ2. The complete procedure for constructing U and Λ̂
is detailed in Algorithm 5.
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This Nyström-based spectral approximation K̂ ≈ U Λ̂U⊤ is then utilized to build the preconditioner P−1

(as defined in Equation equation 11) for the PCG algorithm. The full PCG-based solution of the dual
system, incorporating this preconditioner and relying on kernel-vector products (Definition 3.3), is outlined
in Algorithm 6.

4.3 Optimization Workflow

Given a partial differential equation (PDE) and a neural network ansatz uθ, we minimize the loss equation 1
using the described Dual Natural Gradient Descent Framework. The overall procedure, including step
computation via either DenseDualSolve or PCGStep and a line search, is detailed in Algorithm 1.

Algorithm 1 Dual Natural-Gradient Descent (D-NGD) Workflow
1: Input: initial parameters θ0; residual function rfn; collocation sets (XΩ, X∂Ω) ; loss L(θ); time budget
Tmax; Levenberg–Marquardt rule for λk; Nyström rank ℓ; CG tolerance ε; max CG its mCG_max; dense
threshold Cdense_thresh; flag use_dense_GA_flag.

2: t0 ← now()
3: while now()− t0 < Tmax do
4: g ← ∇θL(θ) {Compute J⊤r at all points}
5: Let ∆θ⋆ be the computed parameter step.
6: m← |XΩ|+ |X∂Ω|
7: if m < Cdense_thresh then
8: ∆θ⋆ ← DenseDualSolve

(
θ, g, rfn, (XΩ, X∂Ω), λ, use_dense_GA_flag

)
9: else

10: ∆θ⋆ ← PCGStep
(
θ, g, rfn, {xs}, λ, ℓ, ε, mCG_max

)
11: end if
12: η ← arg minη∈(0,1] L

(
θ + η∆θ⋆

)
13: θ ← θ + η∆θ⋆

14: end while
15:
16: return θ

5 Applications

To comprehensively assess the capabilities of Dual Natural Gradient Descent (D-NGD), we conduct a series
of experiments across a diverse suite of benchmark partial differential equations. All solvers are implemented
in JAX 0.5.0, we compute the derivatives using an in-house implementation of th Taylor-mode Automatic-
Differentiation Bettencourt et al. (2019) unless specified.

Every run is executed on a single NVIDIA A100-80GB GPU. Unless stated otherwise, we track the relative
L2 error with respect to an analytic or DNS reference solution and report the median value over ten
independent weight initializations. Instead of counting iterations, unless specified otherwise each optimizer
is allocated a fixed wall-clock budget of 3000 seconds for all experiments.

We compare the following Optimizers.

• Adam (Kingma & Ba, 2017) with learning rate η = 10−3, (β1, β2) = (0.9, 0.999), ϵ = 10−8, and no
weight decay.

• SGD with Nesterov momentum 0.9 and the one-cycle schedule of Smith & Topin (2018), using a
peak learning rate of 10−2 and initial/final learning rates of 10−4.

• L–BFGS (Jaxopt Blondel et al. (2021) implementation) with history size 300, tolerance 10−6, max-
imum 20 iterations per line-search step, and a strong-Wolfe backtracking line search.

• Dense D-NGD — the Dense Dual–Newton natural gradient solved by a dense Cholesky factorisa-
tion (Algorithm 4), with and without geodesic acceleration (suffix “+GA”).
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• PCGD-NGD — the matrix-free CG variant (Algorithm 6), preconditioned by a Nyström approx-
imation (Algorithm 5).

For the dense NGD solver, we report results both with and without the second-order geodesic correction (the
former denoted by the “ +GA” suffix). All hyperparameter settings are listed in Appendix A. Below, we
introduce our PDE benchmark and experimental setups used for the selected test cases.

5.1 The 10+1–Dimensional Heat Equation

We consider a heat equation in a 10-dimensional spatial domain plus time, defined for x ∈ Ω := [0, 1]10 and
t ∈ [0, 1], with a diffusion coefficient κ = 1

4 . The temperature field u(t, x) evolves according to:

∂tu(t, x)− κ∆xu(t, x) = 0, u(0, x) =
10∑

i=1
sin 2πxi, u|∂Ω = 0. (12)

The analytic solution uex(t, x) = e−4π2κt
∑10

i=1 sin 2πxi serves as ground truth. The PINN employs a tanh-
MLP with layer widths 11 → 256 → 256 → 128 → 128 → 1, amounting to 118,401 parameters (n ≈ 118k).
Each optimiser step uses NΩ = 104 interior collocation points and N∂Ω = 103 boundary and initial condition
collocation points, resulting in a residual dimension m = 6k.

The performance of D-NGD on this problem is illustrated in Figure 1 (Left) and summarized in Table 1. As
observed, Dense D-NGD+GA achieves the lowest median relative L2 error of 8.52×10−6, closely followed by
Dense D-NGD at 1.24× 10−5. These results represent a substantial improvement over the best-performing
baseline, L-BFGS (9.82 × 10−5), by more than an order of magnitude. Compared to Adam (1.45 × 10−3)
and SGD (3.48× 10−3), the D-NGD variants are over two orders of magnitude more accurate.

5.2 Logarithmic Fokker–Planck in 9+1 dimensions

The Fokker–Planck equation governs the evolution of probability densities under stochastic dynamics. We
map the density p to its logarithm q = log p and study:

∂tq −
d

2 −
1
2 ∇q ·x−

1
2 ∆q − ∥∇q∥2 = 0, q(0, x) = log p0(x), (13)

on t ∈ [0, 1], x ∈ [−5, 5] 9. PINN formulations for this type of problem have been explored in Dangel
et al. (2024); Sun et al. (2024); Hu et al. (2024). For a drift µ = − 1

2x and diffusion σ =
√

2 I, the exact
density remains Gaussian, and q∗(t, x) = log p∗(t, x) is available in closed form. The PINN uses a tanh-MLP
(10 → 256 → 256 → 128 → 128 → 1; 118,145 parameters). The initial condition q(0, x) = q0(x) is satisfied
by construction using the transformation uθ(t, x) := ψθ(t, x)−ψθ(0, x)+q0(x), where ψθ : R×R9 → R is the
core MLP output. Consequently, training focuses on the PDE residual, using NΩ = 3000 space-time interior
points sampled per iteration. Figure 1 (Right) and Table 1 summarize the performance on the Logarithmic
Fokker-Planck equation. Dense D-NGD+GA again leads with a median error of 2.47 × 10−3, followed by
Dense D-NGD at 3.27 × 10−3. These D-NGD methods significantly outperform Adam (4.80 × 10−2) and
SGD (5.48 × 10−2) by more than an order of magnitude. To the best of our knowledge, this sets a new
benchmark for PINNs in forward mode for this problem.
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Figure 1: Left: Heat equation in 10+1 d; Right: Logarithmic Fokker–Planck in 9+1 d. We plot
the median relative L2 error across all runs, with shaded bands indicating the interquartile range (25th–75th
percentiles) for all solvers.

5.3 Kovásznay flow at Re = 40

The steady two-dimensional Kovásznay solution is a classic benchmark for incompressible flow solvers Ko-
vasznay (1948). On the domain Ω = [−0.5, 1.0]× [−0.5, 1.5], we solve:

(u·∇)u+∇p− ν∆u = 0, ∇· u = 0, ν = 1
40 . (14)

Boundary conditions are prescribed from the known analytic solution. The PINN employs a tanh-MLP with
four hidden layers, each with fifty neurons (7,953 parameters), similar to Jnini et al. (2024). For training,
400 interior and 400 boundary collocation points are sampled per iteration. Performance for the Kovásznay
flow is depicted in Figure 2 (Left) and Table 1. Dense D-NGD achieves an exceptionally low median error of
5.23×10−7, with Dense D-NGD+GA performing similarly at 5.49×10−7, L-BFGS reached 9.48×10−5, while
Adam and SGD achieved errors of 4.50× 10−3 and 6.94× 10−3 respectively. To the best of our knowledge,
this sets a new benchmark for PINNs in forward mode for this problem.

5.4 Allen–Cahn Reaction–Diffusion

The Allen-Cahn equation models phase separation and is a challenging benchmark due to its stiff reaction
term and potential for sharp interface development, often causing difficulties for standard PINN training.
We consider the equation on (t, x)∈ [0, 1]× [−1, 1]:

ut − 10−4uxx + 5u3 − 5u = 0, (15)
u(0, x) = x2 cosπx,
u(t,−1) = u(t, 1), ux(t,−1) = ux(t, 1).

This involves a diffusion coefficient of 10−4, a cubic reaction term, and periodic boundary conditions. The
neural network is an MLP with an input layer (3 features: t, and x after periodic embedding with period
2.0), four hidden layers (100 neurons each), and one output neuron with tanh activation leading to
30,801 trainable parameters. Each training step uses NΩ = 4, 500 PDE interior points and N∂Ω = 900
boundary/initial condition points. Results for the Allen-Cahn equation are shown in Figure 2 (Right) and
Table 1. Dense D-NGD+GA achieves the best performance with a median error of 9.13× 10−6, followed by
Dense D-NGD at 1.21×10−5. This problem particularly highlights the deficiency of first-order methods and
L-BFGS, which all failed to converge to recover the physical solution in the allocated time budged. Geodesic
acceleration led to a noticeably faster convergence for this problem.

10
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Figure 2: Left: Kovásznay flow at Re = 40; Right: Allen-Cahn reaction-diffusion. We plot the
median relative L2 error across all runs, with shaded bands indicating the interquartile range (25th–75th
percentiles) for all solvers.

5.5 Lid-driven cavity at Re = 3000

High Reynolds number lid-driven cavity flow is a demanding benchmark where standard PINNs often strug-
gle to achieve high accuracy beyond Re ≈ 1000 Karniadakis et al. (2023). We consider the steady-state
incompressible Navier–Stokes equations in the domain Ω = [0, 1]2 with a kinematic viscosity ν = 1

3000 ,
corresponding to Re = 3000. The flow is driven by a lid moving with the profile:

u(x, 1) = 1−
cosh[C0(x− 1

2 )]
cosh( 1

2C0)
, v(x, 1) = 0, C0 = 10. (16)

No-slip boundary conditions (u = 0, v = 0) are applied on the other three stationary walls. To stabilize
training at this high Reynolds number, for our D-NGD method, we adopt the curriculum learning strategy
described by Wang et al. (2023), involving training at progressively increasing Reynolds numbers (Re =
100, 400, and 1000) for 50 iterations each before transitioning to the target Re = 3000; this approach was
shown to help avoid getting stuck in poor local minima. For the baseline optimizers, we employ a standard
curriculum approach involving 50,000 warmup iterations. The network contains about 6.6× 104 parameters.
At each step we sample 104 interior collocation points and 2 × 103 boundary points, resampling every
iteration. Each run is limited to 9000 s of wall-clock time. On this problem PCGD-NGD attains a median
error of 3.59× 10−3, over two orders of magnitude below L-BFGS at 3.85× 10−1 and far better than Adam
at 6.93 × 10−1 or SGD at 1.10. which fail to accurately reconstruct the solution field. To the best of our
knowledge, this sets a new benchmark for PINNs in forward mode at this Reynolds number.

5.6 Poisson Equation in 10 Dimensions

We consider a 10D Poisson equation, −∆u(x) = f(x) for x ∈ [0, 1]10. The source f(x) is from the analytical
solution u∗(x) =

∑5
k=1 x2k−1 ·x2k, so the problem becomes −∆u(x) = 0 with Dirichlet boundary conditions

from u∗(x) on ∂([0, 1]10). The PINN is an MLP (10 inputs; four hidden layers, 100 neurons each;
1 output; Tanh; ≈41,501 parameters). Training uses m = 10, 000 residual points (NΩ = 8, 000 interior,
N∂Ω = 2, 000 boundary). Due to the large residual dimension m = 10, 000, the iterative PCGD-NGD is
employed. As shown in Figure 3 (Right) and Table 1, PCGD-NGD achieves a median error of 2.74× 10−4.
This is approximately twice as good as L-BFGS (5.47×10−4) and significantly better than Adam (3.51×10−2)
and SGD (6.26× 10−2) by about two orders of magnitude.
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Figure 3: Left: Lid-driven cavity at Re = 3000; Right: Poisson Equation in 10 Dimensions (with
PCGD-NGD). We plot the median relative L2 error across all runs, with shaded bands indicating the
interquartile range (25th–75th percentiles) for all solvers.

5.7 Poisson Equation in d = 105 Dimensions

To gauge the large-scale behaviour of dual–NGD we embed the inseparable two-body test function

uex(x) =
(
1− ∥x∥2) d−1∑

i=1
ci

[
sin

(
xi + cosxi+1

)
+ xi+1 cosxi

]
, ci ∼ N (0, 1), (17)

into the unit ball B105 and pose

−∆u = f in B105
, u|∂B105 = 0, f := −∆uex. (18)

A tanh-MLP with four hidden layers of 128 neurons (≈ 12.8M parameters) outputs ϕ(x), and we define
uθ(x) = (1− ∥x∥2)ϕ(x), which enforces the homogeneous Dirichlet boundary by construction.

To address the prohibitive cost of evaluating every second derivative we adopt the Stochastic Taylor
Derivative Estimator (STDE) Shi et al. (2025): for each interior collocation point x a random index set
J ⊂ {1, . . . , d} is drawn and the Laplacian is estimated as d

|J|
∑

j∈J ∂
2u(x)(ej , 0). Each term ∂2u(x)(ej , 0)

is obtained in a single Taylor-mode AD pass with the 2-jet (x, ej , 0). Training proceeds with 100 Monte-
Carlo interior points per step. For this 105-D Poisson problem, the performance is detailed in Figure 4 and
Table 1. The GA-enhanced varian tachieved a median error of 1.14 × 10−5. This result, benefiting from
an approximate 3× improvement due to geodesic acceleration over Dense D-NGD (3.30 × 10−5), is nearly
16× better than the best-performing baseline (Adam, 1.87× 10−4) and substantially lower than errors from
L-BFGS and SGD. Figure 4. To the best of our knowledge, our work is the first to extend Natural-Gradient
methods to PINNs of this scale.
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Figure 4: Poisson Equation in d = 105 Dimensions We plot the median relative L2 error across all runs,
with shaded bands indicating the interquartile range (25th–75th percentiles) for all solvers.

Quantitative comparison

Table 1 collects the final median relative L2 errors for all six benchmarks.

Table 1: Median relative L2 error after the task budget (ten seeds). Best performance for each experiment
is highlighted in bold.

Method Heat Kov. Poisson Fokker–P. A.–Cahn Cavity Poisson
(10+1d) (2d) (10d) (9+1d) (1+1d) (2d) (105d)
n≈118k n≈8k n≈42k n≈118k n≈31k n≈66k n≈13M
m=6k m=0.8k m=10k m=3k m=5.6k m=50k m=100

SGD 3.48× 10−3 6.94× 10−3 6.26× 10−2 5.48× 10−2 9.93× 10−1 1.10 3.67× 10−3

Adam 1.45× 10−3 4.50× 10−3 3.51× 10−2 4.80× 10−2 4.92× 10−1 6.93× 10−1 1.87× 10−4

L-BFGS 9.82× 10−5 9.48× 10−5 5.47× 10−4 9.30× 10−1 9.92× 10−1 3.85× 10−1 1.78× 10−3

Dense D–NGD 1.24× 10−5 5.23× 10−7 — 3.27× 10−3 1.21× 10−5 — 3.30× 10−5

Dense D–NGD+GA 8.52× 10−6 5.49× 10−7 — 2.47× 10−3 9.13× 10−6 — 1.14× 10−5

PCGD-NGD — — 2.74× 10−4 — — 3.59× 10−3 —

Discussion Across all seven benchmarks (Table 1, Figures 1–4) the different variants of our D-NGD
delivers the highest accuracy and the most reliable convergence and achieve state of the art accuracies for
PINNs in several of the considered benchmarks. By swapping the intractable n× n Gauss–Newton solve in
parameter space for an m ×m solve in residual space, the method keeps the per-step cost proportional to
the number of residuals rather than the number of weights. This single design choice lets us run many more
curvature-informed iterations within the fixed budget and, equally important, frees practitioners to employ
wider and deeper networks whose expressivity would otherwise be impossible to exploit. Furthermore, we
have shown that geodesic acceleration (GA) provides a consistent refinement at negligible extra cost. By
reusing the existing factorization and adding only one Hessian–vector product per step, GA yields 25–65%
lower final errors on four of the five dense benchmarks and can speed up convergence speed without degrading
performance.

6 Conclusion

Training high-fidelity PINNs at scale has long been hamstrung by the prohibitive cost of second-order
optimisation. By revisiting the Gauss–Newton step through a primal–dual lens, Dual Natural Gradient
Descent moves the heavy linear algebra into residual space, where it is dramatically cheaper to assemble,
store, and precondition. A single Cholesky factorisation—or a handful of preconditioned CG iterations—now
suffices to deliver curvature-informed updates even for networks with tens of millions of parameters. The
same dual operator supports a geodesic-acceleration term at negligible extra cost, further boosting step
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quality without hyper-parameter tuning. Future work will explore adaptive residual sampling driven by
curvature information, automated damping strategies based on stochastic spectral estimates.
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A Appendix

A.1 Proofs of Propositions and Theorems

A.1.1 Proof of Proposition 3.1 (Primal normal equations)

The objective function is

Fλ(∆θk) = 1
2
(
r(θk) + J(θk) ∆θk

)⊤(
r(θk) + J(θk) ∆θk

)
+ λ

2 ∆θ⊤k ∆θk.

To find the minimizer ∆θ⋆
k, we compute the gradient of Fλ(∆θk) with respect to ∆θk and set it to zero.

Let’s expand the first term:

1
2
(
r(θk) + J(θk) ∆θk

)⊤(
r(θk) + J(θk) ∆θk

)
= 1

2
(
r(θk)⊤r(θk) + 2r(θk)⊤J(θk) ∆θk + ∆θ⊤kJ(θk)⊤J(θk) ∆θk

)
= 1

2r(θk)⊤r(θk) + r(θk)⊤J(θk) ∆θk + 1
2 ∆θ⊤kJ(θk)⊤J(θk) ∆θk.

The gradient of this term with respect to ∆θk is:

∇∆θk

( 1
2r(θk)⊤r(θk) + r(θk)⊤J(θk) ∆θk + 1

2 ∆θ⊤kJ(θk)⊤J(θk) ∆θk

)
= J(θk)⊤r(θk) + J(θk)⊤J(θk) ∆θk.

The gradient of the regularization term λ
2 ∆θ⊤k ∆θk with respect to ∆θk is:

∇∆θk

(
λ
2 ∆θ⊤k ∆θk

)
= λ∆θk.

Combining these, the gradient of Fλ(∆θk) is:

∇∆θk
Fλ(∆θk) = J(θk)⊤r(θk) + J(θk)⊤J(θk) ∆θk + λ∆θk.

Setting the gradient to zero for the optimal ∆θ⋆
k:

J(θk)⊤r(θk) + J(θk)⊤J(θk) ∆θ⋆
k + λIn ∆θ⋆

k = 0.
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Rearranging the terms, we get: (
J(θk)⊤J(θk) + λIn

)
∆θ⋆

k = −J(θk)⊤r(θk).

Given that ∇θL(θk) is defined as J(θk)⊤r(θk) in this context (representing the gradient of the unweighted
least-squares loss 1

2∥r(θk)∥2
2), we have:(

J(θk)⊤J(θk) + λIn

)
∆θ⋆

k = −∇θL(θk).

The matrix J(θk)⊤J(θk) is positive semi-definite. For λ > 0, the matrix J(θk)⊤J(θk) + λIn is positive
definite, ensuring that Fλ(∆θk) is strictly convex and thus has a unique minimizer. This completes the proof
of Proposition 3.1.

A.1.2 Proof of Theorem 3.1 (Dual Normal Equations)

The Lagrangian is given by:

L (∆θk, yk, νk) = 1
2∥r(θk) + yk∥2

2 + λ
2 ∥∆θk∥2

2 + ν⊤
k

(
yk − J(θk) ∆θk

)
.

Setting the partial derivatives of L (∆θk, yk, νk) with respect to ∆θk, yk, and νk to zero yields the KKT
system:

∇∆θk
L : λ∆θk − J(θk)⊤νk = 0, (19)

∇yk
L : r(θk) + yk + νk = 0, (20)

∇νk
L : yk − J(θk) ∆θk = 0. (21)

From equation 20, νk = −r(θk)− yk. Substituting into equation 19 gives

λ∆θk = J(θk)⊤νk = − J(θk)⊤(
r(θk) + yk

)
.

Using ∇θL(θk) = J(θk)⊤r(θk) (gradient of the unweighted least-squares loss 1
2∥r(θk)∥2

2), this becomes
λ∆θk = −∇θL(θk)− J(θk)⊤yk, which rearranges to Equation equation 7:

∆θ⋆
k = − 1

λ

(
J(θk)⊤y⋆

k +∇θL(θk)
)
.

Substituting this expression for ∆θ⋆
k into equation 21 yields for the optimal y⋆

k:

y⋆
k = J(θk) ∆θ⋆

k = − 1
λ J(θk)

(
J(θk)⊤y⋆

k +∇θL(θk)
)
.

Multiplying by λ and expanding gives:

λy⋆
k = −J(θk)J(θk)⊤y⋆

k − J(θk)∇θL(θk).

Using the definition Kk = J(θk)J(θk)⊤ (Definition 3.1), we have:

λy⋆
k = −Kky

⋆
k − J(θk)∇θL(θk).

Rearranging gives (Kk +λIm)y⋆
k = −J(θk)∇θL(θk), which is Equation equation 6. The equivalence between

the primal system equation 3.1 and this dual formulation can be confirmed by substitution.Because the
objective is strictly convex and the equality constraints are affine with a non-empty feasible set, the KKT
conditions are necessary and sufficient and strong duality holds. This completes the proof of Theorem 3.1.

A.1.3 Proof of Proposition 3.2 (Primal and Dual GA Characterizations)

First, the primal condition follows by differentiating 1
2∥J(θk)a + fvv∥2 + λ

2 ∥a∥
2 w.r.t. a:

∇a

(
1
2∥J(θk)a + fvv∥2 + λ

2 ∥a∥
2
)

= J(θk)⊤(
J(θk)a + fvv

)
+ λa,

17
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and setting this to zero yields equation 9:

(
J(θk)⊤J(θk) + λIn

)
ak = − J(θk)⊤fvv.

To derive the dual formulation, we introduce the auxiliary variable y = J(θk)a and enforce the constraint
y = J(θk)a via Lagrange multiplier ν ∈ Rm. The Lagrangian for the minimization problem in equation 8 is

L(a,y,ν) = 1
2∥y + fvv∥2

2 + λ
2 ∥a∥

2
2 + ν⊤(y − J(θk)a).

The KKT conditions are obtained by setting the partial derivatives to zero:

∇aL : λa − J(θk)⊤ν = 0,
∇yL : y + fvv + ν = 0,
∇νL : y − J(θk)a = 0.

From ∇yL = 0, we get ν = −(y + fvv). Substituting this into ∇aL = 0 gives λa = −J(θk)⊤(
y + fvv

)
,

which, for the optimal ak and corresponding ya,k, matches the expression for ak in equation 10:

ak = − 1
λ J(θk)⊤(

ya,k + fvv

)
.

Meanwhile, from ∇νL = 0, we have y = J(θk)a. Substituting the expression for a:

y = J(θk)
(
− 1

λ J(θk)⊤(
y + fvv

))
= − 1

λ

(
J(θk)J(θk)⊤)

(y + fvv).

Using Kk = J(θk)J(θk)⊤, this becomes

y = − 1
λ Kk (y + fvv).

Rearranging gives λy = −Kky − Kkfvv, so (Kk + λIm) y = −Kk fvv. For the optimal ya,k, this is the first
part of equation 10. This completes the proof of Proposition 3.2.

A.2 Algorithmic Implementations

This section provides the detailed algorithms referenced in the main text.

Algorithm 2 KernelEntry via double VJP
1: Input: collocation points xi, xj , parameters θ, residual fn. rfn
2: Define fi(θ) = rfn(xi, θ), fj(θ) = rfn(xj , θ)
3: (yj , vjpj)← jax.vjp(fj , θ)
4: (yi, vjpi)← jax.vjp(fi, θ)
5: Initialize B ← 0d×d {d = dim of each residual}
6: for k = 1 to d do
7: u← vjpj(ek) {backprop seed ek through fj}
8: v ← vjpi(u) {backprop u through fi}
9: B:,k ← v {column k of B}

10: end for
11: return B {Ji J

⊤
j }

18
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A.2.1 Algorithm: Assemble Residual Gramian K̃

Algorithm 3 Assemble residual Gramian K
1: Input: collocation points {xs}m

s=1, parameters θ, residual fn. rfn
2: n1 ← NΩdΩ, n2 ← N∂Ωd∂Ω {type split}
3: K ← 0m×m

4: for i← 1 to m do
5: for j ← 1 to m do
6: if (i ≤ n1 ∧ j ≤ n1 ∧ j < i) ∨ (i > n1 ∧ j > n1 ∧ j < i) then
7: continue
8: end if
9: B ← KernelEntry(xi, xj , θ, rfn)

10: Kij ← B
11: if i ̸= j or (i ≤ n1 ∧ j > n1) or (i > n1 ∧ j ≤ n1) then
12: Kji ← B⊤

13: end if
14: end for
15: end for
16: return K

A.2.2 Algorithm:Dense Dual Solve

Algorithm 4 Dense dual solver step (DenseDualSolve)
1: Input: θ, gθ = ∇θL(θ), rfn, collocation sets (XΩ, X∂Ω), damping λ, flag use_geodesic_acceleration
2: K ← AssembleGramian(all points, θ, rfn)
3: K̃ ← K + λIm

4: Lchol ← chol(K̃)
5: b← −J(θ) gθ

6: Solve Lchol y = b then L⊤
choly

⋆ = y
7: v ← −λ−1(J(θ)⊤y⋆ + gθ

)
8: if use_geodesic_acceleration then
9: fvv ← d2

dt2 rfn(points, θ + tv)
∣∣
t=0

10: ba ← −J(θ)J(θ)⊤fvv

11: Solve Lchol ya = ba then L⊤
choly

⋆
a = ya

12: a← −λ−1(J(θ)⊤(y⋆
a + fvv)

)
13: ∆θ ← v
14: if ∥v∥2 > ϵnorm then
15: r ← 2 ∥a∥2/∥v∥2
16: if r ≤ 0.5 then
17: ∆θ ← ∆θ + 0.5 a
18: end if
19: end if
20: else
21: ∆θ ← v
22: end if
23: return ∆θ

19
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A.3 Algorithm:Preconditioned Conjugate Gradient

Algorithm 5 Nyström construction of U, Λ̂
1: Input: θ, residual pts. {xs}m

1 , rfn, landmarks ℓ
2: Choose landmark index set I, |I| = ℓ ; let C = {1, . . . ,m} \ I
3: Form KII and KCI via KernelEntry
4: Eigendecompose KII = QΛQQ

⊤ {r positive eigenpairs}
5: ŨI ← Q ; ŨC ← KCIQΛ−1

Q

6: SVD ŨΛ1/2
Q = V ΣW⊤

7: U ← V ; Λ̂← Σ2

8: return (U, Λ̂)

Algorithm 6 Pre-conditioned CG step (PCGStep)
1: Input: θ, g = ∇θL(θ), rfn, {xs}, λ, rank ℓ, tol. ε, mmax
2: (U, Λ̂)← BuildNystromApproximation(θ, {xs}, rfn, ℓ)
3: Build preconditioner P−1 using (U, Λ̂, λ)
4: b← − J(θ)g ; y ← 0 ; r ← b
5: z ← P−1r ; p← z ; ρ← ⟨r, z⟩
6: for j ← 0 to mmax − 1 do
7: Ap← Kp+ λp {two JVP/VJP calls}
8: if ⟨p,Ap⟩ ≈ 0 then
9: break

10: end if
11: α← ρ/⟨p,Ap⟩
12: y ← y + αp ; r ← r − αAp
13: if ∥r∥2 ≤ ε∥b∥2 then
14: break
15: end if
16: z ← P−1r ; ρnew ← ⟨r, z⟩
17: if ρ ≈ 0 then
18: break
19: end if
20: β ← ρnew/ρ ; p← z + βp ; ρ← ρnew
21: end for
22: ∆θ ← −λ−1(

J(θ)⊤y + g
)

23: return ∆θ

20
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A.3.1 Algorithm: Dual Natural-Gradient Descent Workflow

A.4 Hyperparameters for Allen–Cahn Reaction–Diffusion Experiment

Table 2: 1 + 1-D Allen–Cahn, (t, x) ∈ [0, 1]× [−1, 1], diffusion 10−4.
Category Setting
PDE ut − 10−4uxx + 5u3 − 5u = 0; periodic BCs; u(0, x) = x2 cos(πx)
Network MLP, tanh; layers [3, 100, 100, 100, 100, 1]; ≈ 30 801 params
Training NΩ = 4 500, N∂Ω = 900; budget 3 000 s; 10 seeds
Dense D-NGD Dense Cholesky; λk = min(loss, 10−5); 31-pt line search; with/without GA
Adam η = 10−3; (β1, β2) = (0.9, 0.999); ϵ = 10−8

SGD One-cycle (peak 5× 10−3, final 10−4); momentum 0.9
L-BFGS Jaxopt; history 300; strong-Wolfe; tol 10−6

A.5 Hyperparameters for 10+1-Dimensional Heat Equation Experiment

Table 3: Heat on [0, 1]10 × [0, 1], κ = 1
4 .

Network MLP, tanh; [11, 256, 256, 128, 128, 1]; 118 401 params
Training NΩ = 10 000, N∂Ω = 1 000; budget 3 000 s; 10 seeds
Dense–DNGD λk = min(loss, 10−3); 31-pt line search; GA variant identical
Baselines Adam / SGD / L-BFGS as in Table 2

A.6 Hyperparameters for Logarithmic Fokker–Planck Experiment

Table 4: Eq. equation 13 on x ∈ [−5, 5]9, t ∈ [0, 1].
Network MLP, tanh; [10, 256, 256, 128, 128, 1]; 118 145 params
Training Interior residuals only, NΩ = 3 000; budget 3 000 s; 10 seeds
Dense–DNGD λk = min(loss, 10−5); 31-pt line search; GA variant identical
Baselines Adam / SGD / L-BFGS as in Table 2

A.7 Hyperparameters for Kovásznay Flow Experiment

Table 5: Steady 2-D Kovásznay benchmark (Re = 40).
Network MLP, tanh; [2, 50, 50, 50, 50, 3]; 7 953 params
Training NΩ = 400, N∂Ω = 400; budget 3 000 s; 10 seeds
Dense–DNGD λk = min(loss, 10−5); 31-pt line search; GA variant identical
Baselines Adam / SGD / L-BFGS as in Table 2
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A.8 Hyperparameters for Lid-Driven Cavity Experiment

Table 6: Steady lid-driven cavity (Re = 3000; budget 9 000 s).
Network MLP, tanh; [2, 128, 128, 128, 128, 128, 3]; ≈ 66 000 params
Training NΩ = 10 000, N∂Ω = 2 000; 10 seeds
Curriculum (DNGD) Re = 100, 400, 1000 (50 it. each) → Re = 3000
Curriculum (baselines) 50 000 warm-up iterations at each Re = 100, 400, 1000 (per Wang et al. (2023))

→ Re = 3000
Iterative PCGD-NGD Nyström rank 2500; CG tol 10−10; max 500; λk = min(loss, 10−5); 31-pt line

search
Baselines Adam (exp-decay LR), SGD (one-cycle), L-BFGS (history 300)

A.9 Hyperparameters for 10-Dimensional Poisson Experiment

Table 7: Laplace on [0, 1]10 with analytic Dirichlet BCs.
Network MLP, tanh; [10, 100, 100, 100, 100, 1]; 41 501 params
Training NΩ = 8 000, N∂Ω = 2 000; budget 3 000 s; 10 seeds
Iterative PCGD-NGD Nyström rank 2500; CG tol 10−10; max 500; λk = min(loss, 10−5); 31-pt line

search; no GA
Baselines Adam / SGD / L-BFGS as in Table 2

A.10 Hyperparameters for 105-Dimensional Poisson Experiment

Table 8: Poisson on B105

Network MLP, tanh; [100000, 128, 128, 128, 128, 1]; ≈ 12.8 M params
Training NΩ = 100 (STDE, re-sample each step); budget 3 000 s; 10 seeds
Dense–DNGD Dense Cholesky; λk = min(loss, 103); 5-pt line search
Dense–DNGD +GA Same with geodesic acceleration
Baselines Adam / SGD / L-BFGS as in Table 2
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