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ABSTRACT

Although various flow models based on different transformations have been pro-
posed, there still lacks a quantitative analysis of performance-cost trade-offs be-
tween different flows as well as a systematic way of constructing the best flow
architecture. To tackle this challenge, we present an automated normalizing flow
(NF) architecture search method. Our method aims to find the optimal sequence
of transformation layers from a given set of unique transformations with three
folds. First, a mixed distribution is formulated to enable efficient architecture op-
timization originally on the discrete space without violating the invertibility of
the resulting NF architecture. Second, the mixture NF is optimized with an ap-
proximate upper bound which has a more preferable global minimum. Third, a
block-wise alternating optimization algorithm is proposed to ensure efficient ar-
chitecture optimization of deep flow models.

1 INTRODUCTION

Normalizing flow (NF) is a probabilistic modeling tool that has been widely used in density estima-
tion, generative models, and random sampling. Various flow models have been proposed in recent
years to improve their expressive power. Discrete flow models are either built based on elemental-
wise monotonical functions, named autoregressive flow or coupling layers (Papamakarios et al.,
2017), or built with transformations where the determinant of the flow can be easily calculated with
matrix determinant lemma (Rezende & Mohamed, [2015). In the continuous flow family, the models
are constructed by neural ODE (Grathwohl et al.,[2019).

Despite the variety of flow models, there’s yet no perfect flow concerning the expressive power and
the computation cost. The flow models with higher expressive power usually have higher computa-
tional costs in either forward and inverse pass. In contrast, flows which are fast to compute are not
able to model rich distributions and are limited to simple applications. For instance, autoregressive
flows (Papamakarios et al., |2017) are universal probability approximators but are D times slower
to invert than forward calculation, where D is the dimension of the modeled random variable x
(Papamakarios et al.l [2021). Flows based on coupling layers (Dinh et al. [2015; |2017; Kingma &
Dhariwall [2018) have an analytic one-pass inverse but are less expressive than their autoregressive
counterparts. Other highly expressive NF models (Rezende & Mohamed, 2015; |Behrmann et al.,
2019) cannot provide an analytic inverses and relies on numerical optimizations.

For different applications, the optimal flow model can be drastically different, especially if the com-
putation cost is taken into consideration. For generative models (Dinh et all [2015; [Kingma &
Dhariwall |2018)), flows with the fast forward pass are preferable since the forward transformations
need to be applied to every sample from the base distribution. For density estimation (Papamakarios
et al.l 2017; Rippel & Adams), 2013)), flows with cheap inverse will prevail. For applications where
flow is utilized as a co-trained kernel (Mazoure et al., 2020), the computation cost and performance
trade-off are more important, i.e., having a fast model with relatively good performance. However,
in the current body of work, the architecture designs of the flow models are all based on manual
configuration and tuning. To this date, there is a lack of a systematic way that could automatically
construct an optimal flow architecture with a preferred cost.
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In this paper, we propose AutoNF, an automated method for normalizing flow architecture optimiza-
tion. AutoNF has a better performance-cost trade-off than hand-tuned SOTA flow models based on
a given set of transformations. Our approach employs a mixture distribution formulation that can
search a large design space of different transformations while still satisfying the invertibility require-
ment of normalizing flow. The proposed mixture NF is optimized via approximate upper bound
which provides a better optimization landscape for finding the desired flow architecture. Besides, to
deal with exponentially growing optimization complexity, we introduce a block-wise optimization
method to enable efficient optimization of deep flow models.

2 RELATED WORK

Normalizing Flows: Various normalizing flow models have been proposed since the first con-
cept in (Tabak & Turner, [2013). Current flow models can be classified into two categories: finite
flows based on layer structure, and continuous flow based on neural ODE (Grathwohl et al.,[2019).
The finite flow family includes flows based on elemental-wise transformation (Papamakarios et al.,
2017; |Kingma & Dhariwall |2018) and flows whose transformations are restricted to be contractive
(Behrmann et al.,|2019). In elemental-wise transformation flows, autoregressive flow and coupling
layers are two major flavors and extensive work has been proposed to improve the expressive power
of both flow models. In|Huang et al.| (2018)), the dimension-wise scalar transformation is imple-
mented by a sigmoid neural network, which increases the expressive power at the cost of being
not analytically invertible. In Durkan et al.[(2019), piecewise splines are used as drop-in replace-
ment of affine or additive transformations (Dinh et al., [2015; |2017) and is the current SOTA flow
model. Consequently many recent research efforts have been devoted to closing the gap of expres-
sive power, albeit at the cost of more complex and expensive transformations. Moreover, there has
been no quantitative trade-off analysis between the performance and cost among different flows.

Neural Architecture Search: Many algorithms have been proposed or applied for neural architec-
ture search. For instance, reinforcement learning (Zoph & Lel 2017), genetic algorithm (Real et al.,
2017;Suganuma et al.} 2018 |Liu et al.,[2018]), Monte Carlo tree search (Negrinho & Gordon,[2017)
or Bayesian optimization (Kandasamy et al.,|2018)). However, these methods all face the challenge
of optimizing on a large discrete space and can take thousand of GPU days to find a good archi-
tecture. To address this issue, DARTS (Liu et al., [2019) proposes to relax the search space from
discrete to continuous and allows efficient differentiable architecture search with gradient method
which could reduce the search time to a single GPU day while still producing the SOTA architecture.
However, all current NAS methods focus on optimizing traditional neural network structures (CNN,
RNN) and there has yet been any implementation on normalizing flow.

Necessity for the Trade-off Between Performance and Cost: Despite various transformations
proposed in the literature, there is no perfect transformation with strong expressive power and low
computational cost. Autoregressive flows have better expressive power, but the inverse computa-
tion cost grows linearly with data dimension. Coupling layers’ inverse calculation is as fast as the
forward pass, but their expressive power is generally worse than autoregressive flow with the same
element-wise transformation. Even in the same autoregressive flow or coupling layer family, flows
with different element-wise transformations have different performance and computation costs. For
instance, additive or affine coupling layers (Dinh et al.,|2017; 2015) have very fast forward and in-
verse calculation with limited expressive power while the flow in (Durkan et al., 2019) are highly
expressive but are more demanding on computation. In most applications, it is necessary to find the
best performance while minimizing at least one specific component of the cost. Unfortunately, the
current design of flow models is empirical and therefore cannot ensure the optimal trade-offs.

3 METHOD

In this work, we aim to tackle the challenge of finding an optimal flow model for a given task via an
automated architecture search algorithm.

Assumptions: In the remaining part of this paper, without losing generality, we assume that the
transformation is properly modeled such that during the training process, only forward computation
is needed. Under this assumption, when the flow model is used for density modeling (Durkan
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et al.| 2019), the forward calculation is the dominant computation. When the flow model is used for
random sampling (Kingma & Dhariwall [2018), the inverse calculation is computationally intensive.
When the flow model is utilized as a module and trained together with other components, e.g., policy
network in maximum entropy learning (Mazoure et al.,2020), the training cost of the flow model is
an important consideration.

Problem Definition: Given a transformation set with m options {T'*, T2, ...T™}, the goal is to
construct an optimal flow model with n layers of transformations from the set. The flow model
pnr(x;0) = pry1,. 1, (x;0) should minimize the KL divergence between the target distribution
p*(z) and itself while minimizing its computational cost C'y . Here, 0 are the parameters of the
transformation in the flow model. In this paper, we use the forward KL divergence as our target loss
function (Papamakarios et al., | 2021):

0* =arg9min {Dkrlp*(@) || pry1>. 7, (25 0)] + X - CnF}
(1
st. T, e {T, T2 .7}

While A is a tuning factor capturing the relative importance of the performance-cost trade-off. Find-
ing this optimal flow model is a discrete optimization problem with exponential complexity. To
enable efficient architecture optimization, we use proposed method of relaxing the discrete search
space to continuous space as suggested in|Liu et al.|(2019).

3.1 MiXED FLOW ENSEMBLE

For the iy, transformation layer with m options, we introduce a corresponding weight wg for each
option 7Y which reflects how likely the transformation will be selected. The weight is parameterized
by a vector & and made continuous via softmax:

J
; exp(a;
w i _ p( L) 4 ()

m J

5= exp(e)

By applying this parameterization for each transformation layer, we can construct a mixed flow
ensemble pyr;..(x;0, ), where each layer in this mixed model reflects a weighted combination
of the effect of all possible transformations. In this case, the architecture optimization problem
is reduced to learning the weight vector for each layer and, at the end of the optimization process,
weights will be binarized and the transformation with the highest weight in one layer will be selected
as the final transformation. The mixed flow ensemble thus degrades to a normal flow model. The
whole procedure is illustrated in Fig. [T] (Ieft).

As adopted in (Liu et al., 2019), training of the flow ensemble becomes joint optimization of the
architecture parameter « and the model parameter 6 over the training and validation datasets, which
could be written as the following bi-level optimization problem:

val 1, %

a” =argmin Dy [p"(2) || paia(®; 0%, )] + A - Crrin ()
o

traing,

s.t. 0% =argmin DZY () || pymiz(z; 0, )], 3)
0
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While the optimization problem is well defined, the key challenge is to construct the flow ensemble
within the normalizing flow framework. This is different from traditional neural architecture search,
which can mix various operations with no additional issue. Normalizing flow has its unique re-
quirement for the invertibility of transformations and a preferred simple Jacobian calculation, which
requires careful handling.

The mixed flow ensemble pys;. (x; 0™, @) must satisfy two requirements. First, it must be a legal
density function such that it can be optimized by the KL divergence formulation. Second, each
transformation layer in ps;. (x; 0*, &) should represent a weighted combination of all possible
transformations. Consider the i, layer in the mixed flow ensemble with input random variable x;,
and output random variable @y, and pg,, (L) and pg,, (Toyt) are their corresponding density

functions. This layer has m transformation options in {7}, 77, ...T;"} and w? is the corresponding
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Figure 1: Left-top: the relaxation of search space and the flow ensemble is shown in Fig. [I] Left-
middle: binarization of weights. Left-bottom: degradation to normal flow architecture. Right-top:
construction flow ensemble by mixed transformations. Right-bottom: construction of flow ensemble
by mixing distributions. The blue line in right indicates transformation on random variables and the
orange line reflects change in distributions.

weight for each transformation. As discussed in Assumption, we assume all transformations directly

model the inverse transformation, i.e. x;, = Tij (xout). Two approaches can be used to construct
the mixed flow ensemble.

Construction by Mixed Transformations: The straight forward way of building the ¢;;, mix flow
ensemble layer is to mix all transformations by weighted summation, as shown in Fig.[I] (right-top).
The final weighted transformation for this layer can be thus represented as:

m

Ti(@in) = > w! - Ti(@ou) ©)

j=1

There are two drawbacks of this formulation despite its simplicity. First, definition of normaliz-
ing flow requires the mixed transformation T; be invertible and differentiable in order to ensure
Da..., (Tout) legal density function. However, this invertibility is not guaranteed even if all candi-
date transformations are invertible. Second, even if the mixed transformation is invertible, there is
no easy way to calculate the Jacobian determinant of this weighted summation of transformations.
Meeting the requirement of invertibility and ease of calculating Jacobian determinant brings strict
restrictions on the candidate transformations and prevents the optimization of flow architectures on a
wider search space. As a result, the construction of the mixed flow ensemble by weighted summation
of transformations is not adopted in this paper.

Construction by Mixed Distributions: An alternating way is to build the mixed flow ensemble

by mixing distributions. For a given transformation Tij in this 74, layer, applying the transformation
to the input random variable will result in a new distribution:

pT; (mout) = Pz, (TZLJ (wout)) : ‘ det JT,Z (wout)‘ (5
By applying this to every transformation option in {T}, T2, ...T¥}, we can obtain k different distri-

butions, and it is possible to mix all the density functions together by their weighted summation, to
get a mixture model as shown in eq.(6).

(Tout) Zw pTJ xout) (6)
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An illustration of this process is shown in Fig. [T] (right-bottom). Different from the previous ap-
proach, the mixture model has a legal density function as: pr, (o). By the definition of normal-
izing flow, we can assume that there exists an invertible and differentiable transformation 73, which
transforms x;,, to &, although the transformation itself can not be explicitly written out.

For the next (i + 1), layer, the density of the mixture model will be used as the input density
function p,, (x;,) as in the previous layer. By applying this formulation for n layers, the final
mixed flow ensemble can be written as:

pmiz(z; 0, a) :ZWk Py Ty, (T, 0) = ZWk -pi(x; 6;)
k=1 k=1
n m" (7)
where each Wj = H w; and Z W =1
i=1 k

Each w; is defined in eq.(2) and we use py,(; 6)) to represent a “normal flow architecture” with n
transformation layers. Clearly, the final mixed flow ensemble is a legal density function which is in
fact, a weighted summation of all possible flow models built with n layers of transformations.

3.2  OPTIMIZATION WITH APPROXIMATED UPPER BOUND

Optimizing the forward KL divergence between the target distribution and the mixed flow ensemble
can be written as:

[’I())Mm = Dk [p*(w) || pMix(zm 0, a)]
mn (8)
= —Epe(a)[log(Y_ Wi - pi(a; 04)))]
k=1

We will demonstrate that direct optimization of this original loss is not always desirable. In the
whole search space of the flow ensemble, we are interested only in “normal flow architectures”
points, i.e. the points where the weight of one architecture is 1 and others are all 0. However, it can
be easily proven that the global minimum of ,CI?M” may not be the desired normal flow architecture
(the red points in Fig. [2). Instead, optimization is very likely to end up in a mixture model that is
globally optimal with similar weight for each possible flow architecture (the green point in Fig. [2).
In this case, we will encounter difficulty when extracting a normal flow architecture with the search
result. A heuristic way in (Liu et al| 2019) is binarizing the weights and select corresponding
transformations. However, there is no guarantee that the binarized architecture will have a lower
loss than other possible normal flow architectures. As a result, optimization with the original loss
function is not suitable, and could be risky.

: Upper bound: L5,

— - Origi . g0
:Original loss: L, .

« :Normal flow architecture
(Search target)

: Mixture model

(01,69 (0-450.55,6;,63) (Not desired)

Figure 2: An illustrative example of the original loss and upper bound for a flow ensemble with 2
possible architectures. The red points indicate desired normal flow architectures and the green point
indicates the global minimum of Ez?Mm which is a mixture model. The parameters (a, b, 01, 6)
refer to the weight of architecture 1, architecture 2 and their corresponding parameters.

In this paper, we propose to optimize an upper bound of the original loss function to provide a better
landscape for the search of best normal flow architectures. Our method utilizes Jensen’s inequality
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log(>>W-2) > > W -log(z) as follows, since we have Y W = 1 and the log function is concave,
we can obtain an upper bound of the KL divergence given as:

n n
m

LY, = —Ep@log> Wi pr(x;00)] < LY, = —Ep )Y Wi - log(pr(x; 6:))] (9
k k

The benefit of optimizing the upper bound can be summarized as follows:

U

Proposition 1: The global minimum point of ﬁpMm

is defined by a normal flow architecture.

Proof: Suppose each flow model py(x;6) has an optimal parameter 6; that minimizes the KL
divergence between p*(z) and it:

—Ep(z) [log(pr(z; 0;)] < —Eps (o) [log (pr(; O] (10)
There also exists a flow architecture (p, (x; 0%)) that has the minimal KL divergence:
—Epe () [log(pz(x; 07)] < —Epe (2 [log(pr(; 0r)], Yk € m™ (11)

We can then prove the proposition by showing that:

n n
m

LY = —Ep@[Y_ Wi -10g(pr(m; k)] > —Epe @) [ Wi - log(p(; 67))]
k k
(12)

n

m
> —Epe (@)D Wi - 10g(p(; 03))] = — Epe () [log(p- (w; 6]
k

Proposition 2: At normal architecture points (W, =1, W_j, = 0), ,CI[,J i = LI?M”.

The proof of proposition 2 is apparent and with the above propositions, we can show that the solution
set, i.e. all possible normal flow architectures are the same in both ,Cl?Mn and £g 1.0 and we can
do optimization with proposed upper bound without violating the original definition. Furthermore,
since the global optimum of the upper bound will always lead to a normal flow architecture, we will
not end up in finding a mixture model with the need to do heuristic and risky binarization of weights
W.

3.3 EFFICIENT ARCHITECTURE OPTIMIZATION FOR DEEP FLOW MODELS

While the flow ensemble by mixed density formulation could reflect the weighted effect of all pos-
sible transformation combinations, the architecture optimization complexity grows exponentially
with respect to the number of considered transformation types and the number of transformation
layers. In this scenario, efficient optimization of the whole flow architecture will not be possible. It
is natural to decompose the original problem into sequential optimization of few different blocks,
where each block could be optimized in one time with a limited number of layers. We propose two
methods to decompose the problem.

Grow Method: The first approach is a straightforward greedy method which we call ”Grow”.
Each time, a block is optimized until convergence, and the weights of the transformation layer are
binarized. The searched transformations in this block will be directly added to the searched layer
in the previous block. The architecture optimization of later blocks will be based on the existing
layers and, the growth of layers stops when reaching the total number of layers constraint. Despite
its simplicity, the downside of the “Grow” method is that the optimization is short-sighted. The
block being optimized has no information about the architectures which could be added later, and
the whole architecture is more likely to be trapped in local minimum.

Block Method: To avoid the issue of getting stuck in a local minimum, we propose another
method named “Block™ optimization. Blocks B in this approach are optimized alternatively to
allow each block to adjust their architectures with respect to other blocks. In fact, the first “Grow”
approach is a specific case of the “Block” method, where all the blocks are initialized as identity
transformations and optimized only once.
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Algorithm 1 Algorithm flow for AutoNF
Require: Transformations: {7, T2, ...T™}, Blocks: B = { By, Ba, ... B}, Cost: Cpsix
Ensure: n-layer flow model:

1: while not converged do
2: foreach B; € B do

3 while not convergence do

4 Qp, = arg minaBi D})(alll [p* (w) H pMiz(w; 0*B7 aBi)} +A- CJWZ'I(O‘Bz‘)
5 0p = argming, D3 [p* (@) || paric(@; 05, a5,

6: end while

7 Fix architecture for B;

8 end for

9: end while

3.4 COST MODEL AND ALGORITHM FLOW

As discussed in section II, we are interested in modeling the training cost (forward calculation cost)
and the inverse calculation cost, since each of them plays a different role based on desired ap-
plications. We use an independent experiment to model the cost of different types of flows and
summarized in a table which are included in Appendix B. With the cost model, the total cost of the
mixed flow ensemble could be extracted based on emphasize on different costs, e.g. if training cost
is the major concern, only training cost of different flows will be calculated. This total cost Cy;y is
then added as an regularization term into the training loss function.

In our paper, gradient based method is used for optimization which is efficient in this very high
dimensional search space. The architecture parameter o and the flow model parameter 0 are opti-
mized alternatively with first order approximation in (Liu et al., [2019). The final algorithm flow of
our proposed AutoNF method can be summarized in Algorithm 1.

4 EXPERIMENTS

4.1 EVALUATION OF PROPOSED UPPER BOUND

Setup: We use a simple example to demonstrate the necessity of doing optimization with our
proposed upper bound. We use AutoNF to build a 4 layer flow model with 2 transformation options
including planar flow and radial flow from (Rezende & Mohamed, 2015). We use the POWER
dataset as the target and optimize with original loss (name M1) and our proposed upper bound
(named M2). We use Adam optimizer for both architecture parameter and model parameter with a
learning rate of 0.002. The batch size is 512 and the training iteration is 10000.

The results are shown in Fig[3] For both M1 and M2, we present the weight for planar and radial
flow for each layer as well as the training and validation loss during the search process. The final
weight for each layer, searched architectures after binarization and the test score are shown in the
right-bottom table.

Analysis: Optimization with our proposed upper bound (M2) shows a concrete convergence of
weight to 0 or 1 for each layer, which leads to a desired normal flow architecture, while the opti-
mization with the original loss function (M1) ends up in a mixture model instead of a normal flow
architecture, as shown in Fig[3[left). This is within in our expectation as shown in Fig[2] Moreover,
although the mixture model is mostly likely to be the optimal in the original loss, the normal flow
architecture after binarization however, is not an optimal model. As shown in the right-bottom table,
the architecture found by M2 has a significantly better test score than M1, and this clearly supports
our statement of doing optimization with our proposed upper bound.

4.2 SEARCH FOR FLOW MODELS WITH BEST PERFORMANCE COST TRADE-OFF

Transformation Options: To evaluate our AutoNF framework, we setup our experiments with four
types of non-linear flows and one linear flow. In autoregressive family, we choose affine autore-
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weight of layer 1

weight of layer 2

Training loss
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—— radial_m1
— radial_m2
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—— radial_m1
— radial_m2

—— train_loss_m1
train_loss_m2

— val_loss_m1
val_loss_m2

weight of layer 4
= 10 M1 M2

—— planar_m1

planar_m2
— radial_m1
— radial_m2

radial
0.002
0.001
0.002
0.001

radial
0.032
0.277
0.966
0.061

planar
0.968
0.723
0.034
0.939

planar
0.998
0.999
0.998
0.999

Final W (Layer 1)
Final W (Layer 1)
Final W (Layer 1)
Final W (Layer 1)

—— planar_m1

planar_m2
— radial_m1
— radial_m2

Searched Architecture | [planar, planar, radial, planar]

4.47+0.034

[planar, planar, planar, planar]
3.7410.027

Test Score

Figure 3: The result of optimization of a 4-layer flow ensemble with transformation options between
planar flow and radial flow with original loss and proposed upper bound. The left four figures are
the weight for each layer during the search process. The right-top figures are the training and vali-
dation loss during training. The right-bottom table collects final weight for each layer, the searched
architecture, and their test score (lower the better).

gressive flow (Papamakarios et al., 2017) and rational quadratic autoregressive flow (Durkan et al.,
2019). Affine autoregressive flow has limited expressive power but the computation cost is lower,
while the later has the state of art performance in autoregressive family with higher cost. Affine
coupling layer (Dinh et al., 2015) and rational quadratic coupling layer (Durkan et al.,[2019) are se-
lected from coupling layer family. For linear transformation, we combine a reverse permutation and
an LU linear layer together as a single layer. Random permutation (Durkan et al.,2019;|Oliva et al.,
2018) is not used since it is difficult to reproduce in architecture optimization. Every non-linear
transformation layer is paired with a linear transformation layer suggested by |[Durkan et al.|(2019)
as a final transformation option, i.e., a layer in our experiment contains a reverse permutation, an
LU-linear layer and one of the non-linear transformation layer listed above.

Datasets and Model Configuration: The performance of the flow models are evaluated with den-
sity estimation for UCI (Dua & Graff] |2017) and BSDS300 (Martin et al.l 2001) datasets. The
optimization goal is to search for an eight-layer flow model which minimize both negative log like-
lihood and the total cost on different datasets with an emphasis on either the training or inverse cost.
If the training cost is emphasized, only training cost of the mixed flow ensemble will be included
in the regularization term and vice versa. Both “Grow” and “Block” method are used for the opti-
mization and for each block B;, the number of layers that can be optimized at one time is set to 4,
i.e. number of block is 2. The cost regularization weight X is tuned such that the KL divergence and
total cost can be equally minimized.

Manual Flow Setup: Our searched architectures are compared with manually designed flow archi-
tectures. In our experiments, we put emphasis on the performance of the manually designed flows,
i.e., the manual design will use the transformation with the best performance. For instance, when
the training cost is a major concern, we use the rational quadratic autoregressive flow to build the
manual design. When the inverse cost is a major concern, we use rational quadratic coupling layers
for manual design since we have prior knowledge that the inverse of autoregressive flow is expen-
sive. Detailed experiment setups, as well the hyper parameter settings for each flow, can be found in
Appendix C.

Analysis: The architecture search results are reported in Table[T| which includes the negative log
likelihood of the test set, and the three different costs. The training cost is consistent with forward
cost for different flows. Due to space limitation, we list the searched architectures in Appendix D for
reference. Table[T] shows that adding the cost regularization term clearly helps to find architectures
that have the lower desired cost. For instance, when the cost emphasize is on inverse calculation, all
the searched architectures will not include any autoregressive flow. Consistently, our AutoNF frame-
work can successfully identify architecture with lower preferred cost with only minor degradation
on performance compared with manual designs. In some cases it is able to identify architectures
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that are better both in terms of performance and cost, such as in the case of [GAS, Training, Grow],
[MINOBOONE, Training], [MINOBOONE, Inverse, Block] and [BSDS300, Training].

Comparing the “Grow” method and the “Block” method, we observe that “Block” method can
help further optimize the flow architecture to have both better performance and cost compared with
“Grow” ([POWER, Inverse], [HEPMASS, Inverse] ). While in other cases, it can provides architec-
tures better in at least performance or cost. It is notable that for [HEPMASS, Inverse], even with the
same searched architecture types and numbers, the “Block™ method can further tune the sequence of
transformation layers to further boost the performance.

Table 1: Performance and cost trade-off between searched architectures and human designed ar-
chitectures on UCI density estimation datasets. Test score is based on negative log likelihood, the
lower, the better. Note that the forward cost is consistent to the training cost as expected. The best
results for each group of methods are highlited in bold.

[ Datasets [ Cost Emphasize [ Architectures | Testscore | Train cost | Forward cost | Inverse cost |

Manual -0.46-£0.01 13.31 11.98 74.38

Training Grow -0.44+0.01 12.62 11.50 50.58

Block -0.42+0.01 10.52 9.89 47.76

POWER Manual | -0.4150.01 | 11.46 10.70 1092
Inverse Grow -0.36+£0.01 10.16 9.69 9.82
Block -0.37+0.01 9.73 9.35 9.46

Manual -10.98+0.02 13.31 11.98 99.17

Training Grow -11.11+0.02 12.38 11.34 55.04

GAS Block -10.46£0.02 9.98 9.51 32.90
Manual -10.86+0.03 11.46 10.70 10.92

Inverse Grow -10.67+0.02 11.02 10.36 10.56

Block -10.86+0.03 11.46 10.70 10.92

Manual 16.62+0.02 13.31 11.98 260.32
Training Grow 18.31£0.02 9.73 9.45 9.46

Block 16.874+0.02 10.90 10.16 200.56

HEPMASS Manual 18.40+0.02 11.46 10.70 10.92
Inverse Grow 18.60+0.02 10.60 10.02 10.19

Block 18.07+0.02 10.60 10.02 10.19

Manual 12.20£0.48 13.31 11.98 533.03

Training Grow 11.624+0.44 11.48 10.60 428.87

Block 11.43+0.44 10.29 9.73 260.18

MINIBOONE Manual 13.48+0.53 11.46 10.70 10.92
Inverse Grow 14.58+0.56 8.00 8.00 8.00
Block 12.75+0.50 9.30 9.01 9.09

Manual -153.83+0.28 13.31 11.98 780.95

Training Grow -154.55+0.28 10.86 10.17 198.59

Block -154.57+0.28 11.22 10.45 339.49

BSDS300 Manual -154.02+0.28 11.46 10.70 10.92
Inverse Grow -152.08+0.28 8.00 8.00 8.00
Block -153.71£0.28 9.30 9.01 9.09

5 DISCUSSION

Normalizing flow is highly parameterized module and designing a flow model and use it for appli-
cation requires a lot of hands-on experience and domain knowledge. In this paper, we show that the
AutoNF framework is very effective in balancing performance-cost trade-offs when building com-
plex flow models. Moreover, although not demonstrated in this paper, the framework could also be
used to help decide hyper parameters in complex flow model, e.g. the hidden features and number
of bins in the SOTA coupling layer (Durkan et al.l 2019). In additional, the proposed optimization
method with upper bound can be easily extended to other suitable probabilistic kernels. one ex-
ample is to identify the best parameterized distribution(s) within a mixture model. We believe our
framework will be very useful in many machine learning applications where normalizing flows are
needed.
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A ADDITIONAL BACKGROUND

A.1 BASICS OF NORMALIZING FLOW

Normalizing flow aims to provide a way to do exact density modeling of complex distributions by
finding a diffeomorphsim between two manifolds. Suppose there are two random variables  and ©
from two distributions p, () and p,, (u). If there is an invertible and differentiable transformation,
which is parameterized by 6, that can transform u to x, then the density function of x can be

represented in eq.(13).
x=Tp(u)

Pa(®@) = pu(Ty (@) | det ;.1 ()]

Where det J -1 () is the Jacobian determinant of the inverse transformation T, ! Let the distribu-
e

13)

tion p () be a target complex distribution which we want to evaluate the density or draw samples
from, and p,, (u) is a simple distribution. Constructing a flow model is to find a transformation that
minimizing the KL divergence between the two distributions, as summarized in (Papamakarios et al.,
2021). After that, density evaluation and random sampling of p, (x) can be easily done with eq..
In practice, multiple layers of transformations are stacked together to increase the expressive power
of the flow model, as shown in Fig. E}

Tl TZ T:: &
u Xy Xy x

Pu() — Py (%1) = Pap(x2) = = 77 pe(x7)

OB 6 &

~— N

Figure 4: Normalizing flow is constructed by multiple layers of transformations.

A.2 AUTOREGRESSIVE FLOW (AF)

AF transforms a D dimensional input random variable x via dimension-wise scalar functions,
termed transformer 7. The parameter h; of each transformer 7; should only dependent on inputs
whose dimension is smaller than 7. Usually, a single masked neural network is implemented to
generate the parameters. The transformation of AF is shown in eq. (T4).

I/i = T(I,, h,) where h7 = NN(.’B<,L) (14)

Autoregressive flow has a triangular Jacobian and the determinant is the product of diagonal ele-
ments which can be calculated in O(D) complexity. Moreover,the forward transformation of au-
toregressive flow can be calculated within a single neural network and transformer pass. However,
since x; has dependency on x;, the inverse calculation can only be accomplished sequentially,
hence is O(D) times more expensive than the forward pass (Papamakarios et al.,|2021).

A.3 COUPLING LAYER

A coupling layer splits the input into two groups. The first group will be passed with no change (or
identity transformation). The second group will be transformed by dimension-wise scalar functions
whose parameters are dependent on the first group, as shown in eq. (I3).

Ty =Tia, o, =71(xi;h)

15
where h; = NN(z.;) i€ [d+1,D] (15

Similar to autoregressive flow, the Jacobian matrix of the coupling layer is triangular, which enables
one-pass calculation of the forward transformation. Meanwhile, the inverse transformation can also
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Figure 5: An illustration of autoregressive flow and coupling layer

be calculated with a single neural network and one transformer inverse. However, the computa-
tion efficiency of the coupling layer is achieved at the cost of limited expressive power. In most
cases, with the same type of transformer, additional layers of transformations are required for cou-
pling layers to achieve the same performance compared to autoregressive flows. A illustration of
autoregressive flow and coupling layer is shown in Fig[3]

A.4 INVERTIBLE LINEAR TRANSFORMATION

Permutation between two autoregressive or coupling layers are commonly introduced to ensure good
interaction between different dimensions. Random permutation and reverse permutation have been
adopted in (Dinh et al., [2015} [Kingma & Dhariwal, 2018). Authors in (Rippel & Adams)| 2013)
proposed a generalization with an LU-decomposed linear transformation: W = PLU, where P
is a fixed permutation matrix and the diagonal elements of L are all one. The linear transformation
is invertible if the diagonal elements of U are all positive. The Jacobian determinant of the linear
transformation is the product of all diagonal elements of U and forward transformation is a simple
matrix multiplication. Although the inverse transformation has O(D?) complexity, as suggested in
(Durkan et al., [2019), once the parameters of W are determined, W ! can be computed once and
cached for further use.

A.5 RESIDUAL FLOW

Another way of constructing finite flows is to implement the following invertible transformation:

Z =24 gy(2) (16)

» (%) takes input random variable as input and generates a D dimensional translation vector.

The invertibility of residual flow is guaranteed if g,(z) can be made contractive to some distance
function (Papamakarios et al., 2021)). In the later sections for different residual flows, we assume all
the transformations are invertible.

Also, different from autoregressive flow, the Jacobian determinant of residual flow is no longer
sparse. To reduce the complexity, researchers have proposed several g, (z) to complete the determi-
nant calculation in O(D) time.

A.5.1 PLANAR FLOW
Planar flow (Rezende & Mohamed,, [2015) can be described as:
2 =z +vo(w'z+b) (17

In the transformation, v and w are both D dimensional vector and o(-) is the activation function.
The residual part g, (z) can be interpreted as a neural network which has no hidden layer and has
only one neuron.
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The Jacobian determinant of the planar flow can be analytically written as:
det Jr(z) =1+ o' (w?z + b)w’v (18)

A.5.2 RADIAL FLow

Radial flowRezende & Mohamed| (2015) can be written as:

"= —(z— h = ||z — 19
zZ=z+ ot r(2) (z—2zp), where 7r(z)=||z— 20| (19)
o is restricted to be a positive value, and a sufficient condition for existing inversion is 8 > —a.
The Jacobian determinant of radial flow can also be calculated in O(D) complexity as:
of B

er@P T arm) 0

det JT(Z) = (1 =

B CoSsT MODELING OF FLOWS

The cost of different flows models are extracted by stacking different number of layers (1, 2, 4, 8)
to do training for 3000 iterations, run forward transformation for 10000 data point and draw 10000
random samples. For fair comparison and reproducity, each flow model is run with Pytorch on a
AMD Ryzen 5800X CPU for 3 times to take average and linear regression is applied to extract the
exact cost. The final cost is normalized based on affine coupling layer. The experiment on POWER
dataset is shown in Table[2]

Table 2: Cost extraction of training cost, forward cost and inverse cost with POWER dataset.

Affine MAF RQ MAF Affine Coupling RQ Coupling

train forward inverse train forward inverse train | forward | inverse | train | forward | inverse

I | 13.501 0.083 0.278 20.565 0.121 0.436 13279 | 0.I11 0.08 18.164 | 0.107 0.067

Number dbf Layers | 2 | 26.098 0.145 0.573 39.354 0.202 0.844 24512 | 0.135 0.099 [35.082 | 0.176 0.121
41 53.642 0.26 1.164 79.774 0.326 1.726 47.757 0.255 0.191 68.742 0.286 0.242

8 1 106459 | 0.422 2.381 163375 | 0.607 3.389 99.146 | 0.419 0389 | 141.38 | 0.535 0.499

Cost 13.324 | 0.0479 0.3007 20.482 0.068 0.423 12.309 | 0.0454 | 0.0455 [ 17.625 | 0.0607 [ 0.0621
Cost(Normalized) 1.0825 | 1.0551 | 1.1015-D 1.664 1.4978 | 1.5495-D 1 1 1 1.4319 | 1.337 1.3648

C DETAILED EXPERIMENTAL SETUPS

The training data of each dataset is split into two equal part as the “training data” and “validation
data” for architecture optimization. For all data set, we set the training and validation batch size to
512 and the optimization of architecture parameter and model parameters are done with Adam with
a learning rate of are set to be 0.005. For the “Grow” method, the training iterations for each block
is 5000 and for “Block” method, the training iteration for each block is 3000 and the whole flow
will be trained with 2 rounds, i.e. each block will be trained twice. The cost regularization weights
for each dataset (from POWER to BSDS300) are: 0.1, 0.1, 1, 1, 5. The hyper parameter settings of
different flow models are summarized in Table 3]

Table 3: Hyper parameter setting for all autoregressive flow and coupling layers.
| Affine MAF | RQ-MAF [ Affine Coupling | RQ coupling

Hidden Feature 256 256 256 256
Residual Blocks 2 2 2 2
Bins / 8 / 8
Tail bound / 3 / 3
Dropout 0 0 0 0

For evaluation of searched flow models, we use Adam optimizer to optimize the flow parameter with
a learning rate of 0.0005 and the gradient norm is clipped into [—5, 5] as adopted in (Durkan et al.,
2019). The batch size is set to be 512 and trained for 30000 iterations. For MINIBOONE dataset,
overfitting is a problem and we only train for 5000 iterations. The models with best validation
negative log likelyhood are stored and tested with test data. The mean value and standard deviation
is reported as the final test score.
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D SEARCHED ARCHITECTURES

The full table of searched architectures in the experiments are listed as in Table[d] The number is
used as a code name for one type of the flow: where 1, 2, 3, 4, 5 stands for affine MAF, rational
quadratic MAF, affine coupling layer, rational quadratic coupling layer and a combined layer of a
reverse permutation and an LU linear layer.

Table 4: Searched architectures by AutoNF framework with emphasize on different cost.

Dataset [ Cost Emphasize | Design method | Searched architectures
Manual 152, 52,52,52,52,52,52,52]
Training Grow 154, 52, 52, 52, 54, 54, 52, 52]
Block [54, 52, 54, 52, 51, 51, 51, 51]
POWER Manual [54, 54, 54, 54, 54, 54, 54, 54]
Inverse Grow [54, 54, 53, 54, 53, 54, 53, 54]
Block [54, 54, 54, 54, 53, 53, 53, 53]
Manual [52,52,52,52,52,52,52,52]
Training Grow 154, 54, 52, 52, 54, 54, 52, 52]
GAS Block 154, 54, 54, 54, 53, 51, 51, 51]
Manual [54, 54, 54, 54, 54, 54, 54, 54]
Inverse Grow [54, 54, 54, 53, 54, 54, 54, 54]
Block [54, 54, 54, 54, 54, 54, 54, 54]
Manual [52,52,52,52,52,52,52,52]
Training Grow 154, 54, 53, 53, 54, 54, 53, 53]
Block 152,52, 52,52, 53, 51, 51, 51]
HEPMASS Manual | [54, 54. 54 54. 54 54. 54, 54]
Inverse Grow 53, 54, 54, 54, 54, 53, 54, 54]
Block [54, 54, 53, 53, 54, 54, 54, 54]
Manual [52,52,52,52,52,52,52,52]
Training Grow [52, 52,51, 51, 52,52, 52, 53]
Block 154, 52, 54, 54, 51, 51, 51, 51]
MINIBOONE Manual | [54, 54, 54, 54, 54, 54, 54, 54]
Inverse Grow 53, 53, 53, 53, 53, 53, 53, 53]
Block 154, 53, 54, 54, 53, 53, 53, 53]
Manual [52,52,52,52,52,52,52,52]
Training Grow [54, 52, 52, 53, 54, 52, 53, 53]
Block [54, 54, 52, 52, 51, 54, 51, 54]
BSDS300 Manual | [54 54. 54, 54, 54. 54 54, 54]
Inverse Grow [53, 53, 53, 53, 53, 53, 53, 53]
Block 154, 54, 53, 53, 54, 53, 53, 53]
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