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ABSTRACT

Shape-based virtual screening is a widely utilized method in ligand-based de novo
drug design, aiming to identify molecules in chemical libraries that share similar
3D shapes but simultaneously possess novel 2D chemical structures compared to
the reference compound. As an emerging technology, generative model is an alter-
native way to do de novo drug design by directly generating 3D novel structures.
However, existing models face challenges in reliably generating valid drug-like
molecules under specific conformation constrains. Here, a novel diffusion model
constrained with 3D reference shape, Diff-Shape, was proposed to generate struc-
tures whose 3D conformations are similar to a given reference shape, thereby
avoiding the computational cost of screening large database of 3D conformations.
This model utilizes a zero-weighted graph control module, taking in various forms
of point clouds of reference shape to guide diffusion process of 3D molecular gen-
eration. The results show that our model is capable of generating molecules with
high shape similarity but still low 2D graph similarity to the query structure and it
significantly out-performs existing shape-based generative models.

1 INTRODUCTION

Ligand-based drug design (LBDD) task focuses on molecular modelling without relying on knowl-
edge of protein structure. Typically, it elucidates the relationship of a compound’s structure and
physico-chemical attributes to its biological activity and identifies ”actives” on the basis of 3D phar-
macophore or 3D shape similarity. For example, 3D shape similarity search is a commonly used
ligand-based virtual screening tool to identify molecules with similar shape to a reference structure
and has shown promising results for scaffold-hopping tasks.(Rush et al., 2005) However, the effec-
tiveness of virtual screening is tied to the chemical space of searched chemical libraries, restraining
its capacity to explore novel chemical space.

In recent years, generative model has emerged as new paradigm for de novo drug design and has
revolutionized computer-aided drug design (CADD) by enabling efficient exploration of chemical
space and goal-directed molecular optimization (MO) in a data driven manner. Various neural net-
work architectures have been applied in generative models to directly generate drug-like molecules
at 1D sequence, 2D graph or 3D conformation level with or without protein structure, including
recurrent neural networks (RNN)(Segler et al., 2018; Li et al., 2018; Cho, 2014), variational auto-
encoders(Ma et al., 2018; Jin et al., 2020), generative adversarial networks(De Cao & Kipf, 2018),
3D convolutional networks (CNNs)(Kuzminykh et al., 2018), flow-based model(Shi et al., 2020)
and, more recently, diffusion based models(Qian et al., 2024; Lin et al., 2022) etc. Among these
models, shape conditioned generative model represents an alternative way for doing ligand based
de novo design and in contrast to conventional database screening methods, it can explore a much
larger chemical space beyond the databases of known chemicals.

The early attempts on shape conditioned generative model were to build models not directly gener-
ating 3D conformations. Skalic et al.(Skalic et al., 2019) and Imrie et al.(Imrie et al., 2021) trained
networks to generate 1D SMILES strings and 2D molecular graphs, respectively, conditioned on
CNN encodings of 3D pharmacophores ignoring Euclidean symmetries. Zheng et al. used super-
vised molecule-to-molecule translation on SMILES strings for scaffold hopping tasks and evaluated
the generated scaffolds’ 3D shape similarity to the reference.(Zheng et al., 2021) Papadopoulos et al.
sampled molecules with high shape similarity to a target by SMILES based reinforcement learning

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

in REINVENT, requiring re-optimization of the agent model for each target shape.(Papadopoulos
et al., 2021) Roney et al. fine-tuned a 3D generative model on the hits of a shape based virtual
screen of more than 1010 drug-like molecules to shift the learned distribution towards a particular
shape.(Roney et al., 2022) Yet, this expensive screening approach must be repeated for each new ref-
erence shape. The first transferable shape-conditioned 3D generative model, SQUID, proposed by
Coely et al., utilized auto-regressive fragment based generation with heuristic bonding geometries,
allowing to predict torsion of connecting bonds of growing fragments to make sure the growing 3D
conformation properly aligned to the reference shape.(Adams & Coley, 2022) However, its perfor-
mance was only demonstrated on small drug-like molecules up to 27 atoms. Ning et al. proposed
another attempt for shape-constraint molecular generations, ShapeMol(Chen et al., 2023), an equiv-
ariant diffusion model conditioned with a shape-embedding from encoder, they demonstrated that
ShapeMol out-performed SQUID on shape-conditioned virtual screening.

Recently, various diffusion models have been used for 3D molecule generation in both LBDD and
SBDD scenarios, utilizing an iterative denoising process. Welling et al. proposed the equivariant
diffusion model (EDM) for 3D molecule generation, improving significantly over previous results
in one-shot or auto-regressive settings.(Hoogeboom et al., 2022) The MDM(Huang et al., 2023)
and GCDM21(Morehead & Cheng, 2024) modified EDM by limiting the message-passing compu-
tations to neighboring nodes and changing a more expressive denoising model. Xu et al. proposed
GeoLDM(Xu et al., 2024), a diffusion model on latent space coded by an equivariant autoencoder
instead of feature space as defined in EDM. Although these methods have shown promising results,
they ignored the connectivity in molecular generations, leading to sub-optimal performance on com-
plex molecules. To overcome this issue, Frossard et al. proposed a mixed graph and 3D denoising
diffusion model, MIDI(Vignac et al., 2023), by simultaneously generating a molecular graph and
its corresponding 3D coordinates. So far, these diffusion models are conditioned in two ways: con-
ditional guidance existed in the sampling process not in the training stage or using direct control
during the training stage with specific model architectures. In former case, an additional end-to-
end differential scoring function or model is needed to guide the pre-trained generative model to
sample molecules with targeted properties, for example, the KGDiff model by Xu et al.(Qian et al.,
2024) and SLIVER model by Mey et al.(Runcie & Mey, 2023) In later case, models such as DiffS-
BDD(Schneuing et al., 2022), DiffBP(Lin et al., 2022), and TargetDiff(Guan et al., 2023) were used
to generate molecules that bind to a specific protein pocket, the DiffLinker(Igashov et al., 2024) was
proposed to generate linkers between molecular fragments. Although these methods improved the
conditioned generation in various tasks, all of them need to be trained from scratch for each task
which may lead to high computation cost.

In the image generation field, ControlNet(Zhang et al., 2023) achieved success by leveraging the
well-established encoding layers of large stable diffusion models, which were pre-trained with bil-
lions of images, to generate images under the guidance of input conditions. This approach allowed
ControlNet to learn a diverse range of conditional models.(Zhang et al., 2023) Inspired by Control-
Net, we introduce a novel diffusion model called Diff-Shape, which combines a pre-trained uncon-
ditional diffusion model with a graph control module for shape constrained 3D molecule generation.
One unique feature of our method is that the pre-trained unconditional molecule generative model
can be directly incorporated into Diff-Shape framework, therefore avoiding the computation cost of
training from scratch. By taking in reference shape as point clouds with noise and partially obscured
bond information, the graph control module guides diffusion process of molecular generation. To
showcase the utility of Diff-Shape in drug design, several tasks of the shape-conditioned generation
of chemically diverse molecular structures were highlighted. Our results demonstrate that the Diff-
Shape model significantly out-performed existing shape based generative models in terms of the
shape similarity of the generation set to the reference shape, and, at the same time, can achieve bal-
anced performance between high 3D shape similarity and relatively low 2D graph similarity which
is the key requirement for identification of new scaffold.

2 METHODS

In Diff-Shape method, a novel equivariant neural network architecture,named Graph ControllNet
(GrCN), was proposed and it composed an unconditioned diffusion model satisfying SE (3) sym-
metry for 3D molecular generation and a graph control module which takes specific conditions such
as the 3D shape of a template molecule. Here we first summarize the architecture of GrCN model,
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then how Diff-Shape extends a pre-trained molecular diffusion model, MIDI in this case, to a shape
conditioned molecular generative model will be discussed.

2.1 GRAPH CONTROLNET

For a given 3D graph G = {V,E,R}, set V represents node features which include scalar features
for all nodes hv,∀v ∈ V , such as atom types and charges for atom etc; set E corresponds to edge
features including scalar features like bond types for all edges he(v,w)

,∀e(v,w) ∈ E, and set R refers
to atomic coordinates rv,∀v ∈ V . The adjacency Adj of G is defined as a matrix where ’1’ is set
for bond existence between two atoms, otherwise is ’0’.

Given a trained graph neural network F (. : θ) with parameters θ, a transformation between two
graphs Gx = {Vx, Ex, Rx} and Gy = {Vy, Ey, Ry} is carried out as:

{Vy, Ey, Ry} = F (Vx, Ex, Rx, θ) (1)

The scalar features Vy, Ey should be invariant with translation and rotation of Gx in 3D space while
the coordinate vector Ry should be equivariant for F , thus:

{Vy, Ey, Dy(g)Ry} = F ({Vx, Ex, Dx(g)Rx}, θ), g ∈ G (2)

where G represents a group of transformation operation including transitions and rotations, DX(g)
and DY (g) are transformation matrices parameterized by g in Gx and Gy .

Figure 1: The basic architecture of GrCN, consisting of a constrain module and a 3D generation
module.

Inspired by the well-known ControlNet for conditioned image generation, supposing an uncondi-
tioned 3D molecule generative model was already trained as a prior model, then GrCN is designed
to include a 3D shape constrain module and a 3D molecule generation module as shown in Figure
1, where the 3D generation module is a copy of the prior model with locked parameters θ and the
constrain module contains another locked copy of the prior model and a trainable copy with param-
eters θc. The trainable copy in constrain module takes a condition 3D graph Gc as input. Within the
GrCN model, the locked parameters preserve the features in the prior model learned with millions
of molecules, while the trainable copy infuses conditioning graph information into prior model to
guide the output 3D graph in a profound way.

The trainable copy is connected to the locked blocks with zero-weighted MLP layer, denoted Z(. | .),
in which all the learnable parameters are initialized to zeros. To build up a GrCN, two instances of
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zero-weighted MLP layer with parameters θz1 and θz2 are used. The zero-weighted MLP layer
actually includes MLPs for scalar features V,E and coordinates R. The output of constrain module
is shown as:

Gyc = F (Gx; θ) + Z(F (Gx + Z1(Gc; θz1); θc); θz2) (3)

The final output of GrCN is a linear combination of the constrained module and the unconditioned
term as following:

Gout = Gy + γ ∗ (Gyc −Gy) (4)

Where γ is a scaling factor to control the influence of constrain term on the unconditioned output.
In the first training step, since both the weights and bias parameters of zero MLP are initialized to
zero, i.e. both of the Z(. | .) terms in Eq (3) are zero, then Gout = Gy . In this way, GrCN enjoys the
full capability of the pre-trained prior model, and the harmful noise from conditional graph won’t
influence the hidden states of trainable copy at the beginning, therefore accelerating and stabilizing
the training process.

2.2 DIFF-SHAPE METHODOLOGY

The goal of Diff-Shape method is to generate 3D molecule conformations with similar 3D shape to a
template molecule while try to keep low 2D graph similarity simultaneously. The template molecule
is represented as a three-dimensional molecular graph GTM = {VTM , ETM , RTM}. Several ways
of fuzzy operation were applied on GTM to increase its structural obscurity aiming to output solu-
tions having low 2D similarity. As shown in Figure S3, in total, seven different fuzzy operations
were adopted in Diff-Shape to achieve varying effects. These operations include: (1) none fuzzy
level, in which the original reference molecular graph is used; (2) fuzzy element level, a whitened
molecular graph in which all atoms were changed to carbon element and the original bond type in-
formation was retained; (3) fuzzy element and bond level, a whitened molecular graph that all bond
types are changed to single bond; (4) point cloud level, a whitened three-dimensional point cloud in
which all bonds are removed; (5) mixed point cloud level, a whitened molecular graph in which all
bonds are changed to single bond and some bonds are partially removed. (6) coloured point cloud
level, the original three-dimensional point in which all bonds are removed; and (7) coloured mixed
point cloud level, the original element types are kept and other changes are the same with mixed
point cloud level. Our result demonstrates that these fuzzy operations play crucial role in generating
novel structures compared to the reference structure.

In Diff-Shape, GrCN is implemented as illustrated in Figure 2 for a given time step t. A pre-
trained MIDI model is employed as the prior model. The algorthim of MIDI for unconditioned
generations are briefly introduced in Appendix A1. The embedding blocks of the trainable copy of
prior model are utilized to process the condition 3D graph GTM , each attaching a zero MLP layer
and additionally, two MLPs are used for the scalar features V,E and one E3 MLP for the R set. The
E3 MLP can maintain the coordinate equivariance for R = {r0. . . rn} by scaling each ri relative to
its norm ∥ ri ∥2 as shown in Eq (5).

ri = ri ∗MLP (∥ ri ∥2)/(∥ ri ∥2 +ϵ) (5)

Subsequently, the center of geometry is subtracted from the coordinates R of the graph G. The graph
embedding Gt+1 = {At+1 ⊕ Ct+1, Et+1, Rt+1} is used as the input of time step t and combined
with the embedding of GTM to be fed into the trainable module. Two locked copies of prior model
are created, one is used in the 3D generation module and the other one is employed in the constraint
module.

In the trainable unit of constraint module, a zero initialized MLP layer is attached to each trainable
encoder block. Similar to ControlNet, the output of each zero MLP layer is added to the locked
GT block of decoder in constraint module. This collecting mechanism is served as skip-connection,
linking the output of the trainable encoder layer to the input of the decoder layer in the opposite
order. Finally, the graph output of constraint module Gc = {Vc, Ec, Rc} is combined with the
output of 3D generative module Gy to form the final output of GrCN.
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Figure 2: The detailed architecture of Diff-Shape, consisting of (a) 3D generation module and (b)
constrain module.

Gt = At ⊕ Ct, Et, Rt = Mix(Ac ⊕ Cc, Ay ⊕ Cy),Mix(Ec, Ey),Mix(Rc, Ry) (6)

where the Mix function is just a linear combination as shown in Eq (7).

Mix(X,Y ) = X + γ(Y −X) (7)

2.3 TRAINING AND SAMPLING

For a given molecule M0 represented by G0 = {A0 ⊕ C0, E0, R0} in the training set, during the
training phase, the template molecule is itself processed with chosen fuzzy operation as mentioned
above and the denoising model is trained to predict the molecule G0 from a noisy input Gt with
the shape conditions GTM . In the loss function, the estimation of the coordinates Rθ can simply be
optimized with mean-squared error, whereas the prediction pAθ for the atom types, pCθ for the formal
charge and pEθ for the bond types corresponds to a classification problem which can be addressed
through a cross-entropy loss (CE in the equations). The final training objective of Diff-Shape is a
weighted sum of these components:

l(Gθ, pGθ (G
t, GTM )) = λr ∥ Rθ −R0 ∥2 +λACE(A0, pAθ (G

t, GR))

+ λCCE(Cθ, pCθ (G
t, GR)) + λECE(E0, pEθ (G

t, GR)) (8)
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When generating new samples, the conditioned posterior pθ is defined as the product of denoising
models’ predictions on each term.

pθ(G
t−1 | Gt, GTM ) =∏

1≤i≤n

pθ(r
t−1
i | Gt, GTM )pθ(a

t−1
i | Gt, GTM )pθ(c

t−1
i | Gt, GTM )

∏
1≤i,j≤n

pθ(eij | Gt, GTM ))

(9)

Similar to MIDI, each term in Eq (9) was calculated by marginalizing over the network prediction,
for instance,

pθ(a
t−1
i | Gt, GTM ) =

∑
vi∈V

q(at−1
i | ai = a,Gt)pAθ (ai = a | Gt, GTM ) (10)

where ai is the atom type of node vi, a is the value of ai.

2.4 COMPUTATIONAL DETAILS

Diff-Shape was trained on the GEOM-Drugs dataset consisting of 304339 molecules. For each
molecule, 5 conformations with lowest energies were selected as our reference datasets. The ref-
erence datasets were split into training, valid and test set in a ratio of 8:1:1. For each molecule M
in training set, it was trained by using its own shape graph GTM = {VM , EM , RM} as the basis
of creating shape condition. To increase the transferability of Diff-Shape model, we added noise
on both VM ,EM and RM with a standard deviation of 0.3 in default, and various fuzzy operations
were adopted to construct shape conditions. For fuzzy operations on the mixed point cloud level,
the connections between atoms are randomly masked with a ratio of 0.5. The weights of compo-
nents in loss function on atom type A, formal charge C, edge E and coordinate R are 0.4, 1.0,
2.0 and 3.0, respectively. The maximal diffusion step was set to 500. Evaluation metrics for Diff-
Shape generated molecules includes the 2D graph similarity Simg and 3D shape similarity Sim3D

with template molecules. The 2D similarity was calculated by the Tanimoto similarity of ECFP-4
fingerprints between generations and templates, while the 3D shape similarity was calculated with
the ROCS software of OE Toolkit package in default settings.30(Grant et al., 1996) For the tasks
of structure-based drug design, we also evaluate the docking score of generations in target pockets
with the GLIDE module of Schrodinger software package.(Halgren et al., 2004) In our study, we
utilized an unconditioned MIDI model as the baseline. We conducted a performance comparison
between Diff-Shape and two other shape-conditioned generative models: SQUID and ShapeMol.
The λ parameter of SQUID was set to 0.3 for optimal performance in our practice.(Adams & Co-
ley, 2022) ShapeMol was evaluated with and without guidance using a shape similarity-based score
function during the diffusion process to improve its performance. These two variants of Shape-
Mol are denoted as ”ShapeMol-NoGuide” and ”ShapeMol-Guide-0.5”, respectively, in which the
guidance weight was set to 0.5 in the guidance mode. Furthermore, we evaluated Pocket2Mol and
DiffSBDD in the context of structure-based drug design. Both models were employed with their
default settings for the evaluation.

3 DISCUSSION AND RESULT

3.1 COMPOUND QUALITY OF DIFF-SHAPE WITH DIFFERENT 3D SHAPE CONDITIONS

Here, we firstly compared the performance of Diff-Shape with different 3D shape conditions. We
randomly selected ten molecules from test set as references to generate 3D molecules. The validity,
uniqueness and novelty of 1,000 Diff-Shape generated molecules with 7 types of shape condition
are as listed in Table 1 (for mixed point cloud, an additional noise level of 0.4 was used), while the
Simg and Sim3D are as shown in Figure S4. As a comparison, the unconditioned MIDI generation
results are also provided.

The definition of seven shape conditions is listed in Table 1 (also shown in Figure S3). The ’None
Fuzzy’ condition keep most information of a reference shape including its atom type, bond type
and bond connection as well as atomic coordinates, while other conditions miss some information
on purpose to make a fuzzy reference shape to achieve balanced performance between high shape
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Table 1: The definition of fuzzy operation of shape-condition in Diff-Shape.

Condition Scheme
Noise with with with
level atom types bond types adjacency

None fuzzy

0.3

✓ ✓ ✓
Coloured mixed point ✓ ✓ Mask
Coloured point cloud ✓ × ×

Fuzzy element × ✓ ✓
Fuzzy element and bond × × ✓

Mixed point cloud × × Mask
Point cloud × × ×

Mixed point cloud 0.4 × × Mask

Table 2: The performance of Diff-Shape models trained with different fuzzy operations of shape-
condition.

Scheme index Noise Validity Uniqueness Validity* Connected Molecule
level Uniqueness components Stable

None fuzzy

0.3

0.940 0.050 0.047 0.998 0.94
Coloured mixed point cloud 0.837 0.144 0.121 0.997 0.88

Coloured point cloud 0.752 0.245 0.184 0.995 0.84
Fuzzy element 0.882 0.159 0.140 0.978 0.99

Fuzzy element and bond 0.908 0.253 0.230 0.998 0.94
Mixed point cloud 0.806 0.491 0.396 0.984 0.88

Point cloud 0.629 0.903 0.568 0.947 0.76
Mixed point cloud (0.4) 0.4 0.634 0.920 0.583 0.953 0.77

MIDI - 0.769 1.000 0.769 0.902 0.91

similarity and low 2D graph similarity. The general compound qualities for generations can be
found in Table 2. ’None Fuzzy’ shape condition results in less unique but more valid structures.
In contrast, applying less precise (fuzzier) condition leads to more unique but less valid structures.
We examine the multiplication of validity and uniqueness as a balanced metric score. Among seven
fuzzy levels of shape condition, point cloud level generates the most valid and unique molecules
with a value of around 0.57 and the order is ’Point cloud’ > ’Mixed point cloud’ > ’Fuzzy element
and bond’ > ’Coloured point cloud’ > ’Fuzzy element’ > ’Coloured mixed point cloud’> ’None
fuzzy’. However, once we add more noise (noise level of 0.4) on the mixed point cloud model, it
(with the core of 0.583) out-performed the point cloud model. The shape similarity and 2D graph
similarity of generations under various shape conditions are displayed in Figure S4. In general,
the stricter shape condition used, the higher 2D similarity is between the generated compound set
and the reference. For the fuzziest option ’Mixed Point cloud’ with noise of 0.4, its median shape
similarity is 0.823, while the median 2D similarity is 0.187, which means that our model is capable in
generating compounds with high shape similarity while keeping low 2D similarity. It is worthwhile
to note that for mixed point cloud models under noise level of 0.3 and 0.4, the fuzzier model (noise
level of 0.4) tends to generate more novel structures, while its shape similarity decreases slightly.
Given these results, mixed point cloud model was chosen for doing following experiments in current
study.

3.2 THE PERFORMANCE OF DIFF-SHAPE ON SHAPE-CONDITIONED STRUCTURE
GENERATION

We then evaluated Diff-Shape’s performance in the shape-based virtual screening scenario by com-
paring 3D shape similarity and 2D graph similarity of generations. For comparison, we examined
the performance of unconditioned MIDI model as baseline and other shape-conditioned models,

7
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SQUID, ShapeMol-NoGuide and ShapeMol-Guide-0.5 in our case. The evaluation was performed
on randomly selected 100 molecules from the test set as the reference set. For each reference
molecule, 100 valid and unique molecules were generated and assessed. The validity, uniqueness as
well as similarity scores of generations are shown in Table 3. Despite Diff-Shape generations show-
ing lower validity and uniqueness than SQUID, and ShapeMol models, it significantly outperformed
SQUID, ShapeMol and MIDI in terms of identifying molecules with Sim3D > 0.8. Specifically,
Diff-Shape achieved a ratio of 0.91 and 0.66 for such molecules with noise level of 0.3 and 0.4
respectively, while SQUID, ShapeMol-NoGuide, ShapeMol-Guide-0.5 and MIDI can only achieve
0.127, 0.001, 0.003 and 0.002, respectively. This highlights that Diff-Shape model does a better job
in generating compounds with similar shape, while the drawback of lower validity and uniqueness
can be largely solved by sampling larger number of compounds and filtering invalid ones.

Figure 3: The 3D shape similarity Sim3D and 2D graph similarity Simg distribution of the gener-
ated molecules for 100 references. The performance of all the generations with graph similarity less
than 1.0 (a), 0.7(c) and 0.3 (e); The performance of the best generations with graph similarity less
than 1.0 (b), 0.7 (d) and 0.3 (f). The green dash lines are the average values of distribution.

Considering 2D similarity of the generated set to the reference compound, we filtered molecules by
thresholds of 2D similarity Simg with 1.0, 0.7, and 0.3 to gauge the level of novelty in generations
regarding to the reference. The results in Table 3 show that the ratio of compound whose 3D shape
similarity is larger than 0.8 and 2D similarity is less than 0.7 are 0.830 and 0.641 for Diff-Shape with
noise level of 0.3 and 0.4, 0.123 for SQUID, 0.003 and 0.001 for ShapeMol with/without guidance.
For compounds whose 3D shape similarity is larger than 0.8 and 2D similarity is less than 0.3, the
ratio is 0.213 and 0.353 for Diff-Shape with noise of 0.3 and 0.4, 0.055 for SQUID, 0.003 and
0.001 for ShapeMol with/without guidance. This again demonstrates our method has better chance
in generating more diverse compounds with similar shape, comparing with other shape conditioned
generation models.

The shape similarity distributions were analyzed for both the entire generated sets and the best
sets, i.e. molecules with the highest shape similarity to each reference. At the same time, we
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Table 3: The performance of generations on 100 reference molecules.

Method Validity Uniqueness Validity*
P

Simg<1.0
Sim3D>0.8

*P
Simg<0.7
Sim3D>0.8 P

Simg<0.3
Sim3D>0.8Uniqueness

Diff-Shape-0.3a 0.831 0.515 0.413 0.913 0.830 0.213
Diff-Shape-0.4b 0.629 0.946 0.591 0.657 0.641 0.353

MIDI 0.769 1 0.769 0.002 0.002 0.002
SQUID 0.995 0.937 0.932 0.127 0.123 0.055

ShapeMol-NoGuide 0.983 0.999 0.983 0.001 0.001 0.001
ShapeMol-Guide-0.5 0.980 1.000 0.980 0.003 0.003 0.003

a with noise level of 0.3;
b with noise level of 0.4;
* ration of molecules with Sim3D > 0.8 to reference and Simg < 1.0.

also examined the shape similarity distribution according to 2D similarity cut-off 1.0, 0.7, 0.3. For
compounds with Simg < 1.0, the median of Sim3D was 0.91 among all generations and 0.96 for
the best performers for Diff-Shape-0.3.

Figure 4: The shape alignment of two-best generations with Simg < 0.3 to six reference molecules.
The dotted surfaces represent the 3D shape of references.

Analysis results for compounds with Simg < 0.7 are described in Figure 3c and 3d, while 3e and 6f
for compounds with Simg < 0.3. Remarkably, even for low 2D similarity molecules (Simg < 0.3),
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their 3D shape similarities Sim3D are only decreased slightly for Diff-Shape-0.3, which are 0.84
and 0.91 for all generations and the best ones, respectively (Figure 3e and 3f). This is significantly
better than other compared models. For Diff-Shape-0.4, the slight increase in noise level leads to
a noteworthy improvement in the diversity of generation, with only a minor decrease in 3D shape
similarity for all generations as well as the best generations. This suggests that users can control the
diversity of generations by adjusting the noise level.

Although Simg of both ShapeMol generations are less than 0.2 in general, their median Sim3D

were around 0.55 for all generations, which is only marginally better than the baseline MIDI model.
It is even worse for the best ones with a median of 0.64, compared to the 0.71 for MIDI. The SQUID
model performed better than ShapeMol models, the median Sim3D of SQUID generations are 0.58
and 0.83 for all generations and the best ones. Nevertheless, this is still significantly lower than
those of Diff-Shape. The shape alignments of the two best generations with Simg < 0.3 to the ref-
erence molecules are displayed in Figure 4, where Diff-Shape’s generations achieved alignment with
Sim3D > 0.80 for all six references, showing considerable good overlap with the shape conditions,
whereas SQUID failed on the 2nd, 4th, and 6th references, ShapeMol models only succeed in 1st
reference with the guidance, and MIDI failed in all cases. These findings demonstrate Diff-Shape’s
potential in shape-based ligand virtual screening.

4 CONCLUSION

In current study, we introduce a novel diffusion-based 3D molecular generative model, called as
Diff-Shape, for shape-controlled 3D molecule generation. By directly incorporating a pre-trained
unconditional 3D molecular generative model and a graph control module taking reference shape as
input, the condition guided diffusion process of molecular generation can be achieved. In tasks of the
shape-conditioned generations of chemically diverse molecular structures, our results demonstrate
that the Diff-Shape model can efficiently generate drug-like molecular conformations which has
not only high 3D similarity to the reference shape but also possess reasonable chemical novelty
compared to the reference structure.
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A APPENDIX

A.1 UNCONDITIONAL 3D MOLECULE GENERATIVE MODEL

In GrCN, a diffusion-based model, MIDI, was used for unconditional 3D molecule generation. Here,
we briefly introduce its algorithm, details should be referred to the original reference.(Vignac et al.,
2023) Given an input molecule M0, represented by G0 = {A0 ⊕ C0, E0, R0}, where A ⊕ C is
concatenation of one-hot encoding of atom type and formal charge for atoms, E0 contains the bond
types, while the set R refers to the atom coordinates. MIDI corrupts the features of each node
and edge independently with an adaptive noise schedule. The node and edge features V0, E0 are
diffused discretely, where noise model is a sequence of categorical distribution C and the coor-
dinates R is diffused with gaussian noise ϵ within the zero center-of-mass (CoM) range, where
ϵ ∼ NCoM (αtRt−1, (σt)2I), the parameter αt

t≤T controls how much signal is retained at each step
and σt

t≤T indicates how much noise is added. Then, the final noise model is given by:

q(Gt | Gt−1) ∼ NCoM (αtRt−1, (σt)2I)×C(At−1Qt
A)×C(C(t− 1)Qt

C)×C(E(t− 1)Qt
E) (S1)

where Qt
A, Qt

C and Qt
E are transition matrices for the categorical distributions to A,C and E, as

described in ref of MIDI.(Vignac et al., 2023)

Figure S1: The architecture of MIDI denoising model (a) and its basic unit of E(3) graph transformer
blocks (b).

The denoising model of MIDI is a Transformer model, consisting of 12 equivariant graph trans-
former (E3-GT) blocks, as depicted in Figure S1a. The first six of these blocks function as the en-
coder, and the latter half as the decoder. As demonstrated in Figure S1a, each E3-GT block processes
3D molecular graph data G = {A,C,E,R, }}, and performs a sequence of internal operations to
update the graph’s features. These operations include the extraction of 3D information, updating of
edge (E) and node features (V = A ⊕ C), R coordinates with rEGNN(Satorras et al., 2021),and
graph embeddings (}), followed by drop-out and normalization steps, which are detailed in Figure
S2 and ref of MIDI.(Vignac et al., 2023) The coordinate updating relies on distances between atoms,
which preserves the E3 equivariance of the graph.
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When generating new samples, the posterior pθ is defined as the product of denoising models’
predictions on each term.

pθ(G
t | Gt+1) =

∏
1≤i≤n

pθ(r
t
i | Gt+1)pθ(a

t
i | Gt+1)pθ(c

t
i|Gt+1)

∏
1≤i,j≤n

pθ(e
t
ij | Gt+1) (S2)

Each term in Eq (S2) is calculated by marginalizing over the network prediction, for instance:

pθ(a
t
i | Gt+1) =

∑
vi∈V

q(ati | ai = a,Gt+1)pAθ (ai = a) (S3)

Where ai is the atom type of node vi, a is the value of ai.

Figure S2: The detailed architectures of MIDI’s 3D information extraction layer (a), edge update
layer (b), node update layer (c), rEGNN layer (d), graph embedding layer (e).
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A.2 FUZZY OPERATIONS ON SHAPE CONDITION

As shown in Figure S3, in total, seven different fuzzy operations were adopted in Diff-Shape to
achieve varying effects. These operations include: (1) none fuzzy level, in which the original ref-
erence molecular graph is used; (2) fuzzy element level, a whitened molecular graph in which all
atoms were changed to carbon element and the original bond type information was retained; (3)
fuzzy element and bond level, a whitened molecular graph that all bond types are changed to sin-
gle bond; (4) point cloud level, a whitened three-dimensional point cloud in which all bonds are
removed; (5) mixed point cloud level, a whitened molecular graph in which all bonds are changed
to single bond and some bonds are partially removed. (6) coloured point cloud level, the original
three-dimensional point in which all bonds are removed; and (7) coloured mixed point cloud level,
the original element types are kept and other changes are the same with mixed point cloud level.
Our result demonstrates that these fuzzy operations play crucial role in generating novel structures
compared to the reference structure.

Figure S3: Seven types of shape conditions as input of constrain module including (a) none fuzzy,
(b) fuzzy element, (c) fuzzy element and bond, (d) point cloud, (e) mixed point cloud, (f) coloured
point cloud and (g) coloured mixed point cloud.
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A.3 PERFORMANCE OF DIFF-SHAPE WITH DIFFERENT 3D SHAPE CONDITIONS (FUZZY
OPERATIONS)

Figure S4: The distributions of 3D shape similarity Sim3D and 2D graph Tanimoto similarity Simg

of Diff-Shape models trained with different fuzzy operations of shape condition. The green dashed
lines represent average values.
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