
A Deferred Descriptions468

A.1 Negative Externality Example from [12]469

[12] provide an example of an instance where there exists a sub-population that is better off when470

UCB is run on that sub-population alone, compared to running UCB on the entire population. The471

example they provide depends on the total time horizon T . We claim that this does not occur when472

you fix an instance and consider asymptotic log-scaled regret, limT→∞
RT

log T .473

Fix any time T0, and consider the two-armed instance according to T = T0 from Definition 1 of [12].474

The population consists of three buckets that depend on their starting location: A, B, and C. The475

sub-population consisting of B and C is dubbed the “minority”, while A is the “majority”. Note that476

only B has access to both arms and hence it is the only bucket that can ever incur regret. Group B477

pulls the arm that has a higher UCB, defined as θ̂t(a) +
√

α log T0

Nt(a) for some tuning parameter α > 0.478

We first summarize informally how the negative externality arises. Because arms 1 and 2 are so479

close together, even after O(T0) time steps, which arm has a higher UCB is not dominated by the480

difference between their empirical means, but it is dominated the second term of the UCB:
√

α log T0

Nt(a) ,481

which is just a function of the number of pulls Nt(a). That is, group B essentially ends up pulling the482

arm that has fewer pulls. Therefore, when only the minority exists, since C only pulls arm 2, arm 1483

ends up having a higher UCB, and hence B ends up always pulling arm 1. However, if the majority484

group exists, arm 1 always has more pulls than arm 2 since there are more people from A then C.485

Then, B ends up essentially always pulling arm 2. If arm 2 is the arm that has a lower true reward486

than arm 1, then regret is higher when the majority group exists — therefore, the existence of the487

majority can have a “negative externality” on the minority.488

However, if we fix this instance and let T → ∞, then no matter which arms is better, from489

Theorem C.1, the total log-scaled regret is 0 from running KL-UCB. Moreover, when the majority490

does not exist, then the minority incurs non-zero log-scaled regret when θ1 < θ2. Therefore, the491

presence of the majority can only help the minority. Now, as explained in [12], it is true that the492

presence of the majority can negatively affect the minority in the early time steps (i.e. t < T0). In493

the asymptotic regime, such a negative externality corresponds to adding o(log T ) regret, which is494

deemed insignificant in our setting.495

A.2 Optimal Allocation Matching (OAM) Policy496

We describe the OAM algorithm from [22].497

Preliminaries: Let Gt =
∑t−1
s=1AsA

>
s and let θ̂t = G−1

t

∑t−1
s=1AsYs be the least squares estimate498

of θ at time t. Let ∆̂m
t (a) = maxa′∈A(m)〈a′ − a, θ̂t〉 be the corresponding estimate of ∆m(a). Let499

∆̂min
t = minm∈[M ] mina∈A(m),∆̂t(m,a)>0 ∆̂t(m, a) be the smallest nonzero instantaneous regret.500

Let501

fT,δ = 2

(
1 +

1

log T

)
log

(
1

δ

)
+ cd log(d log T ),

where c is an absolute constant. Let fT = fT,1/T .502

Define the following optimization problem that takes ∆̃(m, a) as input:503

(K)

min
∑
m∈M

∑
a∈A(m)

Q(m, a)∆̃(m, a)

s.t. ||a||2
H−1

T

≤ ∆̃(m, a)2

fT
∀m ∈M, a ∈ A(m)

Q(m, a) ≥ 0 ∀m ∈M, a ∈ A,

where HT =
∑
m∈M

∑
a∈A(m)Q(m, a)aa> is invertible. Let (Q̂t(m, a))m∈M,a∈A be the solution504

to (K) using ∆̃ = ∆̂t.505
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Algorithm: We are now ready to state the algorithm. At each time step t, observe context mt and506

do the following. First, check whether507

||a||2
G−1

t
≤ ∆̂t(m, a)2

fT
∀a ∈ A(mt).(10)

If (10) is satisfied, we exploit; otherwise, we explore.508

Exploit: Pull the greedy arm: argmaxa∈A(mt)〈a, θ̂t〉.509

Explore: Let s(t) be the total number of exploration rounds so far. Solve the empirical optimization510

problem (K) to get solution Q̂t(m, a).511

1. Check whether Nmt
t (a) ≥ min(Q̂t(mt, a), fT /(∆̂

min
t )2) holds for all available arms a ∈512

A(mt). If so, pull the UCB arm At = argmaxa∈A(mt)〈a, θ̂t〉+
√
fT,1/s(t)2 ||a||G−1

t
.513

2. Check whether there exists an available arm a ∈ A(mt) such that Nt(a) ≤ εts(t), where514

εt = 1/ log log t. If there is, then pull At = argmina∈cAmt Nt(a).515

3. If the above two criteria are not true, then pull At =516

argmina∈Amt

Nt(a)

min(Q̂t(mt,a),fT /(∆̂min
t )2)

.517

A.3 Warfarin Experiment Details518

We use a publicly available dataset for warfarin dosing that was collected by the Pharmacogenomics519

Knowledge Base (PharmGKB [30]), which is under a Creative Commons license1. The dataset520

contains 5700 patients who were treated with warfarin from 21 research groups over 9 countries.521

Consent for all patients was obtained previously from each center, and no personally identifiable522

information was used. The dataset contains the optimal dose of warfarin for each patient, which523

was found by doctors through trial and error. It also includes many other covariates for each patient524

including demographics, clinical features, and genetic information.525

Groups: We group the patients either by race or age. There were three distinct races in the dataset,526

which we label as A, B ,and C. For age, we split the patients into two age groups, where the threshold527

age was 70.528

Contexts: The OAM and PF-OAM policies assume a finite number of possible feature vectors, and529

the optimization problem (L(θ)) scales with this number. Therefore, for tractability, we only use530

five features for the contexts of the patients, where we discretize each feature into two bins. We use531

the five features that are most correlated with the optimal warfarin dosage, and we use the empirical532

median of each feature to discretize them. The five features that we use are: age, weight, whether533

the patient was taking another drug (amiodarone), and two binary features capturing whether the534

patient has a particular genetic variant of genes Cyp2C9 and VKORC1, two genes that are known535

to affect warfarin dosage [32]. Out of 25 = 32 different possible feature vectors, there were 21 that536

were present in the data.537

Rewards: We bin the optimal dosage levels into three arms as was done in [7]: Low (under 3538

mg/day), Medium (3-7 mg/day), and High (over 7 mg/day). To ensure that the model is correctly539

specified, for each arm, we train a linear regression model using the entire dataset from the five540

contexts to the binary reward on whether the optimal dosage for that patient belongs in that bin. Let541

θa ∈ R6 be the learned linear regression parameter for each arm (d = 6 to include the intercept).2542

To model this as grouped linear contextual bandits as described in Section 5, we let d = 18 and let543

θ = (θ1, θ2, θ3) ∈ Rd. When a patient with covariates X ∈ R6 arrives, the actions available are544

{(X,0,0), (0, X,0), (0,0, X)}, and their expected reward from arm a is 〈X, θa〉 for a ∈ {1, 2, 3}.545

Algorithms: We assume a patient is drawn i.i.d. from the dataset at each time step, and we compute546

the asymptotic group regret of the OAM policy (‘Regret optimal’) and the fair extension (‘Fair’) as547

described in Section 5:548

1https://creativecommons.org/licenses/by-sa/4.0/
2The linear regression step is done solely to remove model misspecification. The purpose of this study is not

to show that the linear contextual bandit is a good fit for this dataset — this was already demonstrated in [7].
rather, the purpose is to demonstrate how incorporating fairness changes the outcome from a policy that does not
take fairness into account on a bandit instance that approximates a real-world setting. rather, the purpose is to
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• Regret optimal: Using the true values θ, we solve (L(θ)) and obtain solution549

(Q(m, a))m∈[M ],a∈A. Then, the total (log-scaled) regret incurred by context m is550 ∑
a∈A∆(m, a)Q(m, a). Since we assume the group arrivals are i.i.d., for each con-551

text, we allocate the regret to groups in proportion to the group’s frequency. That552

is, for each m, let (wg(m))g∈G ,
∑
g∈G w

g(m) = 1 be the empirical distribution of553

groups among patients with context m. Then, the total regret assigned to group g is554 ∑
m∈[M ] w

g(m)
∑
a∈A∆(m, a)Q(m, a).555

• Fair: Using the true values ∆, we solve (Lfair(θ)) and obtain solu-556

tion (Qg(m, a))g∈G,m∈[M ],a∈A. The total regret assigned to group g is557 ∑
m∈[M ]

∑
a∈A∆(m, a)Qg(m, a).558

All experiments were run on a Macbook Pro with a 2.5 GHz Intel Core i7 processor.559

B Proof Preliminaries560

B.1 Notation561

For all of the subsequent proofs, we assume that an instance I is fixed. We often use big-O notation,562

which is with respect to T → ∞, unless otherwise specified. The big-O hides constants that may563

depend on any other parameter other than T , including the instance I . In general, when we introduce564

a constant, it may depend on any other parameters other than T . We are usually not concerned565

with the values of the constants as we are concerned with asymptotic results (though we do concern566

ourselves with constants in front of the leading term, usually log T ). We sometimes re-use letters like567

c for constants but they do not refer to the same value.568

The UCB of an arm is defined as:569

UCBt(a) = max{q : Nt(a)KL(θ̂t(a), q) ≤ log t+ 3 log log t}.(11)

Let Pullt(a) be the indicator for arm a being pulled at time t, and let Pullgt (a) be the indicator for570

when arm a is pulled by group g. We define the class of log-consistent policies:571

Definition B.1. A policy π for the grouped bandit problem is log-consistent for if for any instance572

(θ,G, (pg)g∈G, (Ag)g∈G), for any group g,573

E

 ∑
a∈Asub(g)

Ng
T (a)

 = O(log T ).(12)

That is, the expected number of times that group g pulled a suboptimal arm by time t is logarithmic574

in the number of arrivals of g.575

B.2 Commonly Used Lemmas576

We state a few lemmas that are used several times for both Theorem C.1 and Theorem 4.1. These577

lemmas do not depend on the policy that is used. The first result shows that the number of times that578

an arm’s UCB is smaller than its true mean is small.579

Lemma B.2. Let Λt = {UCBt(a) ≥ θ(a) ∀a ∈ A} be the event that UCB for every arm is valid at580

time t.581

T∑
t=1

Pr(Λ̄t) = O(log log T ).

Proof. For a fix arm a,
∑T
t=1 Pr(UCBt(a) < θ(a)) = O(log log T ) follows from Theorem 10 of582

[28], plugging in δ = log t + 3 log log t as is done in the proof of Theorem 2 of [28]. The result583

follows from a union bound over all actions a ∈ A. �584

The second lemma states a relationship between the radius of the UCB of an arm and the number of585

pulls of the arm.586

Lemma B.3. Let 0 < α < β < 1. There exists a constant c > 0 such that if θ̂t(a) ≤ α and587

UCBt(a) ≥ β, then Nt(a) < c log t.588
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Proof. Suppose θ̂t(a) ≤ α and UCBt(a) ≥ β. Then, KL(θ̂t(a),UCBt(a)) ≥ KL(α, β). Let589

c = 4
KL(α,β) . By definition of the UCB (11), Nt(a) ≤ log t+3 log log t

KL(θ̂t(a),UCBt(a))
≤ c log t. �590

This result essentially states that if the radius of the UCB of an arm is larger than a constant, then the591

number of pulls of the arm is at most O(log t); this result follows simply from the definition of the592

UCB (11). The next result states that if an arm a is pulled, then its empirical mean will be close to its593

true mean.594

Lemma B.4. For any group g and arm a ∈ Ag , if L < θ(a) < U ,595

T∑
t=1

Pr(Pullt(a), θ̂t(a) /∈ [L,U ]) = O(1).

where big-O hides constants that may depend on the instance and L,U .596

Proof. Let θ̂n(a) be the empirical mean after n pulls of arm a. Let Et,n be the event that the number597

of times arm 1 has been pulled before time t is exactly n.598

T∑
t=1

Pr(Pullt(a), θ̂t(a) /∈ [L,U ])

=

T∑
t=1

T∑
n=1

Pr(Pullt(a), θ̂n(a) /∈ [L,U ], Et,n)

=

T∑
n=1

T∑
t=1

Pr(θ̂n(a) /∈ [L,U ]
∣∣ Pullt(a), Et,n) Pr(Pullt(a), Et,n)

If Ft,n = {Pullt(a), Et,n}, then for any n, the events F1,n, . . . , FT,n are disjoint. Then, by the law599

of total probability, Pr(θ̂n(a) /∈ [L,U ]) ≥
∑T
t=1 Pr(θ̂n /∈ [L,U ]|Ft,n) Pr(Ft,n). Therefore,600

T∑
t=1

Pr(Pullt(a), θ̂t(a) /∈ [L,U ]) ≤
T∑
n=1

Pr(θ̂n(a) /∈ [L,U ]) ≤
T∑
n=1

exp(−αn).

for some α > 0 since the rewards of arm a are Bernoulli. Therefore,
∑T
t=1 Pr(Pullt(a), θ̂t(a) /∈601

[L,U ]) = O(1). �602

C Proof that KL-UCB is Regret Optimal603

In this section, we prove that the KL-UCB policy is regret-optimal. At each time step, πKL-UCB604

chooses the arm with the highest UCB, defined as (11), out of all arms available.605

Theorem C.1. For all instances I of the grouped K-armed bandit,606

lim inf
T→∞

RT (πKL-UCB, I)

log T
≤
∑
a∈Asub

∆Γ(a)(a)J(a).(13)

The first step of the proof is to show that the number of pulls of a suboptimal arm is optimal:607

Proposition C.2. Let a ∈ Asub be a suboptimal arm. KL-UCB satisfies608

lim sup
T→∞

E [NT (a)]

log T
≤ J(a).

This result can be shown using the existing analysis of KL-UCB from [28]. The next step is to609

analyze how these pulls are distributed across groups. In particular, we need to show that a group610

never pulls a suboptimal arm a if g /∈ Γ(a). This is the result of the next theorem:611

Proposition C.3. Let a ∈ A. Let g ∈ Ga, g /∈ Γ(a) be a group that has access to the arm but is not612

the group that has the smallest optimal out of Ga. Then, KL-UCB satisfies613

E [Ng
T (a)] = O(log log T ),

where the big-O hides constants that depend on the instance.614
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This result implies that for any arm a, the regret incurred by group g /∈ Γ(a) pulling the arm615

is o(log T ), and is equal to 0 when scaled by log T . Theorem C.1 then follows from combining616

Proposition C.2 and Proposition C.3.617

In this section, we prove Proposition C.3. Let a ∈ A and let A ∈ Γ(a) be a group that has access to618

that arm with the smallest OPT. Let group B /∈ Γ(a) be another group that has access to arm a. Let619

θA, θB be the optimal arms for group A and B respectively. We use θA, θB to refer to both the arm620

and the arm means. Our goal is to show E
[
NB
T (a)

]
= O(log log T ).621

E
[
NB
T (a)

]
=

T∑
t=1

Pr(PullBt (a))

=

T∑
t=1

Pr(PullBt (a),UCBt(θ
B) ≥ θB) +

T∑
t=1

Pr(PullBt (a),UCBt(θ
B) < θB).

The second sum can be bounded by Lemma B.2, since
∑T
t=1 Pr(PullBt (a),UCBt(θ

B) < θB) ≤622 ∑T
t=1 Pr(Λ̄t) = O(log log T ). Therefore, our goal is to show623

T∑
t=1

Pr(PullBt (a),UCBt(θ
B) ≥ θB) = O(log log T ).(14)

We state a slightly more general result that implies (14).624

Lemma C.4. Suppose we run any log-consistent policy π. Let r > 0 be fixed. For any a ∈ A,625

T∑
t=1

Pr(Pullt(a),UCBt(a) ≥ OPT(Γ(a)) + r) = O(log log T ),

where the constant in the big-O may depend on the instance and r.626

The rest of this section proves Lemma C.4.627

C.1 Probabilistic Lower Bound of Nt(a) for Grouped Bandit628

One of the main tools used in the proof of Lemma C.4 is a high probability lower bound on the629

number of pulls of a suboptimal arm. Let Wt(g) be the number of arrivals of group g by time t.630

Let Rgt = {Wt(g) ≥ pgt
2 } be the event that the number of arrivals of group g is at least half of the631

expected value. We condition on the event Rgt to ensure that a group has arrived a sufficient number632

of times.633

Proposition C.5. Let g be a group, and let a ∈ Agsub be a suboptimal arm for group g. Fix ε ∈ (0, 1).634

Suppose we run a log-consistent policy as defined in Definition B.1. Then,635

Pr

(
Nt(a) ≤ (1− ε) log t

KL(θ(a),OPT(g))

∣∣∣∣ Rgt) = O

(
1

log t

)
,

where the big-O notation is with respect to t→∞.636

The proof of this result can be found in Appendix D.3. For an arm a /∈ Asub, we have the following637

stronger result:638

Proposition C.6. Let a be an arm that is optimal for some group g. Suppose we run a log-consistent639

policy. Then, for any b > 0,640

Pr
(
Nt(a) ≤ b log t

∣∣ Rgt ) = O

(
1

log t

)
,

where the big-O notation is with respect to t→∞ and hide constants that depend on both b and the641

instance.642
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C.2 Proof of Lemma C.4643

Outline: Let A ∈ Γ(a) be a group that has the smallest optimal out of all arms with access to a.644

The main idea of this lemma is that group A does not “allow” the UCB of arm a to grow as large645

as OPT(A) + r, as group A would pull arm a once the UCB is above OPT(A). Proposition C.5646

implies that UCBt(a) is not larger than OPT(A) with high probability. If this occurs at time t, since647

the radius of the UCB grows slowly (logarithmically), the earliest time that the UCB can grow to648

OPT(A) + r is tγ , for some γ > 1. We divide the time steps into epochs, where if epoch k starts at649

time sk, it ends at sγk . This exponential structure gives us O(log log T ) epochs in total, and we show650

that the expected number of times that UCBt(a) > OPT(A) + r during one epoch is O(1).651

Proof: We denote by θa the true mean reward of arm a and by θ̂t the empirical mean reward of a at652

the start of time t. Let U = OPT(Γ(a)) + r. Let A ∈ Γ(a), and let θA = OPT(A). If a /∈ Asub,653

then let θA = OPT(A) + r/2. Let b > 0 such that KL(θa,U)
KL(θa,θA)

= 1 + b. Define θu ∈ [θa, θ
A] such654

that KL(θu,U)
KL(θa,θA)

= 1 + b
2 . We have θa < θu < θA < U . Define γ , 1 + b

4 . Let ε > 0 such that655

1−ε
1+ε ·

KL(θu,U)
KL(θa,θA)

= γ.656

By Lemma B.4,
∑T
t=1 Pr(Pullt(a), θ̂t(a) > θu) = O(1). Therefore, we can assume θ̂t(a) ≤ θu.657

Denote the event of interest by Et = {Pullt(a),UCBt(a) ≥ θA + r, θ̂t(a) ≤ θu}. Our goal is to658

show
∑T
t=1 Pr(Et) = O(log log T ).659

Divide the time interval T into K = O(log log T ) epochs. Let epoch k start at sk ,
⌈
2γ

k
⌉

for k ≥ 0.660

Let Tk = {sk, sk + 1, . . . , sk+1 − 1} be the time steps in epoch k. This epoch structure satisfies the661

following properties:662

1. The total number of epochs is O(log log T ).663

2. log sk+1

log sk
= γ for all k ≥ 0.664

We will treat each epoch separately. Fix an epoch k. Our goal is to bound E
[∑

t∈Tk 1(Et)
]
.665

Lemma B.3 implies that there exists a constant c > 0 such that if Et occurs, it must be that666

Nt(a) < c log t. Hence,667 ∑
t∈Tk

1(Et) ≤ c log sk+1.

Define the event Gt =
{
Nt(a) ≥ (1− ε) log t

KL(µ,θA)

}
. The following claim says that if Gsk is true,668

then Et never happens during that epoch.669

Claim C.7. Suppose Gsk is true. Let t0 be such that if t ≥ t0, log log t ≤ ε log t. Then, if670

sk ≥ t0,
∑sk+1

t=sk
1(Et) = 0.671

This result follows from the fact that the event Gsk implies that the radius of the UCB is “small” at672

time sk, and the epoch is defined so that the radius will not grow large enough that Et can occur673

during epoch k. Therefore, we have the following:674

E

[∑
t∈Tk

1(Et)

]
= E

[∑
t∈Tk

1(Et)

∣∣∣∣Ḡsk
]

Pr
(
Ḡsk

)
≤ c log sk+1 Pr

(
Ḡsk

)
.

We can bound Pr
(
Ḡsk

)
using the probabilistic lower bound of Proposition C.5.675

Claim C.8. Pr
(
Ḡsk

)
≤ O

(
1

log sk

)
.676

Then, property 2 of the epoch structure implies E
[∑

t∈Tk 1(Et)
]

= O(1). Since the number of677

epochs is O(log log T ),678

E

[
T∑
t=1

1(Et)

]
≤

K∑
k=1

E

[∑
t∈Tk

1(Et)

]
= O(log log T ),

as desired.679
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C.3 Proof of Claims680

Proof of Claim C.7. Let t = sk > t0 and let t′ ≥ t such that Et′ is true. By definition of KL-UCB,681

Nt′(a) ≤ log t′ + 3 log t′

KL(θ̂t′ ,UCBt′(θ))
.

Since Et′ implies UCBt′(a) > θB and θ̂t′ ≤ θu, we have Nt′(a) ≤ log t′+3 log t′

KL(θu,θB)
. Since Gsk is true,682

Nt′(a) ≥ (1− ε) log sk
KL(θa,θA)

. Therefore, it must be that683

(1− ε) log sk
KL(θa, θA)

≤ log t′ + 3 log log t′

KL(θu, θB)
≤ (1 + ε) log t′

KL(θu, θB)

⇒ 1− ε
1 + ε

· KL(θu, θ
B)

KL(θa, θA)
log sk ≤ log t′

⇒ t′ ≥ sγk .
This implies that t′ is not in epoch k. �684

Proof of Claim C.8. For group g = A, Proposition C.5 (or Proposition C.6 if a /∈ Asub) states that685

Pr
(
Ḡsk

∣∣ Rgsk) = O

(
1

log sk

)
.

(We show in Appendix D.1 that KL-UCB is log-consistent.)686

Now we need to bound Pr(R̄gsk) = Pr
(
Msk(A) ≤ pAsk

2

)
. Note that Ms(A) =

∑s
t=1 Z

A
i , where687

ZAt
iid∼ Bern(pA). By Hoeffding’s inequality,688

Pr
(
Msk(A) ≤ pAsk

2

)
< exp

(
−1

2
p2
Ask

)
.

Combining, we have689

Pr(Ḡk) ≤ Pr(R̄k) + Pr(Ḡk | Rk) ≤ O
(

1

log sk

)
.

�690

D Deferred Proofs for Theorem C.1691

For any ε > 0, let692

Kg
ε (x) =

⌈
1 + ε

KL(θa,OPT(g))
(log x+ 3 log log x)

⌉
.

To show both Proposition C.2 and the fact that KL-UCB is log-consistent, we make use of the693

following lemma.694

Lemma D.1. Let a ∈ A. Let g ∈ Ga be a group in which a is suboptimal. For any ε > 0,695

E

[
T∑
t=1

1(Pullgt (a), Nt(a) ≥ Kg
ε (T ))

]
= O(log log T ).(15)

Proof. Let ε > 0. Recall that A∗g is the optimal arm for group g, and OPT(g) is the mean reward of696

A∗g .697

E

[
T∑
t=1

1(Pullgt (a), Nt(a) ≥ Kg
ε (T ))

]

= E

[
T∑
t=1

1(Pullgt (a), Nt(a) ≥ Kg
ε (T ),UCBt(A

∗
g) ≥ OPT(g))

]
+ E

[
T∑
t=1

1(Pullgt (a),UCBt(A
∗
g) < OPT(g))

]
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The second term is O(log log T ) from Lemma B.2. We will show that the first term is O(1). Let698

θ̂s(a) be the empirical mean of a after s pulls. Consider the event {At = a, gt = g,Nt(a) =699

s,UCBt(A
∗
g) ≥ OPT(g)}, where s ≥ Kn. Suppose this is true at time t. Then, it must be that700

UCBt(a) ≥ OPT(g). For this to happen, by definition of KL-UCB, it must be that701

sKL(θ̂s(a),OPT(g)) ≤ log t+ 3 log log t.(16)

Since s ≥ Kg
ε (T ) and t ≤ T , we must have702

KL(θ̂s(a),OPT(g)) ≤ log T + 3 log log T

Kg
ε (T )

=
KL(θa,OPT(g))

1 + ε
.(17)

Let r > θa such that KL(r,OPT(g)) = KL(θa,OPT(g))
1+ε . Then, for (17) to occur, it must be that703

θ̂s(a) ≥ r. Then, we have704

E

[
T∑
t=1

1(Pullgt (a), Nt(a) ≥ Kg
ε (n),UCBt(A

∗
g) ≥ OPT(g))

]

=E

[
T∑
t=1

∞∑
s=Kn

1(Pullgt (a), Nt(a) = s,UCBt(A
∗
g) ≥ OPT(g))

]

≤E

[
T∑
t=1

∞∑
s=Kn

1(Pullgt (a), Nt(a) = s, θ̂s(a) ≥ r)

]

=E

[ ∞∑
s=Kn

1(θ̂s(a) ≥ r)
T∑
t=1

1(Pullgt (a), Nt(a) = s)

]

≤
∞∑

s=Kn

Pr(θ̂s(a) ≥ r).

Since r > µ(a), there exists a constant C3 > 0 that depends on ε and r such that Pr(µs(a) ≥ r) ≤705

exp(−sC3). Therefore,
∑∞
s=Kn

Pr(θ̂s(a) ≥ r) = O(1) and we are done.706

�707

D.1 Proof that KL-UCB is log-consistent708

This basically follows from Lemma D.1. Let ε = 1/2. Fix a group g, and let a be a suboptimal arm709

for g.710

E[Ng
T (a)] = E

[
T∑
t=1

1(Pullgt (a))

]

≤ Kg
ε (T ) + E

tg(n)∑
t=1

1(Pullgt (a), Nt(a) ≥ Kg
ε (T ))


= Kg

ε (T ) + log log(T ).

We are done since Kg
ε (T ) = O(log T ).711

D.2 Proof of Proposition C.2712

Let a ∈ Asub be a suboptimal arm. Let ε > 0. Let713

KT = max
g∈Ga

Kg
ε (T ).

Clearly, the maximum is attained in the group g with the smallest OPT(g), so.714

KT =

⌈
1 + ε

KL(θa,OPT(Γ(a)))
(log T + 3 log log T )

⌉
.
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E[NT (a)] = E

[
T∑
t=1

1(At = a)

]

≤ KT + E

[
T∑
t=1

1(At = a,Nt(a) ≥ KT )

]

≤ KT +
∑
g∈Ga

E

[
T∑
t=1

1(Pullgt (a), Nt(a) ≥ KT )

]
≤ KT +

∑
g∈Ga

O(log log T ).

where the last inequality follows from Eq. (15) of Lemma D.1. Since this holds for any ε > 0, the715

desired result holds.716

D.3 Proof of Proposition C.5 and Proposition C.6717

Let g be a group, and let j be a suboptimal arm for group g; i.e. θj < OPT(g). Fix ε > 0. We718

assume that the event Rgt = {Wt(g) ≥ pgt
2 } holds. Fix δ > 0 such that 1−δ

1+δ = 1− ε. Let a = δ/2.719

We construct another instance γ where arm j is replace with λ so that arm j is the optimal arm for g720

in the same manner as the Lai-Robbins proof. Specifically, λ > θj such that721

KL(θj , λ) = (1 + δ)KL(θj ,OPT(g)).

Our goal is to bound the probability of event
{
Nt(j) ≤ (1−δ) log t

KL(θj ,λ)

}
, which we split into two events:722

Ct =

{
Nt(j) ≤

(1− δ) log t

KL(θj , λ)
, LNt(j) ≤ (1− a) log t

}
,

Et =

{
Nt(j) ≤

(1− δ) log t

KL(θj , λ)
, LNt(j) > (1− a) log t

}
,

where Lm =
∑m
i=1 log

(
f(Yi;θj)
f(Yi;λ)

)
.723

Assumption (12), there exists a constant c such that if t is large enough that Pr(Rgt ) ≥ 1/2,724

Eγ

[ ∑
a∈Asub

Ng
t (a)

∣∣∣∣ Rgt
]
≤ c log t.

Since j is the unique optimal arm under γ,725

Eγ
[
Wt(g)−Ng

t (j)

∣∣∣∣ Rgt ] ≤ c log t.

Using Markov’s inequality and using the fact that Wt(g) ≥ pgt
2 , we get726

Prγ

(
Ng
t (j) ≤ (1− δ) log t

KL(θj , λ)

∣∣∣∣ Rgt) = Prγ

(
Wt(g)−Ng

t (j) ≥Wt(g)− (1− δ) log t

KL(θj , λ)

∣∣∣∣ Rgt)
≤Prγ

(
Wt(g)−Ng

t (j) ≥ pgt

2
− (1− δ) log t

KL(θj , λ)

∣∣∣∣ Rgt)
≤
E
[
Wt(g)−Ng

t (j)
∣∣ Rgt ]

pgt
2 −

(1−δ) log t
KL(θj ,λ)

=O

(
log t

t

)
.
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Bounding Pr(Ct | Rgt ): Following through with the same steps as the original proof, we can replace727

(2.7) with728

Prθ(Ct | Rgt ) ≤ t1−a Prγ(Ct | Rgt ) ≤ t1−aO
(

log t

t

)
= O

(
log t

ta

)
.

Bounding Pr(Et | Rgt ): Next, we need to show a probabilistic result in lieu of (2.8) of [10]. Let729

m = (1−δ) log t
KL(θj ,λ) and let α > 0 such that (1 + α) = 1−a

1−δ . We need to upper bound730

Prθ

(
max
j≤m

Lj > (1− a) log t

)
= Prθ

(
max
j≤m

Lj > (1 + α)KL(θj , λ)m

)
≤ Prθ

(
max
j≤m
{Lj − jKL(θj , λ)} > αKL(θj , λ)m

)
.

Let Zi = log
(
f(Yi;θj)
f(Yi;λ)

)
− KL(θj , λ). We have E[Zi] = 0. Let Var(Zi) = σ2. Then, by Kol-731

mogorov’s inequality, we have732

Prθ

(
max
j≤m

j∑
i=1

Zi > αKL(θj , λ)m

)
≤ 1

α2KL(θj , λ)2m2
Var

(
m∑
i=1

Zi

)

=
σ2

α2KL(θj , λ)2m

= O

(
1

log t

)
,

since m = Θ(log t).733

Combine: Combining, we have734

Prθ

(
Nt(j) ≤

(1− δ) log n

KL(θj , λ)

∣∣∣∣ Rgt) = Prθ(Cn
∣∣ Rgt ) + Prθ(En

∣∣ Rgt )
= O

(
log t

ta

)
+O

(
1

log t

)
.

Since KL(θj , λ) ≤ (1 + δ)KL(θj ,OPT(g)) and 1−δ
1+δ = 1− ε, we have735

Prθ

(
Nt(j) ≤

(1− ε) log t

KL(θj ,OPT(g))

∣∣∣∣ Rgt) ≤ O( 1

log t

)
as desired.736

Proof of Proposition C.6. The proof of this result follows the same steps as Proposition C.5. Let737

ε = 1/2 and let θ∗ > θj so that 1−ε
KL(θj ,θ∗)

= b. In the proof of Proposition C.5, replace OPT(g) with738

θ∗. Then, the same proof goes through and we get Pr
(
Nt(j) ≤ b log n

∣∣ Rgt ) = O
(

1
log t

)
. �739

E Proof of Theorem 4.1740

To prove Theorem 4.1, our goal is to show that the total number of pulls of a suboptimal arm a is741

J(a) log T , and those pulls are distributed amongst groups according to qg∗(a). The policy PF-UCB742

assigns arms in a way that the distribution of groups that have pulled arm a converges to q̂gt (a).743

Hence, our goal is to show that q̂gt (a) is usually “close” to qg∗(a).744

Let δ0 = mina 6=a′
|θ(a)−θ(a′)|

4 . For δ ∈ (0, δ0) let Ht(δ) = {θ̂t(a) ∈ [θ(a)− δ, θ(a) + δ] ∀a ∈ A}745

be the event that all arms are within their “δ-boundaries”. Since δ < δ0, this implies that the ranking746

of the arms do not change if Ht(δ) is true (i.e. θ(a) < θ(a′)⇒ θ̂t(a) < θ̂(a′)). We first state a result747

pertaining to the program (P (θ)), which states that if Ht(δ) is true, the approximate solution q̂t is748

also close to the true solution q∗.749
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Proposition E.1. For any ε > 0, there exists δ > 0 such that if Ht(δ), then q̂gt (a) ∈ [qg∗(a) −750

ε, qg∗(a) + ε] for all a ∈ A and g ∈ G.751

The proof of Proposition E.1 can be found in Appendix G.4. This result implies that when we have752

good empirical estimates of θ (i.e. Ht(δ) is true), the policy of ‘following’ the solution q̂gt (a) will753

give us the desired ‘split’ of pulls between groups. Therefore, our goal is to show that suboptimal754

arms are pulled only when Ht(δ) is true.755

For a ∈ Agsub, there are two reasons why Pullgt (a) would occur: (i) a = AUCB
t (g′) for some group756

g′, or (ii) a = Agreedy
t (g). We show that the regret from (ii) is negligible:757

Proposition E.2. Let g be a group, and let a ∈ Agsub be a suboptimal arm for g.758

T∑
t=1

Pr(Pullgt (a), Agreedy
t (g) = a) = O(log log T ).

Therefore, all of the regret stems from pulls of type (i), when an arm has the highest UCB. The next759

result says that essentially all pulls occur when Ht(δ) is true:760

Proposition E.3. Let δ > 0. For any group g and action a ∈ Agsub,761

T∑
t=1

Pr(Pullgt (a), Agreedy
t (g) 6= a, H̄t(δ)) = O(log log T ).

Lastly, we show that the total number of times an arm a ∈ Asub is pulled matches the lower bound:762

Proposition E.4. Let a ∈ Asub.763

lim
T→∞

E[NT (a)]

log T
= J(a).

We now prove Theorem 4.1 using Propositions E.2-E.4.764

Proof of Theorem 4.1. Fix a group g and an arm a ∈ Agsub. Let ε > 0. Let δ ∈ (0, δ0) according to765

Proposition E.1. Let Ht = Ht(δ).766

E[Ng
T (a)] =

T∑
t=1

Pr(Pullgt (a))

=

T∑
t=1

(Pr(Pullgt (a), Agreedy
t (g) 6= a,Ht)

+ Pr(Pullgt (a), Agreedy
t (g) = a) + Pr(Pullgt (a), Agreedy

t (g) 6= a, H̄t))

≤
T∑
t=1

Pr(Pullgt (a), a ∈ AUCB
t , Ht) +O(log log T ).(18)

where the last step follows from Proposition E.3 and Proposition E.2.767

First, assume that a /∈ Asub. That is, there exists a group g′ such that a is optimal for g′. We claim768

that Pr(Pullgt (a)
∣∣ a ∈ AUCB

t , Ht) = 0. Notice that when Ht is true, a is not the greedy arm for g,769

and moreover, a /∈ Âsub. Therefore, a is not involved in the optimization problem (P (θ)), and a is770

not the greedy arm for g, so g would not pull a when Ht is true. Therefore, Pullgt (a) = 0 when Ht is771

true. This implies that if a /∈ Asub,772

lim
T→∞

E[Ng
T (a)]

log T
= 0.(19)

Next, assume a ∈ Asub. By definition of the algorithm, if {Pullgt (a), a ∈ AUCB
t } occurs, then773

Ng
t (a) ≤ q̂gt (a)Nt(a). If Ht(δ), then q̂gt (a) ≤ qgt (a) + ε. Therefore,

∑T
t=1 1(Pullgt (a), a ∈774
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AUCB
t , Ht(δ)) ≤ (qgt (a) + ε)NT (a). Then, using (18), we can write775

lim sup
T→∞

E[Ng
T (a)]

log T
= lim sup

T→∞

E
[∑T

t=1 1(Pullgt (a), a ∈ AUCB
t , Ht(δ))

]
+O(log log T )

log T

≤ lim sup
T→∞

(qg(a) + ε)E[NT (a)]

log T

≤ (qg(a) + ε)J(a),

where the last inequality follows from Proposition E.4. Since this holds for all ε > 0,776

lim sup
T→∞

E[Ng
T (a)]

log T
≤ qg(a)J(a).(20)

Recall that Proposition E.4 states777

lim
T→∞

E[NT (a)]

log T
= J(a).(21)

This implies that (20) must be an equality all g. If this weren’t the case, then lim supT→∞
E[NT (a)]

log T778

would be strictly less than J(a), which would be a contradiction.779

Moreover, we claim that (20) and (21) implies limT→∞
E[Ng

T (a)]

log T = qg(a)J(a) for all g. By contra-780

diction, suppose there exists a g′ ∈ G such that lim infT→∞
E[Ng′

T (a)]

log T = qg
′
(a)J(a)− α for some781

α > 0. Then, (21) implies that lim supT→∞
∑
g 6=g′

E[Ng′
T (a)]

log T ≥ (1− qg′(a))J(a) + α, which is a782

contradiction. Therefore, for every g,783

lim
T→∞

E[Ng
T (a)]

log T
= qg(a)J(a).

Combining with (19) yields the desired result:784

lim
T→∞

E[RegretgT (a)]

log T
= lim
T→∞

∑
a∈A∆g(a)E[Ng

T (a)]

log T
= lim
T→∞

∑
a∈Asub

∆g(a)qg(a)J(a).

�785

E.1 Proof of Propositions E.2-E.4786

Proof of Proposition E.2. Let g ∈ G and let a ∈ Agsub. We bound
∑T
t=1 Pr(Pullgt (a), a =787

Agreedy
t (g)). We can assume that the events θ̂t(a) ∈ [θ(a)−δ, θ(a)+δ] and Λt occur using Lemma B.4,788

and Lemma B.2 respectively. Since a is the greedy arm, it must be that θ̂t(a′) ≤ θ(a) + δ for all789

a′ ∈ Ag .790

Define the event791

Rt = {Agreedy
t (g) = a,Λt, θ̂t(a) ≤ θ(a) + δ, θ̂t(a

′) ≤ θ(a) + δ ∀a′ ∈ Ag}.

Our goal is to bound
∑T
t=1 Pr(Rt).792

For Rt to occur, θ̂t(a′) ≤ θ(a) + δ (since a is the greedy arm) and UCBt(a
′) ≥ OPT(g) (since Λt)793

for all a′ ∈ Agopt. By Lemma B.3 there exists a constant c > 0 such that if Nt(a′) > c log t for some794

a′ ∈ Agopt, Rt cannot happen. Moreover, for every a′ ∈ Agopt, Pr(Nt(a
′) < c log t) < O

(
1

log t

)
795

from Proposition C.6.796

Divide the time period into epochs, where epoch k starts at time sk = 22k

. Let Tk be the time797

steps in epoch k. Let Gk = {Nsk(a) > 3c log sk ∀a ∈ Agopt} be the event that all optimal arms798

were pulled at least 3c log sk times by the start of epoch k. If Gk occurs, since sk =
√
sk+1,799
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Nsk+1
(a) > 3

2r log sk+1 > r log sk+1, and hence Rt can never happen during epoch k. Moreover,800

Pr(Ḡk) = O
(

1
log sk

)
for any k.801

Suppose we are in a “bad epoch”, where Gk does not occur. We claim that Rt can’t occur more802

than O(log sk+1) times during epoch k. For Rt to occur, the arm j with the highest UCB satisfies803

UCBt(j) ≥ OPT(g) and θ̂t(j) ≤ θ(a) + δ.804

Claim E.5. For any action j ∈ Ag,
∑s
t=1 Pr(AUCB

t (g) = j,UCBt(j) ≥ OPT(g), θ̂t(j) ≤ θ(a) +805

δ
∣∣ Ḡk) = O(log s).806

Using Claim E.5 and taking a union bound over all actions j implies
∑
t∈Tk Pr(Rt

∣∣ Ḡk) =807 ∑
t∈Tk

∑
j∈Ag Pr(Rt, A

UCB
t (g) = j

∣∣ Ḡk) = O(log sk+1). Since Pr(Ḡk) = O
(

1
log sk

)
,808 ∑

t∈Tk Pr(Rt) = O(1). Since there are O(log log T ) epochs,
∑T
t=1 Pr(Rt) = O(log log T ).809

�810

Proof of Proposition E.3. Let Ht = Ht(δ). Fix a group g and an arm a ∈ Agsub. For g to pull a811

when Agreedy
t (g) 6= a, it must be that a ∈ AUCB

t .812

First, assume a /∈ Asub. Then, there exist groups G ⊆ G in which a is optimal. If a is the greedy arm813

for some g′ ∈ G, then a /∈ Âsub, implying a is not considered in the optimization problem (P̂t). In814

this case, group g would never pull arm a. Therefore, it must be that a is not the greedy arm for all815

groups in G. We show the following lemma, which proves the proposition for an arm a /∈ Asub.816

Lemma E.6. Let a /∈ Asub, and let G be the set of groups in which a is optimal. Then,817

T∑
t=1

Pr(Pullt(a), Agreedy
t (g) 6= a ∀g ∈ G, a ∈ AUCB

t ) = O(log log T ).

Now assume a ∈ Asub. We assume that the events Λt and θ̂t(a) ∈ [θ(a)− δ, θ(a) + δ] hold using818

Lemma B.2 and Lemma B.4. Since a ∈ AUCB
t and Λt, it must be that UCBt(a) ≥ OPT(Γ(a)). Let819

Et = {Pullgt (a),Λt, θ̂t(a) ∈ [θ(a)− δ, θ(a) + δ],UCBt(a) ≥ OPT(Γ(a))} Our goal is to show820

E

[
T∑
t=1

1(Et, H̄t)

]
= O(log log T ).

Divide the time interval into epochs, where epoch k starts at time sk = 22k

. Let K = O(log log T )821

be the total number of epochs. Let Tk be the time steps in epoch k.822

Let Hk = ∩t∈TkHt. Clearly, if Hk is true, then by definition,
∑
t∈Tk 1(Et, H̄t) = 0. Therefore, we823

can write824

E

[
T∑
t=1

1(Et, H̄t)

]
=

K∑
k=1

E

[∑
t∈Tk

1(Et, H̄t)

]
=

K∑
k=1

(
E

[∑
t∈Tk

1(Et, H̄t)

∣∣∣∣ H̄k

]
Pr(H̄k)

)
We bound the expectation and the probability separately.825

1) Bounding E
[∑

t∈Tk 1(Et, H̄t)

∣∣∣∣ H̄k

]
: If Et occurs at some time step t, UCBt(a) ≥826

OPT(Γ(a)) and θ̂t(a) ≤ θ(a) + δ. By Lemma B.3 it must be that Nt(a) = O(log t). Clearly,827

Ns(a) ≥
∑s
t=1 1(Et), implying that

∑
t∈Tk 1(Et) = O(log sk+1). Therefore,

∑
t∈Tk 1(Et, H̄t) ≤828 ∑sk+1

t=1 1(Et) = O(log sk+1)829

2) Bounding Pr(H̄k): For a ∈ Asub let ca = 0.9
KL(θ(a),OPT(Γ(a))) . For a /∈ Asub, let ca = 1. Let830

Fk = {θ̂sk(a) ∈ [θ(a) − δ/2, θ(a) + δ/2], Nsk(a) ≥ ca log sk ∀a ∈ A} be the event that at time831

sk, all arms a have been pulled ca log sk times and all arms are within an “inner” boundary (half as832

small as the boundary defined for Ht). We bound Pr(H̄k) by conditioning on the event Fk. Firstly,833

we bound Pr(F̄k) using the probabalistic lower bound of Proposition C.5-C.6:834
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Lemma E.7. For any k, Pr(F̄k) = O
(

1
log sk

)
.835

Next, we show that if Fk is true, then Hk occurs with probability at least 1−O
(

1
log sk

)
.836

Lemma E.8. For any action a, Pr
(
θ̂t(a) /∈ [θ(a)− δ, θ(a) + δ] for some t ∈ Tk | Fk

)
≤837

O
(

1
log sk

)
.838

Therefore,839

Pr(H̄k) ≤ Pr(F̄k) + Pr(H̄k

∣∣ Fk) = O

(
1

log sk

)
.

3) Combine: Combining, we have840

E

[
T∑
t=1

1(Et, H̄t)

]
≤

K∑
k=1

(
O(log sk+1)O

(
1

log sk

))

≤
K∑
k=1

O(1)

=O(log log T ),

where the last inequality follows due to the fact that log sk+1

log sk
= 2 for any k. �841

Proof of Proposition E.4. Let a ∈ Asub. We need to show lim supT→∞
E[NT (a)]

log T ≤ J(a), as the842

lower bound is implied by (4). By Proposition E.2, the number of times a is pulled when a is the843

greedy arm for some group g is O(log log T ). Therefore,844

E[NT (a)] =

T∑
t=1

Pr(Pullt(a), a ∈ AUCB
t , Ht(δ)) +O(log log T ).

The rest of the proof relies on the same argument as Proposition C.2. The main idea is that after845

J(a) log T + o(log T ) pulls of a, the UCB of a will not be larger than OPT(Γ(a)), and therefore846

a /∈ AUCB
t . �847

E.2 Deferred Proofs848

Proof of Claim E.5. Recall that Gk = {Nsk(a) > 3c log sk ∀a ∈ Agopt}. We will show849 ∑T
t=1 Pr(AUCB

t = j,UCBt(j) ≥ OPT(g), θ̂t(j) ≤ θ(a) + δ
∣∣ Ḡk) = O(log log T ). From850

Lemma B.3, there exists a constant c′ such that if Nt(j) > c′ log T then, {UCBt(j) ≥851

OPT(g), θ̂t(j) ≤ θ(a) + δ} cannot occur.852 ∑
t∈Tk

Pr(AUCB
t (g) = j,UCBt(j) ≥ OPT(g), θ̂t(j) ≤ θ(a) + δ

∣∣ Ḡk)

=

c′ log T∑
n=1

∑
t∈Tk

Pr(AUCB
t (g) = j,UCBt(j) ≥ OPT(g), θ̂t(j) ≤ θ(a) + δ,Nt(a) = n

∣∣ Ḡk)

≤
c′ log T∑
n=1

∑
t∈Tk

Pr(AUCB
t (g) = j,Nt(a) = n

∣∣ Ḡk).(22)

Our goal is to show that
∑
t∈Tk Pr(AUCB

t (g) = j,Nt(a) = n
∣∣ Ḡk) = O(1) for any n. Fix n, and853

write854 ∑
t∈Tk

Pr(AUCB
t (g) = j,Nt(j) = n

∣∣ Ḡk) = E

[∑
t∈Tk

1(AUCB
t (g) = j,Nt(j) = n)

∣∣∣∣ Ḡk
]
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Let Lt = 1(AUCB
t (g) = j,Nt(j) = n) be the indicator for the event of interest. Our goal is to count855

the number of times Lt occurs. Let Ym = {∃ t :
∑t
s=1 Ls = m} be the event that Ls occurs at least856

m times. Note that for Ym to occur, it must be that Ym−1 occurred. Therefore, by expliciting writing857

out the expectation, we have858

E

[
T∑
t=1

1(AUCB
t (g) = j,Nt(j) = n)

∣∣∣∣ Ḡk
]
≤
∑
m≥1

mPr(Ym
∣∣ Ḡk)

=
∑
m≥1

mPr(Ym
∣∣ Ym−1, Ḡk) Pr(Ym−1

∣∣ Ḡk).

We claim that there exists a λ ∈ (0, 1) such that Pr(Ym
∣∣ Ym−1, Ḡk) ≤ λ. Let τ be the time when859

Ls occurred for the m− 1’th time, which exists since Ym−1 is true. For Ym to occur, it must be that860

arm j was not pulled at time τ , even though arm j is the UCB. Given that j is the UCB, there exists861

a group g in which Ng
τ (a) ≤ q̂gt (a)Nτ (a). If such a group arrives, it will pull j with probability at862

least 1
K . Therefore, at time τ , the probability that arm j will be pulled is at least ming∈G

pg
K . Then,863

λ = 1−ming∈G
pg
K satisfies Pr(Ym

∣∣ Ym−1, Ḡk) ≤ λ.864

Therefore,865

E

[
T∑
t=1

1(AUCB
t = j,Nt(j) = n)

∣∣∣∣ Ḡk
]

=
∑
m≥1

mPr(Ym
∣∣ Ym−1, Ḡk) Pr(Ym−1

∣∣ Ḡk)

≤
∑
m≥1

mλm

= O(1).

Substituting back into (22) gives866

T∑
t=1

Pr(AUCB
t = j,UCBt(j) ≥ OPT(g), θ̂t(j) ≤ θ(a) + δ

∣∣ Ḡk) ≤
c′ log T∑
n=1

O(1) = O(log T ).

�867

Proof of Lemma E.6. Let a /∈ Asub, let G be the set of groups in which a is an optimal arm. We868

condition on whether a is the UCB for some group in G.869

First, suppose a = AUCB
t (g) for some group g ∈ G, implying θ(a) = OPT(g). We can assume870

θ̂t(a) > OPT(g) − δ from Lemma B.4. Then, if a is not the greedy arm for g, there exists a871

suboptimal arm j ∈ Agsub with higher mean but lower UCB than a. This implies that the UCB radius872

of j is smaller than the UCB radius of a, implying that j was pulled more times: Nt(j) ≥ Nt(a).873

We show that this event cannot happen often. Let Et = {Pullt(a), Agreedy
t (g) 6= a, a ∈ AUCB

t , a =874

AUCB
t (g), θ̂t(a) > OPT(g)− δ}. For any j ∈ Agsub,875

T∑
t=1

1(Et, Nt(j) ≥ Nt(a), θ̂t(j) > OPT(g)− δ)

≤
T∑
t=1

t∑
n=1

t∑
nj=n

1(Et, θ̂nj
(j) > OPT(g)− δ,Nt(j) = nj , Nt(a) = n)

≤
T∑

nj=1

1(θ̂nj
(j) > OPT(g)− δ)

nj∑
n=1

T∑
t=n

1(Et, Nt(a) = n)

≤
T∑

nj=1

1(θ̂nj (j) > OPT(g)− δ)nj ,
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where the last inequality uses
∑T
t=n 1(Et, Nt(a) = n) ≤ 1 (since pulling arm a increasing Nt(a) by876

1). Since Pr(θ̂n(j) > OPT(g) − δ) ≤ exp(−cn) for some constant c > 0,
∑T
t=1 Pr(Et, Nt(j) ≥877

Nt(a), θ̂t(j) > OPT(g) − δ) = O(1). Taking a union bound over actions j ∈ Agsub gives us the878

desired result:879

T∑
t=1

Pr(Pullt(a), Agreedy
t (g) 6= a ∀g ∈ G, a ∈ AUCB

t ,∃g ∈ G : a = AUCB
t (g)) = O(log log T ).

Now, suppose a /∈ AUCB
t (g) for all g ∈ G. This means that there is another group h where880

a = AUCB
t (h), but a is suboptimal for h. We assume Λt holds. Let ah be an optimal arm for h. Since881

Λt, UCBt(ah) ≥ OPT(h). Therefore, it must be that UCBt(a) ≥ OPT(h). By Lemma C.4,882

T∑
t=1

Pr(Pullt(a),UCBt(a) ≥ OPT(h)) = O(log log T ).

This finishes the proof. �883

Proof of Lemma E.7. Fix a ∈ A and time t. We will show Pr(θ̂sk(a) ∈ [θ(a) − δ/2, θ(a) +884

δ/2], Nsk(a) ≥ ca log sk) ≥ 1−O
(

1
log t

)
. Then the result follows from taking a union bound over885

actions. We first show that PF-UCB is log-consistent.886

Lemma E.9. PF-UCB is log-consistent.887

Let g ∈ Γ(a). Since Pr(Mt(a) <
pg
2 t) ≤ exp(− 1

2pgt), we can assume that there have been at least888
pg
2 t arrivals of g by time t. Then, using Proposition C.5 and Proposition C.6, we know that at time889

t, Pr(Nt(a) < ca log t|Mt(a) ≥ pg
2 t) ≤ O

(
1

log t

)
. Next, we show that the probability of the event890

θ̂t(a) /∈ [θ(a)− δ/2, θ(a) + δ/2] given that we have more than ca log t pulls of a is small.891

Pr(θ̂t(a) /∈ [θ(a)− δ/2, θ(a) + δ/2]
∣∣ Nt(a) ≥ ca log t)

=

t∑
n=ca log t

Pr(θ̂n(a) /∈ [θ(a)− δ/2, θ(a) + δ/2]
∣∣ Nt(a) = n) Pr(Nt(a) = n)

≤
t∑

n=ca log t

exp(−c1n) Pr(Nt(a) = n)

≤c3 exp(−c2 log t)

≤ c3
tc2
,

for some constants c1, c2, c3 > 0 that depends on the instance, a, and δ. Combining, we have that for892

any action a, Pr(θ̂sk(a) ∈ [θ(a)− δ/2, θ(a) + δ/2], Nsk(a) ≥ ca log sk) ≥ 1−O
(

1
log t

)
.893

�894

Proof of Lemma E.8. Let Ua = θ(a) + δ and U Ia = θ(a) + δ/2. Let η = Ua − U Ia . Since Fk is895

true, Nsk(a) ≥ ca log sk. Let n1 = Nsk(a). Let θn(a) be the empirical average of arm a after n896

pulls. We will bound897

Pr(∪∞n2=n1+1{θ̂n2(a) /∈ [La, Ua]}
∣∣ θ̂n1(a) ∈ [LIa, U

I
a ]).
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For any n2, θ̂n2(a) > Ua implies θ̂n2(a) > θ̂n1(a) + η. Fix n2 > n1. Let m = n2 − n1.898

{
θ̂n2(a) > Ua

}
=

{
n2∑
i=1

Xi > n2Ua

}

=

{
n1θ̂

n1(a) +

n2∑
i=n1+1

Xi > n2Ua

}

=


m∑
j=1

Xn1+j > n1(Ua − θ̂n1(a)) +mUa


=


m∑
j=1

(Xn1+j − µ) > n1(Ua − θ̂n1(a)) +m(Ua − µ)


Case m ≤ n1: Since Ua − µ > 0 and Ua − θ̂n1(a) > η if Fk is true,899

Pr

(
n1⋃
m=1

{θ̂n1+m(a) > Ua}
∣∣∣∣ Fk

)
≤ Pr

 n1⋃
m=1


m∑
j=1

(Xn1+j − µ) > n1η


∣∣∣∣ Fk


≤ Pr

(
max

m=1,...,n1

Sm > n1η

∣∣∣∣ Fk) ,
where Sm =

∑m
j=1(Xn1+j−µ). Given thatXn1+j−µ are zero mean independent random variables,900

by Kolomogorov’s inequality, we have901

Pr

(
n1⋃
m=1

{θ̂n1+m(a) > Ua}
∣∣∣∣ Fk

)
≤ 1

n2
1η

2
Var(Sn1)

=
σ2

n1η2

=
σ2

η2
· 1

ca log sk
,

where σ2 = Var(X1).902

Case m > n1:903

Pr

( ∞⋃
m=n1

{θ̂n1+m(a) > Ua}
∣∣∣∣ Fk

)
≤ Pr

( ∞⋃
m=n1

{∑m
j=1(Xn1+j − µ)

m
> Ua − µ

} ∣∣∣∣ Fk
)

≤
∞∑

m=n1

Pr

(∑m
j=1(Xn1+j − µ)

m
> Ua − µ

∣∣∣∣ Fk
)

≤
∞∑

m=n1

exp(−mD)

=
exp(−n1D)

1− exp(−D)

=
1

scaDk (1− exp(−D))
,

for a constant D > 0 that depends on Ua − µ and σ2.904
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Therefore,905

Pr

( ∞⋃
m=1

{θ̂Nsk
(a)+m(a) > Ua}

∣∣∣∣ Fk
)

≤Pr

(
n1⋃
m=1

{θ̂Nsk
(a)+m(a) > Ua}

∣∣∣∣ Fk
)

+ Pr

( ∞⋃
m=n1

{θ̂Nsk
(a)+m(a) > Ua}

∣∣∣∣ Fk
)

≤σ
2

η2
· 1

ca log sk
+

1

scaDk (1− exp(−D))

=O

(
1

log sk

)
,

as desired. �906

Proof of Lemma E.9. Fix a group g. At time t, if group g arrives, the PF-UCB pulls either the UCB907

arm or the greedy arm. The original regret analysis of KL-UCB from [28] shows that908

T∑
t=1

Pr(At /∈ Agopt, At = AUCB
t , gt = g) = O(log T ).

Proposition E.2 shows that the number of times the greedy arm is pulled and incurs regret is909

O(log log T ). Combining, the total regret is O(log T ). �910

F Price of Fairness Proofs911

F.1 Proof of Theorem 4.2912

Proof. Consider the set of profiles (sg)g∈G that are in the feasible region of the polytope defined913

by the constraints of (P (θ)). Refer to this polytope as the “utility set”, in the language of [29]. This914

utility set is compact and convex, and therefore we can apply Theorem 2 of [29], which gives us915

the desired inequality. It is easy to see that the point in this utility set that maximizes total utility916

corresponds to a regret-optimal policy, and the point in the utility set that maximizes proportional917

fairness corresponds to PF-UCB (by definition, since PF-UCB maximizes proportional fairness within918

this set). �919

F.2 Proof of Proposition 4.3920

Proof. In this proof, for convenience, we use subscripts instead of superscript to refer to groups g921

since we do not need to refer to time steps.922

Let {1, . . . ,M} be the set of shared arms, where θ1 ≤ · · · ≤ θM . Let G = [G] be the set of923

groups, where OPT(1) ≤ · · · ≤ OPT(G). We assume that θM < OPT(1). (If there is a shared924

arm whose reward is as large as OPT(1), then neither policy will incur any regret from this arm,925

and hence this arm is irrelevant.) In this case, all of the regret in the regret-optimal solution goes926

to group 1, and the other groups incur no regret. Therefore, the total utility gain of the regret-927

optimal solution is the sum of the regret at the disagreement point for groups 2 to G. Specifically,928

limT→∞ SYSTEMT (I) = limT→∞
∑G
g=2

R̃g
T (πKL-UCB)

log T .929

We will show that for each group g ≥ 2, the regret incurred from PF-UCB is less than half of the930

regret at the disagreement point — i.e. RgT (πPF-UCB, I) ≤ 1
2 R̃

g
T (I). Then, the utility gain for the931

group reduces by at most a half from the regret-optimal solution, which is our desired result.932

30



Let Rg = limT→∞
Rg

T (πPF-UCB,I)

log T and R̃g = limT→∞
R̃g

T (I)

log T for all g ∈ G. Recall that the proportion-933

ally fair solution comes out of the optimal solution to the following optimization problem:934

(P (θ))

max
q≥0

∑
g∈G

log

( ∑
a∈Ag

sub

∆g(a) (Jg(a)− qg(a)J(a))

)+

s.t.
∑
g∈G

qg(a) = 1 ∀a ∈ Asub

qg(a) = 0 ∀g ∈ G, a /∈ Asub ∩ Ag.

We first show a structural result of the optimal solution. Note that in terms of minimizing total regret,935

it is optimal for group 1 to pull all suboptimal arms. Therefore, if qg(a) > 0 for some g > 1, we936

think of this as “transferring” pulls of arm a from group 1 to group g. This transfer increases the937

regret by a factor of ∆g(a)
∆1(a) . We prove the following property that these transfers must satisfy:938

Claim F.1 (Structure of Optimal Solution). For g ∈ [M ], let b = max{a : qg(a) > 0}. If h < g,939

then qh(a) = 0 for all a < b.940

Writing out the KKT conditions of the optimization problem gives us the following result.941

Claim F.2 (KKT conditions). Let g, h ∈ G, a ∈ A such that qg(a) > 0 and h < g. Then,942

sg ≥ sh ∆g(a)
∆h(a) . Moreover, if q1(a) > 0, sg ≤ ∆2(a)

∆1(a)s1 for any g > 1.943

The next claim is immediate from Claim F.2.944

Claim F.3. If h < g and there exists an arm a such that qg(a) > 0, then sg ≤ sh.945

Regret is minimized if q1(a) = 1 for all a, in which case s1 = 0. If s1 6= 0, then we think of this946

as pulls from group 1 that are re-allocated to other groups g 6= 1. This re-allocation increases total947

regret, since other groups incur more regret from pulling any arm compared to group 1.948

Let a0 = max{a : qg(a) 6= 1}. All pulls for any action a > a0 come from group 1. We claim that949

q2(a0) > 0. Suppose not. Let a′ > 2 such that q2(a0) > 0. Then, by Claim F.1, q2(a) = 0 for950

all a. This implies that s2 = r2 > ra′ ≥ sa′ , which contradicts Claim F.3. Then, by Claim F.2,951

s2 = s1
∆2(a0)
∆1(a0) .952

Next, we claim that s2 ≥ R̃2

2 , which proves the desired result for g = 2. Note that s1 represents the953

amount of regret that was “transferred” from group 1 to other groups, which increases the total regret.954

If all of this was transferred to group 2, the total regret from group 2 would be at most s1
∆2(a2)
∆1(a2) ≤ s2.955

Therefore, R2 ≤ s2. Since R2 + s2 = R̃2, s2 ≥ R̃2

2 .956

For g > 2, Claim F.2 shows sg ≥ s2. Moreover, since OPT(g) ≥ OPT(2), R̃g ≤ R̃2. Therefore,957

sg ≥ s2 ≥ R̃2

2 ≥
R̃g

2 as desired.958

�959

F.3 Proof of Claims960

Proof of Claim F.1. Suppose not. Let g ∈ G and b = max{a : qg(a) > 0}. Let a < b such that961

qh(a) > 0. Then, since
∑
g′ qg′(a) = 1, qg(a) < 1. By the ordering of arms and groups, we have962

∆h(a)

∆g(a)
>

∆h(b)

∆g(b)
.(23)

We essentially show, using this inequality, that if we want to “transfer” pulls from group h to g, it963

is more efficient to do so using arm a rather than arm b, and hence it is a contradiction that qh(b) is964

positive.965

We construct a “swap” that will strictly increase the objective function. Let ε = min{qh(a), qg(b), 1−966

qg(a), 1− qh(b)}.967
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• Decrease qh(a) by ε, and increase qh(b) by ∆h(a)J(a)
∆h(b)J(b) ε ≤ ε, where the last inequality968

follows from the convexity of KL(θb, ·). By construction, sh does not change.969

• Increase qg(a) by ε, and decrease qg(b) by ∆h(a)J(a)
∆h(b)J(b) ε. The first operation decreases sg970

by ∆g(a)J(a)ε, while the second operation increases sg by ∆h(a)J(a)∆g(b)
∆h(b) ε. By (23), this971

strictly increases sg overall.972

This is a contradiction. �973

Proof of Claim F.2. From the stationarity KKT condition, we have that974

∆g(a)J(a)

sg
+ λ(a)− µg(a) = 0,

∆h(a)J(a)

sh
+ λ(a)− µh(a) = 0,

for some λa ∈ R and µg(a), µh(a) ≥ 0. From complementary slackness, µg(a)qg(a) = 0. Since975

qg(a) > 0, it must be that µg(a) = 0. Since µh(a) ≥ 0, ∆g(a)J(a)
sg

≤ ∆h(a)J(a)
sh

. �976

G Other Proofs977

G.1 Proof that Nash Solution is Unique Under Grouped Bandit Model978

The uniqueness of the Nash bargaining solution in the general bargaining problem requires that the set979

U is convex. In the grouped bandit model, it is not clear that the set U(I) = {(UtilGaing(π, I))g∈G :980

π ∈ Ψ} is convex. In this section, we show that the uniqueness theorem still holds in the grouped981

bandit setting.982

Let G be the number of groups. Let W (u) =
∑
g∈G log ug, and let f(U) = argmaxu∈U W (u) for983

U ⊆ RG. Fix a grouped bandit instance I , and let u∗ = f(U(I)). We first show that u∗ is unique (i.e.984

argmaxu∈U(I)W (u) is unique). Suppose there was another u′ ∈ U(I) with the same welfare. Then,985

let ū ∈ U(I) be the policy that runs u′ with probability 50%, and u∗ with probability 50%. Using986

the fact that lim infT→∞(aT + bT ) ≥ lim infT→∞ aT + lim inf bT implies that ūg ≥ 1
2 (u∗g + u′g)987

for all g. Since log is strictly concave, log ūg >
1
2 (log u∗g + log u′g). This implies W (ū) > W (u∗),988

which is a contradiction.989

Next, we show that f is the unique solution that satisfies the four axioms. Let U = U(I). It is easy990

to see that this solution satisfies the axioms. We need to show that no other solution satisfies them.991

Suppose g(·) satisfies the axioms. We need to show g(U) = f(U). Let U ′ = {(αgug)g∈G : u ∈992

U ;αgu
∗
g = 1, αg > 0}. U ′ is the translated utility set so that u∗ becomes the 1 vector. Then, the993

optimal welfare is W (1) = 0. We need to show g(U ′) = 1. We claim that there is no v ∈ U ′ such994

that
∑
g∈G vg > G. Assume that such a v exists. For λ ∈ (0, 1), let t be the utilities from the policy995

that runs the policy induced by v with probability λ, and the policy induced by 1 with probability996

1− λ. Then, by the same argument with lim inf to prove uniqueness, tg ≥ λvg + (1− λ)1. If λ is997

small enough, then
∑
g∈G log tg > 0. This is a contradiction to 1 maximizing W (·).998

Consider the symmetric set U ′′ = {u ∈ RG : u ≥ 0,
∑
g ug ≤ G}. We have shown that U ′ ⊆ U ′′.999

By Pareto efficiency and symmetry, it must be that g(U ′′) = 1. By independence of irrelevant1000

alternatives, g(U ′) = 1, and we are done.1001

G.2 Proof that Assumption 2.2 is Sufficient1002

Proposition G.1. If an instance I satisfies Assumption 2.2, then there exists a consistent policy π1003

such that f(π) > −∞. Otherwise, f(π) = −∞ for all π ∈ Ψ.1004

Proof. First, suppose I satisfies Assumption 2.2. We need to show that there exists a consistent1005

policy such that f(π) > −∞. We will construct a feasible solution to the optimization problem1006

(P (θ)) with a strictly positive objective value. This will imply that the objective value Y ∗ is strictly1007

larger than 0, and hence the social welfare of PF-UCB is higher than −∞.1008
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For each arm a ∈ A, let g(a) ∈ Γ(a). Start with qg(a)(a) = 1 for all a and qg(a) = 0 for g 6= g(a).1009

We will modify these values for suboptimal arms Asub. For arm a ∈ Asub, let g′(a) 6= g(a) be1010

another group with access to arm a. We will “split” the pulls of arm a between groups g(a) and1011

g′(a) in a way that both groups benefit from the disagreement point. Let p(a) ∈ [0, 1] such that1012

p(a)J(a) = Jg
′(a)(a). Let qg

′(a) = p(a)/2 and qg(a) = 1− p(a)/2. Then, Jg(a)− qg(a)J(a) > 01013

for g ∈ {g(a), g′(a)}. This implies that sg > 0 for all g, and therefore Y ∗ > 0. This proves the first1014

part of the proposition.1015

For the second statement, suppose I does not satisfy Assumption 2.2. Let g′ be the group that1016

does not have a suboptimal arm that is shared with another group. First, suppose g′ does not have1017

any suboptimal arms. Then, all arms available to group g′ is optimal, so group g′ will incur zero1018

regret regardless of the algorithm. Hence, the utility gain for group g′ is exactly 0, and therefore1019

W (π, I) = −∞ for any π.1020

Next, suppose g′ does have a suboptimal arm but it is not shared. Let π be a consistent policy. Then1021

from the following upper bound on Nash SW from Section 3.2,1022

W (π, I) ≤ lim inf
T→∞

∑
g∈G

log

(∑
a∈Ag

∆g(a) (Jg(a)− qgT (a, π)J(a))

)+

.

Since g′ is the only group with access to arm a for every a ∈ Ag
′

sub, it must be that qg
′

T (a, π) = 11023

for every a ∈ Ag
′

sub. Moreover, Jg
′
(a) = J(a) for every a ∈ Ag

′

sub. This implies that the term1024

corresponding to g′ in the sum equals log 0 = −∞. Therefore, W (π, I) = −∞ for any π ∈ Ψ. �1025

G.3 Omitted Details of Theorem 3.21026

We provide details on the two steps in Section 3.2 starting from (9). (4) implies that for every ε > 0,1027

there exists a Tε such that if T ≥ Tε, then1028

E[NT (a)]

log T
≥ (1− ε)J(a).

Therefore, for large enough T , plugging into (9), we get1029

RgT (π, I)

log T
≥

∑
a∈Asub

∆g(a)qgT (a, π)J(a)(1− ε).

This implies that1030

lim sup
T→∞

RgT (π, I)

log T
≥ lim sup

T→∞
(1− ε)

∑
a∈Asub

∆g(a)qgT (a, π)J(a).

Since this holds for every ε > 0 and the RHS is continuous in ε,1031

lim sup
T→∞

RgT (π, I)

log T
≥ lim sup

T→∞

∑
a∈Asub

∆g(a)qgT (a, π)J(a).(24)

Plugging in (24) into the definition of UtilGaing(π, I) gives1032

UtilGaing(π, I) ≤ lim inf
T→∞

∑
a∈Ag

sub

∆g(a) (Jg(a)− qgT (a, π)J(a)1{a ∈ Asub}) .

Using the definition of W (π, I) and taking the lim inf outside of the sum gives1033

W (π, I) ≤ lim inf
T→∞

∑
g∈G

log

( ∑
a∈Ag

sub

∆g(a) (Jg(a)− qgT (a, π)J(a)1{a ∈ Asub})
)+

.

G.4 Proof of Proposition E.11034

Proof. First, we prove the statement with respect to the variables (sg)g∈G . Let fs(s) =
∑
g∈G log sg ,1035

and let sg∗ =
∑
a∈Ag ∆g(a) (Jg(a)− qg∗(a)J(a)) and ŝgt =

∑
a∈Ag ∆̂g(a)

(
Ĵg(a)− q̂gt (a)Ĵ(a)

)
.1036

Since fs is strictly concave with respect to s, sg∗ is unique. Define the event Ht(δ) = {θ̂t(a) ∈1037

[θ(a)− δ, θ(a) + δ] for all a ∈ A}.1038
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Lemma G.2. For any ε > 0, there exists δ > 0 such that if Ht(δ), then ŝgt ∈ [sg∗ − ε, sg∗ + ε] for all1039

g ∈ G.1040

This shows that if Ht(δ), then the variables ŝgt are close to sg∗ for all g. Next, we need to show that1041

the corresponding q’s are also close. Let proj(z, P ) be the projection of point z onto a polytope P .1042

Let Q = {q :
∑
g∈G q

g(a) = 1 ∀a ∈ Asub, q
g(a) = 0 ∀g ∈ G, a /∈ Asub, q

g(a) ≥ 0 ∀g ∈1043

G, a ∈ A} be the feasible space. Let Sg(q, θ̃) =
∑
a∈Ag ∆̃g(a)

(
J̃g(a)− qg(a)J̃(a)

)
, where1044

∆̃g(a), J̃g(a), and J̃(a) are computed with θ̃.1045

Given s = (sg)g∈G , let Q(s, θ̃) = {qg(a) ∈ Q : Sg(q, θ̃) = sg} be the set of all feasible q’s that1046

corresponds to the solution s under the parameters θ̃. Note that Q(s, θ̃) is a linear polytope, and we1047

can write it as Q(s, θ̃) = {q : A(θ̃)q = b(s), q ≥ 0} for a matrix A(θ̃) and a vector b(s). We are1048

interested in the polytopes Q(s, θ) and Q(ŝt, θ̂t), which correspond the optimal solutions of (P (θ))1049

and (P̂t) respectively. The next two lemmas state that these polytypes are close together:1050

Lemma G.3. Let ε > 0. There exists δ > 0 such that if Ht(δ), for any q̂ ∈ Q(ŝt, θ̂t),1051

||proj(q̂, Q(s, θ))− q̂||2 ≤ ε.1052

Lemma G.4. Let ε > 0. There exists δ > 0 such that if Ht(δ), for any q ∈ Q(s, θ),1053

||proj(q,Q(ŝt, θ̂t))− q||2 ≤ ε.1054

Let q∗ = argminq∈Q(s,θ) ||q||22, q̂ = argminq∈Q(ŝt,θ̂t)
||q||22. Our goal is to show ||q∗ − q̂||1 ≤ ε.1055

Let R(η) = {q ∈ Q(s, θ) : ||q||2 ≤ ||q∗||2 + η} for η > 0. Since the function || · ||22 is strongly1056

convex and q∗ is minimizer, we have the following result:1057

Claim G.5. For every ε > 0, there exists η > 0 such that if q ∈ R(η), then ||q − q∗||2 ≤ ε.1058

First, assume ||q̂t||2 ≤ ||q∗||2. Let η > 0 be from Claim G.5 using ε = ε
2 . Let δ > 0 be from1059

Lemma G.3 using ε = min{ ε2 , η}. Let q′ = proj(q̂, Q(s, θ)) ∈ Q(s, θ). From Lemma G.3,1060

||q̂t − q′||2 ≤ η, implying ||q′||2 ≤ ||q̂t||2 + η ≤ ||q∗||2 + η. Therefore, q′ ∈ R(η). Claim G.51061

implies ||q′ − q∗|| ≤ ε
2 . Let δ > 0 correspond to ε

2 from Lemma G.3, so that ||q̂t − q′||2 ≤ ε
2 . Then,1062

||q̂t − q∗||2 ≤ ||q̂t − q′||2 + ||q′ − q∗||2 ≤ ε.
An analogous argument shows the same result in the case that ||q∗||2 ≤ ||q̂t||2 using Lemma G.4.1063

�1064

G.4.1 Proof of Lemmas1065

We first state an additional lemma:1066

Lemma G.6. For any ε > 0 there exists a δ > 0 such that if Ht(δ), then for any feasible solution q,1067

|f(q)− f̂(q)| < ε.1068

Proof of Lemma G.6. Let q be a feasible solution. Let Sg(q, θ̃) =1069 ∑
a∈Ag ∆̃g(a)

(
J̃g(a)− qg(a)J̃(a)

)
, where ∆̃g(a), J̃g(a), and J̃(a) are computed with1070

θ̃.1071

For each g, let εg > 0 be such that if |s̃g − sg∗| ≤ εg , then | log sg∗ − log s̃g| ≤ ε
G . ∆g(a), Jg(a), and1072

J(a) are all differentiable functions of θ with finite derivatives around θ∗. Then, it is possible to find1073

δg > 0 such that if Ht(δg), |∆̂g(a)
(
Ĵg(a)− qg(a)Ĵ(a)

)
− ∆g(a) (Jg(a)− qg(a)J(a)) | ≤ εg

|A| .1074

Summing over actions, |Sg(q, θ̂t)−Sg(q, θ̂)| ≤ εg . Then, if Ht(δg), | logSg(q, θ̂)− logSg(q, θ)| ≤1075

ε
G . Take δ = ming∈G δg . If Ht(δ) is true, |f(q)− f̂(q)| < ε. �1076

Proof of Lemma G.2. Let ε > 0. Let Sε = {s : |sg − sg∗| ≤ ε ∀g} be the set around s∗ of interest.1077

Our goal is to show that fs(ŝ) ∈ Sε. Let fbd = max{f(s) : s ∈ bd(Sε)} < f∗ be the largest f on1078

the boundary of Sε. Then, if fs(s) > fbd, it must be that s ∈ Sε. (Since the entire line between1079

s and s∗ must have a value of fs that is higher than fs(s) due to concavity, and it must cross the1080
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boundary.) Therefore, we need to show fs(ŝt) > fbd. Let q̂t be the corresponding solution to ŝt.1081

Then, fs(ŝt) = f̂t(q̂t). Let δ > 0 as in Lemma G.6 with ε = f∗ − fbd. Then, if Ht(δ) is true,1082

fs(ŝt) = f̂t(q̂t) ≥ f̂t(q∗) ≥ f(q∗)− (f∗ − fbd) = fbd,

where the second inequality follows from Lemma G.6.1083

�1084

Proof of Lemma G.3. Let ε > 0. Let n be the dimension of q. We will make use of the following1085

closed form formula for the projection onto a linear subspace:1086

Fact G.7. Let P = {x : Ax = b}. The orthogonal projection of z onto P is proj(z, P ) =1087

z −A>(AA>)−1(Az − b).1088

Let Q = Q(s, θ̃), and let A, b be the corresponding parameters of the linear constraints; i.e. Q = {x :1089

Ax = b, x ≥ 0}. Similarly, let Q̂ = Q(ŝt, θ̂t), and let Â, b̂ be defined similarly. Note that Fact G.71090

only works with equality constraints.1091

We define a distance between two linear polytopes. We use the notation P (D, f) = {x : Dx = f}.1092

Then, Q = P (A, b), Q̂ = P (Â, b̂).1093

Definition G.8. For two polytopes P (A, b) and P (A′, b′), the distance is defined as1094

d(P (A, b), P (A′, b′)) = max{||A−A′||2, ||b− b′||2}.1095

Note that for every α > 0, there exists δ > 0 such thatHt(δ) implies d(Q, Q̂) ≤ α using Lemma G.2.1096

For any I ∈ 2[n], let PI = P (AI , bI) = {x : Ax = b, xi = 0 ∀i ∈ I}.1097

Claim G.9. There exists a constantC ≥ 1 such that for any I ∈ 2[n] and any Ã, b̃ of same dimensions1098

asAI , bI , if q̃ ∈ P (Ã, b̃) with q̃ ≤ 1 (for all elements), then ||q̃−proj(q̃, PI)||2 ≤ Cd(PI , P (Ã, b̃)).1099

Proof of Claim G.9. From Fact G.7, we have ||q̃−proj(q̃, PI)||2 = ||A>I (AIA
>
I )−1(AI q̃− bI)||2.1100

Since q̃ ∈ P (Ã, b̃), Ãq̃ = b̃. Let λ = maxI ||A>I (AIA
>
I )−1||2 and let d = d(PI , P (Ã, b̃)).1101

Therefore,1102

||q̃ − proj(q̃, PI)||2 ≤ λ||(AI − Ã)q̃ + (b̃− bI)||2

≤ λ
(
||AI − Ã||2||q̃||2 + ||b̃− bI ||2

)
≤ 2λnd.

Therefore, C = 2λn. �1103

We now describe an iterative process to prove this result.1104

LetQ0 = {q : Aq = b} (Qwithout the non-negativity constraint), and same with Q̂0 = {q : Âq = b̂}.1105

Let α0 = d(Q0, Q̂0). Let q̃0 = proj(q̂, Q0). By Claim G.9, ||q̂ − q̃0||2 ≤ Cα0. If q̃0 ≥ 0, then1106

STOP here.1107

Otherwise, find an index i which violates the non-negativity constraint using the following method:1108

• Let q ∈ Q be an arbitrary feasible point (q ≥ 0).1109

• From the point q̃0, move along the direction towards q. Let p0 be the first point on this line1110

where p0 is non-negative.1111

• Since Q is simply Q0 with non-negativity constraints and both sets are convex, p0 ∈ Q.1112

• Let i be an index where q̃0
i < 0 and p0

i = 0 (the last index to become non-negative).1113

Since q̂ ≥ 0, it must be that q̂i ≤ Cα0 since ||q̃0 − q̂|| ≤ Cα0.1114

LetQ1 be the same polytope asQ0, but with the additional constraint that qi = 0 — call this constraint1115

C. LetA1, b1 be the corresponding equality constraints forQ1. Let Q̂1 be the same polytope as Q̂, but1116

with the additional equality constraint that qi = q̂i — call this constraint Ĉ. Let Â1, b̂1 be the equality1117

constraints for Q̂1. Note that the only difference between constraints C and Ĉ is the right hand side,1118
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which differ by at most Cα0. Therefore, d(Q1, Q̂1) ≤ d(Q0, Q̂0) + Cα0 ≤ 2Cα0. Clearly, q̂ ∈ Q̂1.1119

Let q̃1 = proj(q̂, Q1). Applying Claim G.9 again, we have ||q̂ − q̃1||2 ≤ C(2Cα0) = 2C2α0. If1120

q̃1 ≥ 0, then STOP here.1121

Otherwise, let j be the index which violates the non-negativity constraint found using the same1122

method as before; except this time, we draw a line between q̃1 towards p0 ∈ Q. We let p1 be the first1123

point where p1 ≥ 0. Then, we repeat the above process. We define Q2 to be the same polytope as Q1,1124

with the additional constraint that qj = 0. Q̂2 is defined as Q̂1 with the additional constraint qj = q̂j .1125

Then, q̂j ≤ 2C2α0. Therefore, d(Q2, Q̂2) ≤ d(Q1, Q̂1) + 2C2α0 ≤ 2Cα0 + 2C2α0 ≤ 4C2α0.1126

Applying Claim G.9, we get ||q̂ − q̃2||2 ≤ C(4C2α0) = 4C3α0. If q̃2 ≥ 0, then STOP here.1127

After stopping: If this process stopped at iteration m, then q̃m ∈ Q and ||q̂− q̃m||2 ≤ 2mCm−1α0.1128

It must be that m ≤ n. If α0 = ε
2nCn−1 , then ||q̂ − q̃m||2 ≤ ε. Then, ||proj(q̂, Q)− q̂||2 ≤ ε. Let1129

δ > 0 such that Ht(δ) implies d(Q, Q̂) ≤ α0. �1130

Proof of Lemma G.4. This proof follows essentially the same steps as the proof of Lemma G.3 by1131

swapping Q and Q̂. The main difference is that we are projecting q onto Q(ŝt, θ̂t), but this must hold1132

for all possible values of ŝt, θ̂t (using a single δ). Due to this, the only thing we have to change from1133

the proof of Lemma G.3 is Claim G.9. We must show that there exists a constant C where Claim G.91134

is satisfied for all possible values of ŝt, θ̂t. The only place whereC relies on a property of the polytope1135

PI is in choosing λ. Therefore our goal is to uniformly upper bound maxI ||Â>I (ÂIÂ
>
I )−1||2 for1136

all possible ÂI that can be induced by all possible ŝt, θ̂t.1137

Note that since we assume that Ht(δ0) holds, the possible matrices Â lie in a compact space (since1138

every element of the matrix Â can be at most δ0 apart). Since ||A>(AA>)−1||2 is a continuous1139

function of the elements of the matrix A, λ1 = maxÂ ||Â>(ÂÂ>)−1||2 exists. Moreoever, for any1140

I , ||Â>I (ÂIÂ
>
I )−1||2 ≤ C(n)||Â>(ÂÂ>)−1||2 for a constant C(n). Therefore, by replacing λ with1141

λ1C(n), Claim G.9 holds. �1142
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