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Abstract

Exponential generalization bounds with near-optimal rates have recently been
established for uniformly stable algorithms (Feldman and Vondrák, 2019; Bousquet
et al., 2020). We seek to extend these best known high probability bounds from
deterministic learning algorithms to the regime of randomized learning. One simple
approach for achieving this goal is to define the stability for the expectation over
the algorithm’s randomness, which may result in sharper parameter but only leads
to guarantees regarding the on-average generalization error. Another natural option
is to consider the stability conditioned on the algorithm’s randomness, which is
way more stringent but may lead to generalization with high probability jointly
over the randomness of sample and algorithm. The present paper addresses such
a tension between these two alternatives and makes progress towards relaxing it
inside a classic framework of confidence-boosting. To this end, we first introduce a
novel concept of L2-uniform stability that holds uniformly over data but in second-
moment over the algorithm’s randomness. Then as a core contribution of this work,
we prove a strong exponential bound on the first-moment of generalization error
under the notion of L2-uniform stability. As an interesting consequence of the
bound, we show that a bagging-based meta algorithm leads to near-optimal gener-
alization with high probability jointly over the randomness of data and algorithm.
We further substantialize these generic results to stochastic gradient descent (SGD)
to derive sharper exponential bounds for convex or non-convex optimization with
natural time-decaying learning rates, which have not been possible to prove with
the existing stability-based generalization guarantees.

1 Introduction

In many statistical learning problems, we are interested in designing a randomized algorithm A :
ZN ×R 7→ W that maps a training data sample S = {Zi}i∈[N ] ∈ ZN with an algorithm’s random
parameter ξ ∈ R to a model A(S, ξ) ∈ W . Here Z and R are some measurable sets, and W is a
closed subset of an Euclidean space. The ultimate goal is to find a suitable algorithm such that the
following population risk evaluated at the model should be as small as possible:

R(A(S, ξ)) := EZ [ℓ(A(S, ξ);Z)],

where Z ∈ Z and ℓ : W ×Z 7→ R+ is a non-negative bounded loss function whose value ℓ(w; z)
measures the loss evaluated at z with parameter w. It is generally the case that the underlying data
distribution is unknown, and in this case the data points Zi are usually assumed to be independent.
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Then, a natural alternative measurement that mimics the computationally intractable population risk
is the empirical risk given by

RS(A(S, ξ)) := EZ∼Unif(S)[ℓ(A(S, ξ);Z)] =
1

N

N∑
i=1

ℓ(A(S, ξ);Zi).

The bound on the difference between the population and empirical risks is of central interest in
understanding the generalization performance of a learning algorithm. In particular, we hope to derive
a suitable law of large numbers, i.e., a sample size vanishing rate bN such that the generalization
bound |RS(A(S, ξ)) − R(A(S, ξ))| ≲ bN holds with high probability over the randomness of
S and hopefully the randomness of ξ as well. Let R∗ := minw∈W R(w) be the optimal value
of the population risk. Conditioned on S, suppose that A(S, ξ) is an almost minimizer of the
empirical risk RS such that RS(A(S, ξ)) − minw∈W RS(w) ≤ ε, then the generalization bound
immediately implies an excess risk bound R(A(S, ξ))−R∗ ≲ bN + 1√

N
+ ε based on the standard

risk decomposition and Hoeffding’s inequality. Therefore, generalization guarantees also play a
crucial role in understanding the stochastic optimization performance of a learning algorithm.

A powerful proxy for analyzing the generalization bounds is the stability of learning algorithms to
changes in the training dataset. Since the seminal work of Bousquet and Elisseeff (2002), stability
has been extensively demonstrated to beget dimension-independent generalization bounds for deter-
ministic learning algorithms (Mukherjee et al., 2006; Shalev-Shwartz et al., 2010), as well as for
randomized learning algorithms such as bagging and SGD (Elisseeff et al., 2005; Hardt et al., 2016).
So far, the best known results about generalization bounds are offered by approaches based on the
notion of uniform stability (Feldman and Vondrák, 2018, 2019; Bousquet et al., 2020; Klochkov and
Zhivotovskiy, 2021) which is independent to the underlying distribution of data. For randomized
algorithms, the definition of uniform stability can be extended in two natural ways by respectively
considering 1) the stability averaged over the algorithm’s randomness (Hardt et al., 2016) and 2)
the stability conditioned on the algorithm’s randomness (Feldman and Vondrák, 2019). The former
is simpler to show but typically leads to on-average generalization bounds, while the latter is rela-
tively more stringent but may yield deviation bounds given that the conditional stability holds with
high probability over the algorithm’s randomness. Between these two extreme cases, however, the
generalization behavior of randomized learning algorithm still remains largely under explored.

To address the above mentioned theoretical gap between the current lines of results, we explore the
opportunities of deriving exponential generalization bounds for randomized learning algorithms
beyond the notions of on-average stability and conditional stability. A concrete working example
of our study is the widely used stochastic gradient descent (SGD) algorithm that carries out the
following recursion for all t ≥ 1 with learning rate ηt > 0:

wt := ΠW (wt−1 − ηt∇wℓ(wt−1;Zit)) , (1)
where it ∈ [N ] is a random index of data under with or without replacement sampling, and ΠW is
the Euclidean projection operator associated with W . The in-expectation generalization of SGD has
been studied under on-average stability (Hardt et al., 2016; Zhou et al., 2022; Lei and Ying, 2020),
while the exponential bounds have recently been established given that the stability holds with high
probability over the sampling path of SGD (Feldman and Vondrák, 2019; Bassily et al., 2020).

1.1 Prior results

Let us start by briefly reviewing some state-of-the-art exponential generalization bounds under the
notion of uniform stability and its randomized variants. We denote by S

.
= S̃ if a pair of data sets

S and S̃ differ in a single element. A randomized learning algorithm A is said to have on-average
γN -uniform stability (Elisseeff et al., 2005) if it satisfies the following uniform bound:

sup
S
.
=S̃,Z∈Z

∣∣∣Eξ

[
ℓ(A(S, ξ);Z)− ℓ(A(S̃, ξ);Z)

]∣∣∣ ≤ γN . (2)

This definition is equivalent to the concept of uniform stability defined for the expectation of loss
Eξ[ℓ(A(S, ξ);Z)]. Suppose that the loss function is bounded in the interval [0,M ]. Then essentially
it has been shown in Feldman and Vondrák (2019) that for any δ ∈ (0, 1), with probability at least
1− δ over S, the on-average generalization error is upper bounded by

|Eξ [R(A(S, ξ))−RS(A(S, ξ))]| ≲ γN log(N) log

(
N

δ

)
+M

√
log (1/δ)

N
. (3)
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Bousquet et al. (2020) later derived a slightly improved exponential bound that implies

|Eξ [R(A(S, ξ))−RS(A(S, ξ))]| ≲ γN log(N) log

(
1

δ

)
+M

√
log (1/δ)

N
. (4)

These bounds are near-tight (up to logarithmic factors) in the sense of an O
(
γN log

(
1
δ

)
+
√

log(1/δ)
N

)
lower deviation bound on sum of random functions with γN -uniform stability (Bousquet et al., 2020,
Proposition 9). Concerning the excess risk bound, Klochkov and Zhivotovskiy (2021) essentially
derived the following result using the sample-splitting techniques of Bousquet et al. (2020):

Eξ [R(A(S, ξ))]−R∗ ≲ ∆opt + E[∆opt] + γN log(N) log

(
1

δ

)
+

(M +B) log(1/δ)

N
, (5)

where ∆opt := Eξ [RS(A(S, ξ))]−minw∈W RS(w) represents the in-expectation empirical risk sub-
optimality, and B is the constant of the generalized Bernstein condition (Koltchinskii, 2006). While
sharp in the dependence on sample size, one common limitation of the above uniform stability implied
generalization and risk bounds lies in that these high-probability results only hold in expectation with
respect to ξ, the internal randomness of algorithm.

Alternatively, consider that A has γN -uniform stability with probability at least 1 − δ′ for some
δ′ ∈ (0, 1) over the random draw of ξ, i.e.,

P

{
sup

S
.
=S̃,Z∈Z

|ℓ(A(S, ξ);Z)− ℓ(A(S̃, ξ);Z)| ≤ γN

}
≥ 1− δ′. (6)

Suppose that the randomness of A is independent of the training set S. Then the bound of Bousquet
et al. (2020) naturally implies that with probability at least 1− δ − δ′ over S and ξ,

|R(A(S, ξ))−RS(A(S, ξ))| ≲ γN log(N) log

(
1

δ

)
+M

√
log (1/δ)

N
. (7)

This is by far the best known generalization bound of randomized stable algorithms that hold with
high probability jointly over the randomness of data and algorithm. The result, however, relies
heavily on the high-probability uniform stability as expressed in (6). For the SGD recursion (1)
with fixed learning rate ηt ≡ η, it is possible to show that γN ≲ η

√
T + ηT

N and δ′ = N exp(−N
2 )

in (6) (Bassily et al., 2020). For SGD with time decaying learning rates, which has been widely
studied in theory (Harvey et al., 2019; Rakhlin et al., 2012) and applied in practice for training popular
deep nets such as ResNet and DenseNet (Bengio et al., 2017), it is not clear if the condition in (6) is
still valid for γN and δ′ of interest. Madden et al. (2020) indeed have established a high-probability
uniform stability bound for minibatch SGD with learning rates ηt ≲ 1

Nt . However, such a fairly
conservative choice of learning rates tends to impair the empirical minimization performance of SGD
and thus is of limited interest from the perspective of risk minimization.

More specially for randomized learning methods such as bagging (Breiman, 1996) and SGD, the
randomness of algorithm can be precisely characterized by a vector of i.i.d. parameters ξ = {i1, ..., it}
which are independent on data S. In such cases, assume additionally that A(S, ξ) has uniform stability
with respect to ξ conditioned on S, i.e., supξ .=ξ̃ |ℓ(A(S, ξ))− ℓ(A(S, ξ̃))| ≤ ρT . Then the following
exponential bound has been derived by Elisseeff et al. (2005):

|R(A(S))−RS(A(S))| ≲ γN +

(
1 +NγN√

N
+

√
TρT

)√
log

(
1

δ

)
. (8)

Provided that γN ≲ 1
N and ρT ≲ 1

T , the above bound shows that the generalization bound scales as
O
(

1√
N

+ 1√
T

)
with high probability. However, the rate of the above bound is sub-optimal and will

show no guarantee on convergence if γN ≳ 1√
N

and/or ρT ≳ 1√
T

. As an example, for non-convex

SGD with learning rate ηt = O
(
1
t

)
, it can be shown that γN ≲

√
T

N and ρT scales as large as O(1).

Open problem. So far, it still remains open if the exponential generalization bounds for deterministic
uniformly stable algorithms might be extended to randomized learning algorithms under the variants
of uniform stability tighter than the on-average version (2) but less restrictive than the high-probability
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version (6). Particularly, we are interested in the following notion of L2-uniform stability (as formally
introduced in Definition 1) with parameter γL2,N :

sup
S
.
=S̃,Z∈Z

Eξ

[(
ℓ(A(S, ξ);Z)− ℓ(A(S̃, ξ);Z)

)2]
≤ γ2

L2,N , (9)

which represents a second-moment variant of the uniform stability for randomized learning algorithms.
For example, as we will shortly show in Section 4 that SGD with practical time-decaying learning
rates has L2-uniform stability with favorable parameters. The main goal of the present work is to
derive sharper exponential generalization bounds for randomized learning algorithms under the notion
of L2-uniform stability.

1.2 Overview of our contribution

The fundamental contribution of this work is a near-optimal first-moment generalization error bound
for L2-uniformly stable algorithms, which is summarized in Theorem 1 and highlighted below:

Eξ [|R(A(S, ξ))−RS(A(S, ξ))|] ≲ γL2,N log(N) log

(
1

δ

)
+M

√
log (1/δ)

N
.

While our first-moment bound above has an identical convergence rate to that of the on-average bound
in (4), the former is stronger in the sense that the expectation is taken outside the generalization gap
and thus implies the latter where the expectation is taken inside. The key ingredients of our analysis
are a set of fine-grained concentration inequalities for randomized functions (Proposition 1) and sums
of randomized functions (Proposition 2), which respectively generalize the classic bounded-difference
inequalities and a prior result of Bousquet et al. (2020) under the considered L2-uniform bounded
difference conditions. These generalized concentration inequalities and their proof arguments are
novel to our knowledge and should be of independent interests in analyzing randomized functions.

As an important consequence of our main result, we reveal that a bagging-based meta procedure (see
Algorithm 1) can be used to boost the confidence of generalization for L2-uniformly stable algorithms.
More specifically, in the presented bagging procedure we independently run a randomized algorithm
A multiple K times over a fraction of the training set to obtain K solutions. Then we evaluate the
validation error of these candidate solutions over a holdout training subset, and output the solution
that has the smallest training-validation gap. Our result in Theorem 2 shows that for any confidence
level δ ∈ (0, 1), setting K ≍ log( 1δ ) yields a near-optimal generalization bound for the selected
solution that holds with high probability jointly over the randomness of data and algorithm.

We have substantialized our results to SGD with smooth (Corollary 1) or non-smooth (Corollary 2)
convex losses, and smooth non-convex losses (Corollary 3) as well. For an instance, our result in
Corollary 1 shows that when invoked to SGD with smooth convex loss and learning rates ηt = O( 1√

t
),

the generalization bound of the output of Algorithm 1 may scale as O
(
log(N) log

(
1
δ

)√ log(T )
N +

√
T

N

)
.

To compare with the O
(√

T
N

)
in-expectation bound of smooth convex SGD (Hardt et al., 2016), our

bound above for the boosted SGD is comparable in convergence rate while it holds with high
probability jointly over the randomness of data and sampling path.

2 L2-Uniform Stability and Generalization

2.1 Notation and definitions

Let us introduce some notation to be used in our analysis. We abbreviate [N ] := {1, ..., N}. Recall
that S = {Zi}i∈[N ] is a set of i.i.d. training data. Denote by S′ = {Z ′

i}i∈[N ] an independent copy
of S and we write S(i) = {Z1, ..., Zi−1, Z

′
i, Zi+1, ..., ZN}. For a real-valued random variable Y , its

Lq-norm for q ≥ 1 is given by ∥Y ∥q = (E[|Y |q])1/q . By definition it can be verified that ∀q ≥ 2,

∥Y ∥2q = (E[|Y |q])2/q =
(
E[|Y 2|q/2]

)2/q
=
∥∥Y 2

∥∥
q/2

. (10)

Let h : ZN 7→ R be some measurable function and consider the random variable h(S) =
h(Z1, ..., ZN ). For h(S) and any index set I ⊆ [N ], we define the following abbreviations:

h(SI) := E [h(S) | SI ] , ∥h∥q(SI) := (E [|h(S)|q | SI ])
1/q

.
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We say a function f to be G-Lipschitz continuous over W if |f(w) − f(w̃)| ≤ G∥w − w̃∥ for all
w, w̃ ∈ W , and it is L-smooth if ∥∇f(w)−∇f(w̃)∥ ≤ L∥w− w̃∥. For a pair of functions f, f ′ ≥ 0,
we use f ≲ f ′ (or f ′ ≳ f ) to denote f ≤ cf ′ for some universal constant c > 0.

In the following definition, we formally introduce the concept of L2-uniform stability for randomized
learning algorithms to be investigated in this work.
Definition 1 (L2-Uniform stability of randomized learning algorithms). We say a randomized
learning algorithm A : ZN ×R 7→ W to have L2-uniform stability with parameter γL2,N ≥ 0 if

sup
S,Z′

i,Z

Eξ

[(
ℓ(A(S, ξ);Z)− ℓ(A(S(i), ξ);Z)

)2]
≤ γ2

L2,N .

Remark 1. By definition the L2-uniform stability has a second-moment dependence on the internal
randomness of algorithm conditioned on data, while it is invariant to the data distribution. This
justifies the name of such a notion of mixed algorithmic stability.
Remark 2. On one hand, by Jensen’s inequality the L2-uniform stability implies the on-average
uniform stability defined in (2). On the other hand, the second-order form of L2-uniform stability is
by definition weaker than the high-probability uniform stability in (6). If the algorithm’s randomness
ξ can be expressed as a set of i.i.d. random bits, then the L2-uniform stability is also weaker than the
conditional uniform stability conditioned on data S (Elisseeff et al., 2005).

Throughout this paper, we assume for simplicity that the output models A(S(i), ξ) and A(S, ξ) share
the same internal random bit ξ which is invariant to data. With similar analysis techniques, it is indeed
possible to extend Definition 1 and our main results to the general setting where the randomness of
algorithm is allowed to be dependent on data, such as in posterior sampling for Bayesian learning.

2.2 Concentration inequalities for randomized functions

We begin by establishing in the following result a group of first- and second-order concentration
inequalities (in moments) for randomized functions of independent random variables.
Proposition 1. Let S = {Z1, Z2, ..., ZN} be a set of independent random variables valued in Z and
ξ be a random variable valued in R. Let g : ZN ×R 7→ R be a measurable function that satisfies
the following L2-bounded-difference condition:

sup
S,Z′

i

Eξ

[(
g(S, ξ)− g(S(i), ξ)

)2]
≤ β2.

Then for any q ≥ 2,
∥Eξ [|g(S, ξ)− ES [g(S, ξ)]|]∥q ≤ 3β

√
Nq, (11)

and ∥∥∥Eξ

[
(g(S, ξ)− ES [g(S, ξ)])

2
]∥∥∥

q
≤ 68Nβ2q. (12)

Proof in sketch. Let us consider h(S) := Eξ [|g(S, ξ)− ES [g(S, ξ)]|]. The given L2-bounded-
difference condition implies that h(S) has bounded-difference property. Then the desired first-order
bound in (11) can be obtained by respectively invoking a moment Efron-Stein inequality (Boucheron
et al., 2005, Theorem 2) to upper bound ∥h(S)− E[h(S)]∥q and a slightly modified Efron-Stein in-
equality to bound the mean E[h(S)]. To prove the second-order concentration bound, we consider the
function h′(S) := Eξ

[
(g(S, ξ)− ES [g(S, ξ)])

2
]
, which can be shown to be weakly self-bounding

(see Definition 2) under the L2-bounded-difference condition. Then the desired bound (12) can be
derived by applying the upper tail bound of Boucheron et al. (2005, Theorem 6.19) and lower tail
bound of Klochkov and Zhivotovskiy (2021, Proposition 3.1) for weakly self-bounding functions.
See Appendix A.2 for a detailed proof of this result.

The moment bound in (11) extends the McDiarmid’s (bounded difference) inequality (McDiarmid
et al., 1989) to randomized functions with the L2-bounded-difference property. The second-order
concentration bound in (12) is crucial for proving the moment bound of sums in Proposition 2, as it can
be used to sharply control some second-order components involved in the arguments. These generic
inequalities are expected to be of independent interests for understanding the first-/second-order
concentration behavior of randomized functions.

5



2.3 A moment inequality for sums of randomized functions

As a key intermediate result, we further establish in the following proposition a moment concentration
inequality for sums of randomized functions that satisfy the L2-bounded-difference condition. This
result extends the moment bound for sums of functions (Bousquet et al., 2020, Theorem 4) to sums
of randomized functions.
Proposition 2. Let S = {Z1, Z2, ..., ZN} be a set of independent random variables valued in Z and
ξ be a random variable valued in R. Let g1, ..., gN be a set of measurable functions gi : ZN×R 7→ R
that satisfy the following conditions for any i ∈ [N ]:

• E [gi(S, ξ) | S \ Zi, ξ] = 0 and |E[gi(S, ξ) | Zi, ξ]| ≤ M , almost surely;

• gi(S, ξ) has the following L2-bounded-difference property with respect to all variables in S
except Zi, i.e., ∀j ̸= i,

sup
S,Z′

j

Eξ

[(
gi(S, ξ)− gi(S

(j), ξ)
)2]

≤ β2.

Then for all q ≥ 2, ∥∥∥∥∥Eξ

[∣∣∣∣∣
N∑
i=1

gi(S, ξ)

∣∣∣∣∣
]∥∥∥∥∥

q

≤ 3M
√
3Nq + 38N⌈log2 N⌉βq.

Proof in sketch. The main idea is inspired by the sample-splitting arguments of Feldman and Vondrák
(2019); Bousquet et al. (2020), with some new ingredients developed to handle the first-moment
operator taken over the internal randomness of functions. Here we just highlight a fundamental differ-
ence, which arises from using a newly developed moment inequality (Lemma 9) for bounding the
sums of conditionally independent randomized functions inside each individual data splits. Different
from the version of Marcinkiewicz-Zygmund’s inequality used in the original analysis of Bousquet
et al. (2020), our new bound in Lemma 9 relies on some second-order (over the function’s random-
ness) components which might be tightly bounded by the second-order concentration inequality in
Proposition 1. A full proof is provided in Appendix A.3.

Remark 3. For sums of deterministic functions, our result in Proposition 2 reduces to the existing
moment bound of Bousquet et al. (2020, Theorem 4) which is known to be near-tight up to logarithmic
factors. We comment in passing that the tightness analysis of Bousquet et al. (2020, Proposition 9)
for deterministic functions can be more or less straightforwardly extended to randomized functions.
Remark 4. The bound of Proposition 2 would still be valid when the bounded-loss condition
|E[gi(S, ξ) | Zi, ξ]| ≤ M is relaxed to certain sub-Gaussian or sub-exponential stochastic versions.

2.4 Main result on generalization bound

Consequently from Proposition 2, we can now establish our main result on the generalization bound
of L2-uniformly stable randomized learning algorithms.
Theorem 1. Let A : ZN × R 7→ W be a randomized learning algorithm that has L2-uniform
stability with parameter γL2,N . Assume that the loss function ℓ is valued in [0,M ]. Then for any
δ ∈ (0, 1), the following bound holds with probability at least 1− δ over the draw of S:

Eξ [|R(A(S, ξ))−RS(A(S, ξ))|] ≲ γL2,N log(N) log

(
1

δ

)
+M

√
log (1/δ)

N
.

Proof. See Appendix A.4 for a proof of this result.

Remark 5. The first-moment bound in Theorem 1 naturally implies the on-average bound in (4)
with an identical rate of convergence, though the former is obtained under the relatively stronger
notion of L2-uniform stability. As we will see shortly that the L2-uniform stability can indeed be
fulfilled by the popularly applied SGD algorithm and thus Theorem 1 is of practical importance for
showcasing sharper generalization performance of SGD. When A is deterministic, our bound reduces
to the near-optimal (up to logarithmic factors on sample size and failure tail) generalization bound
for uniformly stable algorithms (Bousquet et al., 2020).
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Algorithm 1: Confidence-Boosting for Randomized Learning Algorithms
Input :Randomized learning algorithm A, data set S = {Zi}i∈[N ], µ ∈ (0, 1) and K ∈ Z+.
Output :A(S, ξk∗).
Uniformly divide S into two disjoint subsets S1 and S2 with |S1| = (1− µ)N, |S2| = µN .
for k = 1, 2, ...,K do

Estimate A(S1, ξk) as an output of A over the subset S1 with random bit ξk.
end
Select the random bit k∗ according to k∗ = argmink∈[K] |RS2(A(S1, ξk))−RS1(A(S1, ξk))|.

In view of the standard risk decomposition, the following excess risk tail bound can be readily
obtained via applying Theorem 1 and Hoeffding’s inequality:

Eξ [R(A(S, ξ))−R∗] ≲ ∆opt + γL2,N log(N) log

(
1

δ

)
+M

√
log (1/δ)

N
. (13)

Here recall that ∆opt := Eξ [RS(A(S, ξ))] − minw∈W RS(w) is the sub-optimality of empirical
risk minimization. Since the excess risk is by definition non-negative, the above bound can also be
obtained under the weaker notion of on-average uniform stability (2) via applying (4). In this sense,
the first-moment generalization error bound in Theorem 1 is substantially more challenging to derive
than the excess risk bound. Additionally, under the generalized Bernstein condition (Koltchinskii,
2006), the risk bound (13) can be readily improved to (5) by directly applying the corresponding
deviation optimal risk bound of Klochkov and Zhivotovskiy (2021) to the on-average loss function
Eξ[ℓ(A(S, ξ);Z)] under on-average uniform stability condition.

3 Boosting the Confidence of Generalization

The confidence-boosting technique of Schapire (1990) is a classic meta approach that allows one to
boost the dependence of a learning algorithm on the failure probability δ from 1/δ to log(1/δ), at a
certain cost of computational complexity. In this section, we show an implication of our first-moment
bound in Theorem 1 for achieving high-probability generalization jointly over the randomness of
data and algorithm, inside a natural framework of confidence-boosting.

3.1 Confidence boosting via bagging

Given a randomized learning algorithm A, we propose to study a bagging based confidence-boosting
procedure as outlined in Algorithm 1. In this meta procedure, we independently run the algorithm
A for K times over S1, a fraction of the training set, to obtain K different candidate solutions
{A(S1, ξk)}k∈[K]. Then we evaluate the validation error of these candidate solutions over the
holdout training subset S2, and cherry pick A(S1, ξk∗) that has the smallest gap between the training
error and validation error, i.e., k∗ = argmink∈[K] |RS2

(A(S1, ξk))−RS1
(A(S1, ξk))|. Particularly,

consider that the internal randomness of A arises from random sampling with replacement of data
points, such as SGD under with-replacement sampling. Then in this setting, the procedure can be
regarded as a version of bagging (Breiman, 1996) with a greedy model ensemble scheme, which
is invoked to the deterministic counterpart of A with fixed random bits (e.g., SGD with identity
permutation) over the training subset S1.

3.2 Jointly exponential bounds

The following theorem is our main result about the generalization error bound of the output A(S1, ξk∗)
that holds with high probability over the entire training set S and the random seeds {ξk}k∈[K].

Theorem 2. Suppose that a randomized learning algorithm A : ZN × R 7→ W has L2-uniform
stability with parameter γL2,N . Assume that the loss function ℓ is valued in [0,M ]. Then for any
δ ∈ (0, 1) and K ≥ 2 log(2δ ), with probability at least 1−δ over the randomness of S and {ξk}k∈[K],
the output of Algorithm 1 satisfies

|R(A(S1, ξk∗))−RS(A(S1, ξk∗))| ≲ γL2,(1−µ)N log(N) log

(
1

δ

)
+

M√
µ(1− µ)

√
log (K/δ)

N
.
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Algorithm 2: ASGD-w: SGD under With-Replacement Sampling
Input :Data set S = {Zi}i∈[N ], step-sizes {ηt}t≥1, #iterations T , initialization w0.
Output :w̄T = 1

T

∑
t∈[T ] wt.

for t = 1, 2, ..., T do
Uniformly randomly sample an index it ∈ [N ] with replacement;
Compute wt = ΠW (wt−1 − ηt∇wℓ(wt−1;Zit)).

end

Proof in sketch. Based on Theorem 1, we first prove an intermediate result to show that the mini-
mal generalization error of the K outputs satisfies mink∈[K] |R(A(S1, ξk))−RS1

(A(S1, ξk))| ≲

γL2,(1−µ)N log(N) log
(
1
δ

)
+ M√

µ(1−µ)

√
log(1/δ)

N provided that K ≳ log( 1δ ). Next we show that the

used greedy model selection strategy guarantees that the selected A(S, ξk∗) mimics the generalization
behavior of that best performer among the K candidates, with a slightly expanded log(K/δ) factor
representing the overhead of simultaneously bounding the generalization performance of K different
candidate solutions over the holdout validation set. Finally the desired bound follows from the union
probability argument. See Appendix B.1 for its full proof.

Remark 6. The bound in Theorem 2 holds with high probability jointly over the randomness of
sample and algorithm. Different from the bound in (7) that requires high probability uniform stability,
Theorem 2 is valid under a substantially milder notion of L2-uniform stability, though at the cost of
multiple running of algorithm for confidence boosting. Compared to the bound in (8) that requires
certain conditional uniform stability over the random bits of algorithm, our bound has sharper
dependence on the uniform stability parameter yet under a weaker notion of stability.

Remark 7. Regarding the scale of the factor 1/
√

µ(1− µ) in the bound of Theorem 2, if setting
µ = 0.01 (i.e., 99% of S are used as S1 for training), then the factor is around 10.05.

Concerning the excess risk of Algorithm 1, we consider a slightly modified output A(S1, ξk∗) such
that k∗ = argmink∈[K] RS2

(A(S1, ξk)). Then based on the in-expectation risk bound (13), we can
derive the following excess risk bound under the conditions of Theorem 2 using similar arguments:

R(A(S1, ξk∗))−R∗ ≲ ∆opt + γL2,(1−µ)N log(N) log

(
1

δ

)
+

M√
µ(1− µ)

√
log (K/δ)

N
. (14)

Again, the above risk bound is still valid under the weaker notion of on-average uniform stability (2).

4 Implications for SGD

This section is devoted to demonstrating the implications of Theorem 1 and Theorem 2 for the widely
used SGD algorithm and its confidence-boosted versions as well. We focus on a variant of SGD
under with-replacement sampling as outlined in Algorithm 2, which we call ASGD-w. In what follows,
we substantialize ξ = {it}t∈[T ] the sample path of ASGD-w over a given data set, and {ξk}k∈[K] the
K independent copies of ξ when implemented with bagging as shown in Algorithm 1. Our results
can also be extended to the without-replacement variant of SGD and the corresponding results are
provided in Appendix D for the sake of completeness.

4.1 Convex optimization with smooth loss

We first present the following lemma that establishes the L2-uniform stability of ASGD-w with convex
and smooth loss functions, such as logistic loss. See Appendix C.2 for its proof.
Lemma 1. Suppose that the loss function ℓ(·; ·) is convex, G-Lipschitz and L-smooth with respect to
its first argument. Assume that ηt ≤ 2/L for all t ≥ 1. Then ASGD-w has L2-uniform stability with
parameter

γL2,N = 2G2

√√√√√10

 1

N

T∑
t=1

η2t +
1

N2

(
T∑

t=1

ηt

)2
.
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Given Lemma 1, we can apply Theorem 1 and Theorem 2 to immediately obtain the following
generalization result for ASGD-w and its confidence-boosted version with smooth and convex losses.
Corollary 1. Suppose that the loss function ℓ(·; ·) ∈ [0,M ] is convex, G-Lipschitz and L-smooth
with respect to its first argument. Then for any δ ∈ (0, 1), it holds with probability at least 1− δ over
the randomness of S that Eξ [|R(ASGD-w(S, ξ))−RS(ASGD-w(S, ξ))|] ≲

G2 log(N) log

(
1

δ

)√√√√ 1

N

T∑
t=1

η2t +
1

N2

(
T∑

t=1

ηt

)2

+M

√
log(1/δ)

N
.

Moreover, consider Algorithm 1 specified to ASGD-w with learning rate ηt ≤ 2/L and K ≍ log( 1δ ).
Then with probability at least 1 − δ over the randomness of S and {ξk}k∈[K], it holds that
|R(ASGD-w(S1, ξk∗))−RS(ASGD-w(S1, ξk∗))| ≲

G2 log(N) log

(
1

δ

)√√√√ 1

(1− µ)N

T∑
t=1

η2t +
1

(1− µ)2N2

(
T∑

t=1

ηt

)2

+
M√

µ(1− µ)

√
log(1/δ)

N
.

Remark 8. For the conventional choice of ηt = 2
L
√
t
, the high-probability (w.r.t. data) general-

ization bounds in Corollary 1 for SGD and its confidence boosted version are roughly of scale

O
(
log(N) log

(
1
δ

)√ log(T )
N +

√
T

N

)
, which matches the corresponding O

(√
T

N

)
in-expectation bound

of SGD with smooth and convex losses (Hardt et al., 2016).

Combining with the standard in-expectation optimization error bound of convex SGD (see, e.g.,
Shamir and Zhang, 2013), we can show the following excess risk bound of (modified) Algorithm 1 as
a direct consequence of the generic bound (14) to ASGD-w with convex and smooth losses:

R(ASGD-w(S1, ξk∗))−R∗ ≲G2 log(N) log

(
1

δ

)√√√√ 1

(1− µ)N

T∑
t=1

η2t +
1

(1− µ)2N2

(
T∑

t=1

ηt

)2

+
M√

µ(1− µ)

√
log(1/δ)

N
+

D2(w0,W
∗) +G2

∑T
t=1 η

2
t∑T

t=1 ηt
,

where W ∗ := Argminw∈W R(w) and D(w,W ∗) = minw∗∈W∗ ∥w−w∗∥. With learning rate ηt =
2

L
√
t
, the right hand side of the above roughly scales as O

(√
log(N) log

(
1
δ

) log(T )
N +

√
T

N + log(T )√
T

)
which matches the prior high-probability excess risk bounds of SGD with convex losses (Harvey
et al., 2019, Remark 3.7).

4.2 Convex optimization with non-smooth loss

Now we turn to study the case where the loss is convex but not necessarily smooth, such as the
hinge loss and absolute loss. We first establish the following lemma about the L2-uniform stability
parameter of ASGD-w in the considered setting. See Appendix C.3 for its proof.
Lemma 2. Suppose that the loss function ℓ(·; ·) is convex and G-Lipschitz with respect to its first
argument. Then ASGD-w has L2-uniform stability with parameter

γL2,N = G2

√√√√40

T∑
t=1

η2t +
32

N2

(
T∑

t=1

ηt

)2

.

With Lemma 2 in place, we can readily apply Theorem 1 and Theorem 2 to establish the following
corollary about the generalization bounds of ASGD-w and its confidence-boosted version with convex
and non-smooth loss functions.
Corollary 2. Suppose that the loss function ℓ(·; ·) ∈ [0,M ] is convex and G-Lipschitz with respect to
its first argument. Then for any δ ∈ (0, 1), it holds with probability at least 1−δ over the randomness
of S that Eξ [|R(ASGD-w(S, ξ))−RS(ASGD-w(S, ξ))|] ≲

G2 log(N) log

(
1

δ

)√√√√ T∑
t=1

η2t +
1

N2

(
T∑

t=1

ηt

)2

+M

√
log(1/δ)

N
.
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Moreover, consider Algorithm 1 specified to ASGD-w with K ≍ log( 1δ ). Then with probability at least
1− δ over S and {ξk}k∈[K], it holds that |R(ASGD-w(S1, ξk∗))−RS(ASGD-w(S1, ξk∗))| ≲

G2 log(N) log

(
1

δ

)√√√√ T∑
t=1

η2t +
1

(1− µ)2N2

(
T∑

t=1

ηt

)2

+
M√

µ(1− µ)

√
log(1/δ)

N
.

Remark 9. For SGD with decaying learning rates ηt = 1√
Nt

, Corollary 2 admits high-probability

generalization bounds of scale O
(
log(N) log

(
1
δ

)√ log(T )
N + T

N3 +
√

log(1/δ)
N

)
. With fixed rates

ηt ≡ η, Corollary 2 yields deviation bounds of scale O
(
η log(N) log

(
1
δ

)
(
√
T + T

N ) +
√

log(1/δ)
N

)
which matches the near-optimal rate by Bassily et al. (2020, Theorem 3.3).

4.3 Non-convex optimization with smooth loss

We further study the performance of Algorithm 1 for ASGD-w with smooth but not necessarily convex
loss functions, such as normalized sigmoid loss (Mason et al., 1999). The following lemma estimates
the L2-uniform stability of ASGD-w in the considered setting. See Appendix C.4 for its proof.
Lemma 3. Suppose that the loss function ℓ(·; ·) is G-Lipschitz and L-smooth with respect to its first
argument. Consider ηt ≤ 1/L. Then ASGD-w has L2-uniform stability with parameter

γL2,N = 2G2

√√√√ 1

N

T∑
t=1

exp

(
3L

T∑
τ=t+1

ητ

)
ut,

where

ut := η2t + 2ηt

t−1∑
τ=1

exp

(
L

t−1∑
i=τ+1

ηi

)
ητ .

Based on Lemma 3, we can invoke Theorem 1 and Theorem 2 to show the following generalization
result for ASGD-w and its confidence-boosted version with non-convex and smooth loss functions.
Corollary 3. Suppose that the loss function ℓ(·; ·) ∈ [0,M ] is G-Lipschitz and L-smooth with respect
to its first argument. Then for any δ ∈ (0, 1), it holds with probability at least 1 − δ over the
randomness of S that Eξ [|R(ASGD-w(S, ξ))−RS(ASGD-w(S, ξ))|] ≲

G2 log(N) log

(
1

δ

)√√√√ 1

N

T∑
t=1

exp

(
L

T∑
τ=t+1

ητ

)
ut +M

√
log(1/δ)

N
,

where ut := η2t + 2ηt
∑t−1

τ=1 exp(L
∑t−1

i=τ+1 ηi)ητ for all t ≥ 1. Moreover, consider Algorithm 1
specified to ASGD-w with ηt ≤ 1

L and K ≍ log( 1δ ). Then with probability at least 1− δ over S and
{ξk}k∈[K], it holds that |R(ASGD-w(S1, ξk∗))−RS(ASGD-w(S1, ξk∗))| ≲

G2 log(N) log

(
1

δ

)√√√√ 1

(1− µ)N

T∑
t=1

exp

(
L

T∑
τ=t+1

ητ

)
ut +

M√
µ(1− µ)

√
log(1/δ)

N
.

Remark 10. For the decaying learning rates ηt =
1

Lνt with arbitrary ν ≥ 1, the generalization

bounds in Corollary 3 are of scale O
(
log(N) log

(
1
δ

)√T 1/ν log(T )
νN +

√
log(1/δ)

N

)
. For the constant

learning rates ηt ≡ 1
LT , the bounds are of scale O

(
log(N) log

(
1
δ

)√ log(1/δ)
N

)
.

5 Conclusion

In this paper, we have introduced a novel concept of L2-uniform stability for randomized learning
algorithms and proved a strong first-moment generalization bound that holds with high probability
over training sample. Equipped with this result, we have further developed a bagging based confidence-
boosting procedure and shown that it yields near-optimal generalization bounds with high confidence
jointly over the randomness of sample and algorithm. The power of our theory has been demonstrated
through an application to SGD with time-decaying learning rates, where sharper generalization
bounds have been obtained for both convex and non-convex loss functions.
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A Proofs for Section 2

In this section, we provide the technical proofs for the main results stated in Section 2.

A.1 Auxiliary lemmas

Here we collect a set of preliminary lemmas to be used in our analysis. The following lemma is
an Lq-norm extension of the celebrated Efron-Stein inequality (see, e.g., Boucheron et al., 2005,
Theorem 2).
Lemma 4 (Generalized Efron-Stein inequality). Let S = {Z1, ..., ZN} be a set of independent
random variables valued in Z and h : ZN 7→ R be some measurable function. Then for all q ≥ 2,

∥h(S)− E[h(S)]∥q ≤
√
3q

√√√√∥∥∥∥∥
N∑
i=1

(
h(S)− h(S(i))

)2∥∥∥∥∥
q/2

.

The following result compares the moments and conditional moments of a random function.
Lemma 5. Let S = {Z1, ..., ZN} be a set of independent random variables valued in some measure
space Z and h : ZN 7→ R be some measurable function. Then for all I ⊆ [N ] and q ≥ 1, we have

∥h(SI)∥q ≤ ∥h(S)∥q = ∥∥h∥q(SI)∥q .

Proof. Recall h(SI) = E[h(S) | SI ]. Using Jensen’s inequality we can show that

∥h(SI)∥q = (E [|E[h(S) | SI ]|q])1/q ≤ (E [E[|h(S)|q | SI ]|])1/q = (E[|h(S)|q])1/q = ∥h(S)∥q.

By definition we can also express ∥h(S)∥q = (E [E[|h(S)|q | SI ]|])1/q = ∥∥h(S)∥q(SI)∥q. The
proof is completed.

We further need to introduce the concept of weakly self-bounding function to be used in the analysis
of second-order concentration bounds.
Definition 2 (Weakly self-bounding function). A non-negative function h : ZN 7→ R+ ∪ {0} is
said to be weakly (a, b)-self-bounding with parameters a, b ≥ 0 if there exist non-negative functions
hi : ZN−1 7→ R+ ∪ {0} such that for all S = {Z1, ..., Zn} ∈ ZN ,

N∑
i=1

(
h(S)− hi(S

\i)
)2

≤ ah(S) + b,

where S\i := S \ {Zi}.

The following lemma is a combination of the upper tail bound of Boucheron et al. (2005, Theorem
6.19) and lower tail bound of Klochkov and Zhivotovskiy (2021, Proposition 3.1) for weakly self-
bounding functions.
Lemma 6. Let S = {Z1, Z2, ..., ZN} be a set of independent random variables valued in Z and
h : ZN 7→ R+ ∪ {0} be a weakly (a, b)-self-bounding function.

• Assume that the relevant hi satisfy hi(S
\i) ≤ h(S) for any i = 1, ..., N . Then for all t > 0,

P {h(S) ≥ E[h(S)] + t} ≤ exp

(
− t2

2aE(h(S)) + 2b+ at

)
.

• Assume that the relevant hi satisfy hi(S
\i) ≥ h(S) for any i = 1, ..., N . Then for all t > 0,

P {h(S) ≤ E[h(S)]− t} ≤ exp

(
− t2

2aE(h(S)) + 2b

)
.

We also need the following preliminary result about the equivalence between tails and moments (Bous-
quet et al., 2020).
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Lemma 7. Let Y be a real-valued random variable.

• If Y satisfies the following inequality for some a, b ≥ 0 with probability at least 1− δ for any
δ ∈ (0, 1),

|Y | ≤ a log
(e
δ

)
+ b

√
log
(e
δ

)
.

Then, for any q ≥ 1 it holds that

∥Y ∥q ≤ 3aq + 9b
√
q.

• If Y satisfies ∥Y ∥q ≤ aq+ b
√
q for any q ≥ 1. Then the following holds with probability at least

1− δ for any δ ∈ (0, 1):

|Y | ≤ e

(
a log

(e
δ

)
+ b

√
log
(e
δ

))
.

A.2 Proof of Proposition 1

The following lemma is key to our proof.
Lemma 8. Let S = {Z1, Z2, ..., ZN} be a set of independent random variables valued in Z and ξ
be a random variable valued in R. Let g : ZN ×R 7→ R be a measurable function. Then it holds
that

E
[
(g(S, ξ)− ES [g(S, ξ)])

2
]
≤

N∑
i=1

E
[(

g(S, ξ)− g(S(i), ξ)
)2]

. (15)

Moreover, for any q ≥ 2, the following bound holds:

∥Eξ [|g(S, ξ)− ES [g(S, ξ)]|]∥q

≤

√√√√ N∑
i=1

E
[(
g(S, ξ)− g(S(i), ξ)

)2]
+
√
3q

√√√√∥∥∥∥∥
N∑
i=1

E2
ξ

[∣∣g(S, ξ)− g(S(i), ξ)
∣∣]∥∥∥∥∥

q/2

.
(16)

Proof. To prove the variance bound (15), we consider the following conditional expectation operators,
conditioned on the random variables (Z1, ..., Zi) and the random bit ξ of algorithm:

fi := E [g(S, ξ) | Z1, ..., Zi, ξ] , ∀i = 1, ..., N.

We conventionally define f0 = ES [g(S, ξ)]. Clearly, the following telescope decomposition holds:

g(S, ξ)− ES [g(S, ξ)] = fN − f0 =

N∑
i=1

{∆i := fi − fi−1} .

Then we have

E
[
(g(S, ξ)− ES [g(S, ξ)])

2
]

=E

( N∑
i=1

∆i

)2
 =

N∑
i=1

E[∆2
i ] + 2

∑
i<j

E[∆i∆j ] =

N∑
i=1

E[∆2
i ],

(17)

where in the last equality we have used the fact that for any index pair i < j, E [∆j | Z1, ..., Zi, ξ] = 0
which implies E[∆i∆j ] = E [∆iE [∆j | Z1, ..., Zi, ξ]] = 0. Note that,

E[∆2
i ] =E

[
(E [g(S, ξ) | Z1, ..., Zi, ξ]− E [g(S, ξ) | Z1, ..., Zi−1, ξ])

2
]

ζ1
=E

[(
E
[
g(S, ξ)− g(S(i), ξ)

])2
| Z1, ..., Zi, ξ

]
ζ2
≤E

[
E
[(

g(S, ξ)− g(S(i), ξ)
)2]

| Z1, ..., Zi, ξ

]
=E

[(
g(S, ξ)− g(S(i), ξ)

)2]
,

(18)
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where “ζ1” makes use of the independence of ξ, Z1, ..., Zi, Z
′
i, “ζ2” is due to Jensen’s inequality.

Substituting (18) into (17) yields

E
[
(g(S, ξ)− ES [g(S, ξ)])

2
]
≤

N∑
i=1

E
[(

g(S, ξ)− g(S(i), ξ)
)2]

,

which is the first desired bound.

We now proceed to prove the q-moment bound (16). Let us define h(S) :=
Eξ [|g(S, ξ)− ES [g(S, ξ)]|]. Based on Jensen’s inequality and triangle inequality we can show
that ∣∣∣h(S)− h(S(i))

∣∣∣ = ∣∣∣Eξ

[
|g(S, ξ)− ES [g(S, ξ)]| −

∣∣∣g(S(i), ξ)− ES(i) [g(S(i), ξ)]
∣∣∣]∣∣∣

≤Eξ

[∣∣∣g(S, ξ)− ES [g(S, ξ)]− g(S(i), ξ) + ES(i) [g(S(i), ξ)]
∣∣∣]

=Eξ

[∣∣∣g(S, ξ)− g(S(i), ξ)
∣∣∣] .

Then by invoking the generalized Efron-Stein inequality (Lemma 4) to h(S) we get that for all q ≥ 2,

∥h(S)− ES [h(S)]∥q ≤
√
3q

√√√√∥∥∥∥∥
N∑
i=1

(
h(S)− h(S(i))

)2∥∥∥∥∥
q/2

≤
√
3q

√√√√∥∥∥∥∥
N∑
i=1

E2
ξ

[∣∣g(S, ξ)− g(S(i), ξ)
∣∣]∥∥∥∥∥

q/2

.

It follows that

∥h(S)∥q ≤ |ES [h(S)]|+
√
3q

√√√√∥∥∥∥∥
N∑
i=1

E2
ξ

[∣∣g(S, ξ)− g(S(i), ξ)
∣∣]∥∥∥∥∥

q/2

=E [|g(S, ξ)− ES [g((S, ξ)]|] +
√
3q

√√√√∥∥∥∥∥
N∑
i=1

E2
ξ

[∣∣g(S, ξ)− g(S(i), ξ)
∣∣]∥∥∥∥∥

q/2

≤

√√√√ N∑
i=1

E
[(
g(S, ξ)− g(S(i), ξ)

)2]
+
√

3q

√√√√∥∥∥∥∥
N∑
i=1

E2
ξ

[∣∣g(S, ξ)− g(S(i), ξ)
∣∣]∥∥∥∥∥

q/2

,

where in the last inequality we have used Jensen’s inequality and (15). This gives the desired
q-moment bound in the second part.

Remark 11. The first variance bound in (15) can be regarded as a natural extension of the Efron-Stein
inequality to randomized functions.

Based on Lemma 8, we can prove the main result in Proposition 1.

Proof of Proposition 1. The concentration bound (11) can be implied by (16) and the bounded-
difference condition as in the following:

∥Eξ [|g(S, ξ)− ES [g(S, ξ)]|]∥q

≤

√√√√ N∑
i=1

E
[(
g(S, ξ)− g(S(i), ξ)

)2]
+
√
3q

√√√√∥∥∥∥∥
N∑
i=1

E2
ξ

[∣∣g(S, ξ)− g(S(i), ξ)
∣∣]∥∥∥∥∥

q/2

≤β
√
N +

√
3q
√
Nβ2 ≤ 3β

√
Nq.

To prove the second-order concentration bound (12), we first show via the inequality (15) in Lemma 8
and the bounded difference condition that

Eξ

[
(g(S, ξ)− ES [g(S, ξ)])

2
]

≤
N∑
i=1

E
[(

g(S, ξ)− g(S(i), ξ)
)2]

=

N∑
i=1

ES

[
Eξ

[(
g(S, ξ)− g(S(i), ξ)

)2]]
≤ Nβ2.

(19)
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Let us define h(S) := Eξ

[
(g(S, ξ)− ES [g(S, ξ)])

2
]
. Let h−

i (S
\i) := infZi∈Z h(S) such that

h−
i ≤ h. It can be shown that

N∑
i=1

(
h(S)− h−

i (S
\i)
)2

=

N∑
i=1

(
Eξ

[
(g(S, ξ)− ES [g(S, ξ)])

2
]
− inf

Zi∈Z
Eξ

[
(g(S, ξ)− ES [g(S, ξ)])

2
])2

ζ1
≤Nβ2 (β + 2Eξ [|g(S, ξ)− ES [g(S, ξ)]|])2

≤8Nβ2h(S) + 2Nβ4,

where in “ζ1” we have used Jensen’s inequality, Cauchy-Schwarz inequality and the bounded
difference assumption. Therefore h is a weakly (8Nβ2, 2Nβ4)-self-bounding function. Then for
any δ ∈ (0, 1), it follows from the first upper tail bound in Lemma 6 that the following bound holds
with probability at least 1− δ

2 :

h(S) ≤ E[h(S)] + 8Nβ2 log

(
2

δ

)
+ 2

√
(4Nβ2E[h(S)] +Nβ4) log

(
2

δ

)
,

Now consider h+
i (S

\i) := supZi∈Z h(S) such that h+
i ≥ h. Similar to the previous arguments we

can show according to the second lower tail bound in Lemma 6 that with probability at least 1− δ
2 ,

h(S) ≥ E[h(S)]− 2

√
(4Nβ2E[h(S)] +Nβ4) log

(
2

δ

)
.

Combing the preceding two inequalities yields that the following holds with probability at least 1− δ

|h(S)− E[h(S)]| ≤ 8Nβ2 log

(
2

δ

)
+ 2

√
(4Nβ2E[h(S)] +Nβ4) log

(
2

δ

)
.

In view of Lemma 7 we further have that for any q ≥ 1,

∥h(S)− E[h(S)]∥q ≤ 24Nβ2q + 18
√

(4Nβ2E[h(S)] +Nβ4) q.

Consequently we have

∥h(S)∥q ≤E[h(S)] + 24Nβ2q + 9

(
E[h(S)] +

β2

4
+ 4Nβ2q

)
≤10E[h(S)] + 63Nβ2q ≤ 10Nβ2 + 63Nβ2q ≤ 68Nβ2q,

where we have used the fact 2ab ≤ a2 + b2, (19) and q ≥ 2. The proof is completed.

A.3 Proof of Proposition 2

We need the following lemma as another important and useful consequence of Lemma 8 which can
be regarded as an extension of the Marcinkiewicz-Zygmund inequality (Chow and Teicher, 2003) to
conditionally independent functions.

Lemma 9. Let Z1, Z2, ..., ZN be a set of independent random variables valued in Z and ξ be a
random variable valued in R. For any i ∈ [N ], let fi : Z × R 7→ R be a measurable function
satisfies E[fi(Zi, ξ) | ξ] = 0. Then for any q ≥ 2,∥∥∥∥∥Eξ

[∣∣∣∣∣
N∑
i=1

fi(Zi, ξ)

∣∣∣∣∣
]∥∥∥∥∥

q

≤

√√√√2

N∑
i=1

E [f2
i (Zi, ξ)] + 2

√
3q

√√√√∥∥∥∥∥
N∑
i=1

E2
ξ [|fi(Zi, ξ)|]

∥∥∥∥∥
q/2

. (20)
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Proof. Let S = {Z1, Z2, ..., ZN} and consider g(S, ξ) =
∑N

i=1 fi(Zi, ξ). Then it can be verified
that ES [g(S, ξ)] = 0,

E
[(

g(S, ξ)− g(S(i), ξ)
)2]

= E
[
(fi(Zi, ξ)− fi(Z

′
i, ξ))

2
]
= 2E

[
f2
i (Zi, ξ)

]
,

and

E2
ξ

[∣∣∣g(S, ξ)− g(S(i), ξ)
∣∣∣] = E2

ξ [|fi(Zi, ξ)− fi(Z
′
i, ξ)|] ≤ 2E2

ξ [|fi(Zi, ξ)|] + 2E2
ξ [|fi(Z ′

i, ξ|] .

Applying Lemma 8 to g(S, ξ) yields∥∥∥∥∥Eξ

[∣∣∣∣∣
N∑
i=1

fi(Zi, ξ)

∣∣∣∣∣
]∥∥∥∥∥

q

= ∥Eξ [|g(S, ξ)− ES [g(S, ξ)]|]∥q

≤

√√√√2

N∑
i=1

E [f2
i (Zi, ξ)] +

√
3q

√√√√∥∥∥∥∥2
N∑
i=1

(
E2
ξ [|fi(Zi, ξ)|] + E2

ξ [|fi(Z ′
i, ξ)|]

)∥∥∥∥∥
q/2

=

√√√√2

N∑
i=1

E [f2
i (Zi, ξ)] + 2

√
3q

√√√√∥∥∥∥∥
N∑
i=1

E2
ξ [|fi(Zi, ξ)|]

∥∥∥∥∥
q/2

.

This proves the desired bound.

We also need the following lemma which indicates that conditional expectation does not expand the
L2-bounded-difference parameter.
Lemma 10. Let S = {Z1, Z2, ..., ZN} be a set of independent random variables valued in Z and ξ
be a random variable valued in R. Let g : ZN ×R 7→ R be some measurable function. Let I ⊆ [N ]
be an index set. Then for all i ∈ I ,

sup
SI ,S

(i)
I

√
Eξ

[(
g(SI , ξ)− g(S

(i)
I , ξ)

)2]
≤ sup

S,S(i)

√
Eξ

[(
g(S, ξ)− g(S(i), ξ)

)2]
Proof. Recall that g(SI , ξ) = E[g(S, ξ) | SI , ξ]. Based on Jensen’s inequality we can show that

Eξ

[(
g(SI , ξ)− g(S

(i)
I , ξ)

)2]
≤Eξ

[
E
[(

g(S, ξ)− g(S(i), ξ)
)2

| SI , S
(i)
I , ξ

]]
=E

[
Eξ

[(
g(S, ξ)− g(S(i), ξ)

)2]
| SI , S

(i)
I

]
≤ sup

S,S(i)

Eξ

[(
g(S, ξ)− g(S(i), ξ)

)2]
,

where in the last inequality we have used the fact that expectation is always no larger than maximum.
The desired bound then follows immediately from the above inequality.

Now we are in the position to prove the main result. The proof is inspired by the sample-splitting
arguments of Feldman and Vondrák (2019); Bousquet et al. (2020), with several non-trivial modifica-
tions along made to deal with the challenges arisen from the first-moment operation taken over the
randomness of algorithm.

Proof of Proposition 2. Consider k such that 2k−1 < N ≤ 2k. If N < 2k, we pad the training set S
with extra zero-functions so that N = 2k. Consider the partition I0, I1, ..., Ik of [N ] given by

I0 = {{1}, ..., {2k}}, I1 = {{1, 2}, {3, 4}..., {2k − 1, 2k}}, Ik = {{1, ..., 2k}}.

For any i ∈ [N ] and l = 0, ..., k, we denote by I l(i) ∈ Il the only set from Il that contains i and
consider the following random variables:

gli = E
[
gi | Zi, SIl(i)

, ξ
]
.
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In particular, g0i = gi and gki = E[gi | Zi, ξ]. Clearly we have the following telescope sum:

gi =

k−1∑
l=0

(gli − gl+1
i ) + gki =

k−1∑
l=0

(gli − gl+1
i ) + E[gi | Zi, ξ].

It follows that

∥∥∥∥∥Eξ

[∣∣∣∣∣
N∑
i=1

(gi − E[gi | Zi, ξ])

∣∣∣∣∣
]∥∥∥∥∥

q

≤
k−1∑
l=0

∥∥∥∥∥Eξ

[∣∣∣∣∣
N∑
i=1

gli − gl+1
i

∣∣∣∣∣
]∥∥∥∥∥

q

. (21)

We need to upper bound the r.h.s. of the above inequality. To this end, it can be verified that

gl+1
i = E

[
gi | Zi, SIl+1(i)

, ξ
]
= E

[
gli | Zi, SIl+1(i)

, ξ
]
.

Since by assumption gi has bounded L2-uniform difference by β with respect to all variables except
the i-th variable, it can be verified by Lemma 10 that so is gli for each l = 0, ..., k. Conditioned on
Zi, SIl+1(i)

, invoking Theorem 1 to gli yields that for any q ≥ 1,

∥∥Eξ

[∣∣gli − gl+1
i

∣∣]∥∥
q

(
Zi, SIl+1(i)

)
≤3β

√
q2l,∥∥∥Eξ

[(
gli − gl+1

i

)2]∥∥∥
q

(
Zi, SIl+1(i)

)
≤68β22lq,

as there are 2l indices in I l+1(i) \ I l(i). Consequently according to Lemma 5 we have that for any
q ≥ 1,

∥∥Eξ

[∣∣gli − gl+1
i

∣∣]∥∥
q
=
∥∥∥∥∥Eξ

∣∣gli − gl+1
i

∣∣∥∥
q

(
Zi, SIl+1(i)

)∥∥∥
q
≤ 3β

√
q2l, (22)

and

∥∥∥Eξ

[(
gli − gl+1

i

)2]∥∥∥
q
=

∥∥∥∥∥∥∥Eξ

[(
gli − gl+1

i

)2]∥∥∥
q

(
Zi, SIl+1(i)

)∥∥∥∥
q

≤ 68β22lq. (23)

Now consider any I l ∈ Il. Since for each i ∈ Il, gli − gl+1
i depends only on (Zi, SIl , ξ), these

random terms are essentially of the form f(Zi, ξ) conditioned on (S
Il). Given the assumption

E [gi(S, ξ) | S \ Zi, ξ] = 0, it holds that E
[
gli − gl+1

i | S
Il , ξ

]
= 0, ∀i ∈ Il. Therefore, applying

Lemma 9 yields

∥∥∥∥∥∥Eξ

∣∣∣∣∣∣
∑
i∈Il

gli − gl+1
i

∣∣∣∣∣∣
∥∥∥∥∥∥

q

(
S
Il

)

≤

√√√√2

N∑
i=1

E
[(
gli − gl+1

i

)2 | S
Il

]
+ 2
√
3q

√√√√∥∥∥∥∥
N∑
i=1

E2
ξ

[∣∣gli − gl+1
i

∣∣]∥∥∥∥∥
q/2

(
S
Il

)
.
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Next we proceed to bound the moment
∥∥Eξ

[∣∣∑
i∈Il gli − gl+1

i

∣∣]∥∥
q
. By applying Lemma 5 again and

using the above bound we can show that∥∥∥∥∥∥Eξ

∣∣∣∣∣∣
∑
i∈Il

gli − gl+1
i

∣∣∣∣∣∣
∥∥∥∥∥∥

q

=

∥∥∥∥∥∥
∥∥∥∥∥∥Eξ

∣∣∣∣∣∣
∑
i∈Il

gli − gl+1
i

∣∣∣∣∣∣
∥∥∥∥∥∥

q

(
S
Il

)∥∥∥∥∥∥
q

≤

∥∥∥∥∥∥∥
√
2
∑
i∈Il

E
[(
gli − gl+1

i

)2 | S
Il

]
+ 2
√
3q

√√√√√
∥∥∥∥∥∥
∑
i∈Il

E2
ξ

[
|gli − gl+1

i |
]∥∥∥∥∥∥

q/2

(
S
Il

)∥∥∥∥∥∥∥
q

≤

∥∥∥∥∥∥
√
2
∑
i∈Il

E
[(
gli − gl+1

i

)2 | S
Il

]∥∥∥∥∥∥
q

+ 2
√
3q

∥∥∥∥∥∥∥
√√√√√
∥∥∥∥∥∥
∑
i∈Il

E2
ξ

[
|gli − gl+1

i |
]∥∥∥∥∥∥

q/2

(
S
Il

)∥∥∥∥∥∥∥
q

ζ1
=

√√√√√2

∥∥∥∥∥∥
∑
i∈Il

E
[(
gli − gl+1

i

)2 | S
Il

]∥∥∥∥∥∥
q/2

+ 2
√
3q

√√√√√√
∥∥∥∥∥∥∥
∥∥∥∥∥∥
∑
i∈Il

E2
ξ

[
|gli − gl+1

i |
]∥∥∥∥∥∥

q/2

(
S
Il

)∥∥∥∥∥∥∥
q/2

≤
√
2
∑
i∈Il

∥∥∥E [(gli − gl+1
i

)2 | S
Il

]∥∥∥
q/2

+ 2
√
3q

√∑
i∈Il

∥∥∥E2
ξ

[
|gli − gl+1

i |
]∥∥∥

q/2

ζ2
≤
√

2
∑
i∈Il

∥∥∥Eξ

[(
gli − gl+1

i

)2]∥∥∥
q/2

+ 2
√

3q

√∑
i∈Il

∥∥Eξ

[∣∣gli − gl+1
i

∣∣]∥∥2
q

ζ3
≤
√

2× 2l × 34β22lq + 2
√
3q
√

2l × 9β22lq = 2lβ
(
2
√
17q + 6

√
3q
)
≤ 2l × 19βq,

where “ζ1” is due to (10), in “ζ2” we have used Lemma 5, and in “ζ3” we have used (22) and (23).
Then based on the triangle inequality we get∥∥∥∥∥Eξ

[∣∣∣∣∣
N∑
i=1

gli − gl+1
i

∣∣∣∣∣
]∥∥∥∥∥

q

≤
∑
Il∈Il

∥∥∥∥∥∥Eξ

∣∣∣∣∣∣
∑
i∈Il

gli − gl+1
i

∣∣∣∣∣∣
∥∥∥∥∥∥

q

≤ 2k−l × 2l × 19βq ≤ 38Nβq.

Therefore the r.h.s. of (21) can be bounded as∥∥∥∥∥Eξ

[∣∣∣∣∣
N∑
i=1

(gi − E[gi | Zi, ξ])

∣∣∣∣∣
]∥∥∥∥∥

q

≤
k−1∑
l=0

∥∥∥∥∥Eξ

[∣∣∣∣∣
N∑
i=1

gli − gl+1
i

∣∣∣∣∣
]∥∥∥∥∥

q

≤ 38N⌈log2 N⌉βq. (24)

Based on (24) and the triangle inequality we have∥∥∥∥∥Eξ

[∣∣∣∣∣
N∑
i=1

gi

∣∣∣∣∣
]∥∥∥∥∥

q

≤

∥∥∥∥∥Eξ

[∣∣∣∣∣
N∑
i=1

E[gi | Zi, ξ]

∣∣∣∣∣
]∥∥∥∥∥

q

+ 38N⌈log2 N⌉βq. (25)

Let fi(Zi, ξ) = E[gi(S, ξ) | Zi, ξ]. We must have |fi| ≤ M and E[fi(Zi, ξ) | ξ] = 0 as
|E[gi | Zi, ξ]| ≤ M and E[gi | S \ Zi, ξ] = 0. Then it follows from Lemma 9 that the first
term at the right hand side of (25) can be bounded as∥∥∥∥∥Eξ

[∣∣∣∣∣
N∑
i=1

E[gi | Zi, ξ]

∣∣∣∣∣
]∥∥∥∥∥

q

=

∥∥∥∥∥Eξ

[∣∣∣∣∣
N∑
i=1

fi(Zi, ξ)

∣∣∣∣∣
]∥∥∥∥∥

q

≤ M
√
2N + 2M

√
3Nq ≤ 3M

√
3Nq.

(26)

Finally, the desired bound is obtained by plugging (26) into (25).
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A.4 Proof of Theorem 1

Proof. Let us consider gi(S, ξ) = EZ′
i

[
R(A(S(i), ξ))− ℓ(A(S(i), ξ);Zi)

]
. Then the Lq-norm of

the on-average generalization gap can be upper bounded by the triangle inequality as

∥Eξ [|R(A(S, ξ))−RS(A(S, ξ))|]∥q =
1

N

∥∥∥∥∥Eξ

[∣∣∣∣∣
N∑
i=1

R(A(S, ξ))− ℓ(A(S, ξ);Zi)

∣∣∣∣∣
]∥∥∥∥∥

q

≤ 1

N


∥∥∥∥∥E
[∣∣∣∣∣

N∑
i=1

gi(S, ξ)

∣∣∣∣∣
]∥∥∥∥∥

q︸ ︷︷ ︸
T1

+

∥∥∥∥∥E
[∣∣∣∣∣

N∑
i=1

(R(A(S, ξ))− ℓ(A(S, ξ);Zi)− gi(S, ξ))

∣∣∣∣∣
]∥∥∥∥∥

q︸ ︷︷ ︸
T2

 .

(27)

We next respectively upper bound the two terms T1 and T2 in (27). To bound the term T1, by
definition it holds that E[gi(S, ξ) | S \ Zi, ξ] = 0. Based on the triangle inequality and Jensen’s
inequality we have that for any i ∈ [N ],

|E[gi(S, ξ) | Zi, ξ]| ≤ E[ℓ(A(S(i), ξ);Z) | ξ] + E[ℓ(A(S(i), ξ);Zi) | Zi, ξ] ≤ 2M.

Further we show that gi satisfies the L2-uniform bounded difference property with respect to all
variables in S except Zi. Indeed, for each j ̸= i and conditioned on S,Z ′

j it can be verified that

∥∥∥gi(S, ξ)− gi(S
(j), ξ)

∥∥∥
2
(S,Z ′

j)

≤
∥∥∥EZ′

i

[
R(A(S(i), ξ))−R(A((S(i))(j), ξ))

]∥∥∥
2
(S,Z ′

j)

+
∥∥∥EZ′

i

[
ℓ(A(S(i), ξ);Zi)− ℓ(A((S(i))(j), ξ);Zi)

]∥∥∥
2
(S,Z ′

j)

=
∥∥∥EZ′

i
EZ

[
ℓ(A(S(i), ξ);Z)− ℓ(A((S(i))(j), ξ);Z)

]∥∥∥
2
(S,Z ′

j)

+
∥∥∥EZ′

i

[
ℓ(A(S(i), ξ);Zi)− ℓ(A((S(i))(j), ξ);Zi)

]∥∥∥
2
(S,Z ′

j)

≤ sup
Z′

i,Z

∥∥∥ℓ(A(S(i), ξ);Z)− ℓ(A((S(i))(j), ξ);Z)
∥∥∥
2
(S,Z ′

i, Z
′
j , Z)

+ sup
Z′

i

∥∥∥ℓ(A(S(i), ξ);Zi)− ℓ(A((S(i))(j), ξ);Zi)
∥∥∥
2
(S,Z ′

i, Z
′
j)

≤ sup
S(i),Z′

j ,Z

∥∥∥ℓ(A(S(i), ξ);Z)− ℓ(A((S(i))(j), ξ);Z)
∥∥∥
2
(S(i), Z ′

j , Z)

+ sup
S(i),Z′

j ,Zi

∥∥∥ℓ(A(S(i), ξ);Zi)− ℓ(A((S(i))(j), ξ);Zi)
∥∥∥
2
(S(i), Z ′

j , Zi)

≤2γL2,N ,

where we have frequently used the fact that expectation is always no larger than supreme, and in the
last equality we have used the L2-uniform stability assumption on the algorithm A. Therefore, {gi}
satisfy the conditions of Proposition 2 and thus

T1 =

∥∥∥∥∥Eξ

[∣∣∣∣∣
N∑
i=1

gi(S, ξ)

∣∣∣∣∣
]∥∥∥∥∥

q

≤ 6M
√

3Nq + 76N⌈log2 N⌉γL2,Nq. (28)
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Now we proceed to bound the second term T2. It can be verified that

T2 ≤

∥∥∥∥∥Eξ

[∣∣∣∣∣
N∑
i=1

EZ′
i

[
R(A(S, ξ))−R(A(S(i), ξ))

]∣∣∣∣∣
]∥∥∥∥∥

q

+

∥∥∥∥∥Eξ

[∣∣∣∣∣
N∑
i=1

EZ′
i

[
ℓ(A(S, ξ);Zi)− ℓ(A(S(i), ξ);Zi)

]∣∣∣∣∣
]∥∥∥∥∥

q

=

∥∥∥∥∥Eξ

[∣∣∣∣∣
N∑
i=1

EZ′
i
EZ

[
ℓ(A(S, ξ);Z)− ℓ(A(S(i), ξ);Z)

]∣∣∣∣∣
]∥∥∥∥∥

q

+

∥∥∥∥∥Eξ

[∣∣∣∣∣
N∑
i=1

EZ′
i

[
ℓ(A(S, ξ);Zi)− ℓ(A(S(i), ξ);Zi)

]∣∣∣∣∣
]∥∥∥∥∥

q

≤2

N∑
i=1

(
sup

S,Z′
i,Z

Eξ

[∣∣∣ℓ(A(S, ξ);Z)− ℓ(A(S(i), ξ);Z)
∣∣∣])

≤2NγL2,N ,

(29)

where in the last equality we have used the L2-uniform stability assumption. Plugging bounds (28)
and (29) into (27) and preserving leading terms yields

∥Eξ [|R(A(S, ξ))−RS(A(S, ξ))|]∥q ≤ 6M

√
3q

N
+ 77⌈log2 N⌉γL2,Nq.

According to the equivalence of tails and moments as shown in Lemma 7, the above moment bound
immediately implies the desired exponential generalization bound.

B Proofs for Section 3

In this section, we present the technical proofs for the main results stated in Section 3.

B.1 Proof of Theorem 2

We first establish the following intermediate result that captures the effects of bagging on randomized
algorithms: it basically tells that with K ≳ log( 1δ ), at least one of the solutions generated by bagging
generalizes well with high probability.
Lemma 11. Suppose that a randomized learning algorithm A : ZN × R 7→ W has L2-uniform
stability with parameter γL2,N . Assume that the loss function ℓ is ranged in [0,M ]. Then for any
δ ∈ (0, 1) and K ≥ 2 log(2/δ), with probability at least 1 − δ over the randomness of S1 and
{ξk}k∈[K], the sequence {A(S1, ξk)}k∈[K] generated by Algorithm 1 satisfies

min
k∈[K]

|R(A(S1, ξk))−RS1
(A(S1, ξk))| ≲ γL2,(1−µ)N log(N) log

(
1

δ

)
+M

√
log (1/δ)

(1− µ)N
.

Proof. For any data set S, let us define h(S) := Eξ [|R(A(S, ξ))−RS(A(S, ξ))|]. From Theorem 1
we have that with probability at least 1− δ over S1,

h(S1) ≲ γL2,(1−µ)N log((1− µ)N) log

(
1

δ

)
+M

√
log (1/δ)

(1− µ)N
. (30)

Let us now consider the following defined events:

E : min
k∈[K]

|R(A(S1, ξk))−RS1(A(S1, ξk))| ≲ γL2,(1−µ)N log((1− µ)N) log

(
1

δ

)
+M

√
log (1/δ)

(1− µ)N
,

E0 : h(S1) ≲ γL2,(1−µ)N log(N) log

(
1

δ

)
+M

√
log (1/δ)

(1− µ)N
,

Ek : |R(A(S1, ξk))−RS1(A(S1, ξk))| ≤ 2h(S1), k = 1, ...,K.
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We first show that P
{⋂

k∈[K] Ek
}
≤ δ

2 . To this end, for each k, let us consider the random indication
function g(S1, ξk) := 1{Ek} where 1{C} is the indicator function of the condition C. Then we can
show that

P

{
K⋂

k=1

Ek

}
=E

[
K∏

k=1

g(S1, ξk)

]

=E

[
E

[
K∏

k=1

g(S1, ξk) | S1

]]

=E

[
K∏

k=1

E [g(S1, ξk) | S1]

]

=E

[
K∏

k=1

P {|R(A(S1, ξk))−RS1
(A(S1, ξk))| > 2h(S1)} | S1

]

≤E

[(
1

2

)K

| S1

]
=

(
1

2

)K

≤ δ

2
,

where we have used the independence among {ξk} and S1, Markov inequality and the condition on
K as well. From the high-probability bound (30) we have P

{
E0
}
≤ δ

2 . Combining this bound and
the preceding bound yields

P {E} ≥ P

{(
K⋃

k=1

Ek

)⋂
E0

}
≥ 1− P

{
K⋂

k=1

Ek

}
− P

{
E0
}
≥ 1− δ

2
− δ

2
= 1− δ.

This proves the desired bound.

With Lemma 11 in place, we are ready to prove the main result in Theorem 2.

Proof of Theorem 2. The key idea is to show that the proposed greedy model selection strategy
guarantees that the selected A(S, ξk∗) mimics the generalization behavior of the best performer
among the K candidates. To do so, let us consider the following three events:

E : |R(A(S1, ξk∗))−RS(A(S1, ξk∗))| ≲ γL2,(1−µ)N log(N) log

(
1

δ

)
+

M√
µ(1− µ)

√
log (K/δ)

N
,

E1 : max
k∈[K]

|R(A(S1, ξk))−RS2
(A(S1), ξk)| ≤ M

√
log (2K/δ)

2µN
,

E2 : min
k∈[K]

|R(A(S1, ξk))−RS1
(A(S1, ξk))| ≲ γL2,(1−µ)N log(N) log

(
1

δ

)
+M

√
log (1/δ)

(1− µ)N
.
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We first show that E ⊇ E1 ∩ E2. Indeed, suppose that E1 and E2 simultaneously occur. Consequently
the following inequality can be verified:

|R(A(S1, ξk∗))−RS(A(S1, ξk∗))|
= |R(A(S1, ξk∗))− (1− µ)RS1(A(S1, ξk∗))− µRS2(A(S1, ξk∗))|
≤(1− µ) |R(A(S1, ξk∗))−RS1

(A(S1, ξk∗))|+ µ |R(A(S1, ξk∗))−RS2
(A(S1, ξk∗))|

≤(1− µ) |RS2
(A(S1, ξk∗))−RS1

(A(S1, ξk∗))|+ |R(A(S1, ξk∗))−RS2
(A(S1, ξk∗))|

ζ1
=(1− µ) min

k∈[K]
|RS2

(A(S1, ξk))−RS1
(A(S1, ξk))|+ |R(A(S1, ξk∗))−RS2

(A(S1, ξk∗))|

=(1− µ) min
k∈[K]

|RS2
(A(S1, ξk))−R(A(S1, ξk)) +R(A(S1, ξk))−RS1

(A(S1, ξk))|

+ |R(A(S1, ξk∗))−RS2
(A(S1, ξk∗))|

≤(1− µ) min
k∈[K]

|R(A(S1, ξk))−RS1
(A(S1, ξk))|+ (1− µ) max

k∈[K]
|RS2

(A(S1, ξk))−R(A(S1, ξk))|

+ |R(A(S1, ξk∗))−RS2
(A(S1, ξk∗))|

≤ min
k∈[K]

|R(A(S1, ξk))−RS1
(A(S1, ξk))|+ 2 max

k∈[K]
|RS2

(A(S1, ξk))−R(A(S1, ξk))|

ζ2

≲γL2,(1−µ)N log(N) log

(
1

δ

)
+M

√
log (1/δ)

(1− µ)N
+M

√
log(K/δ)

µN
,

where in “ζ1” we have used the definition of k∗, and “ζ2” follows from E1, E2. After some algebraic
manipulation with leading terms preserved in the above we can see that E occurs.

Next we aim to show that P{E1} ≤ δ
2 . To this end, let us consider the random indication function

g(S, {ξk}) := 1{E1} associated with E1. Then we have that

P
{
E1
}
=E [g(S, {ξk})]
=E [E [g(S, {ξk}) | S1, {ξk}]]

=E

[
P

{
max
k∈[K]

|R(A(S1, ξk))−RS2(A(S1, ξk))| ≥ M

√
log(2K/δ)

2µN

}
| S1, {ξk}

]
ζ1
≤E

[
δ

2
| S1, {ξk}

]
=

δ

2
,

where in “ζ1” we have used Hoeffding’s inequality and union bound, keeping in mind the indepen-
dence among {Ak}, S1 and S2. Further, from Lemma 11 we have P

{
E2
}
≤ δ

2 . Combining this and
the preceding bound yields

P {E} ≥ PS,{Ak} {E1 ∩ E2} ≥ 1− P
{
E1
}
− P

{
E2
}
≥ 1− δ

2
− δ

2
= 1− δ.

The proof is concluded.

C Proofs for Section 4

In this section, we present the technical proofs for the main results stated in Section 4.

C.1 Auxiliary lemmas

We need the following lemma from Hardt et al. (2016) which shows that SGD iteration is non-
expansive for convex and smooth losses.
Lemma 12 (Hardt et al. (2016)). Let f : W 7→ R be a convex and L-smooth function. Then for any
w, w̃ ∈ W and α ≤ 2/L, we have the following bound holds

∥w − α∇f(w)− (w̃ − α∇f(w̃))∥ ≤ ∥w − w̃∥.

The following lemma, which can be proved by induction (see, e.g., Schmidt et al., 2011), will be
used to prove the main results in Section 4.
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Lemma 13. Assume that the nonnegative sequence {uτ}τ≥1 satisfies the following recursion for all
t ≥ 1:

u2
t ≤ St +

t∑
τ=1

ατuτ ,

with {Sτ}τ≥1 an increasing sequence, S0 ≥ u2
0 and ατ ≥ 0 for all τ . Then, the following inequality

holds for all t ≥ 1:

ut ≤
√
St +

t∑
τ=1

ατ .

For analyzing SGD with convex and non-smooth loss functions, we need the following lemma
by Bassily et al. (2020, Lemma 3.1) that quantifies the deviation between the online gradient descent
trajectories.
Lemma 14 (Bassily et al. (2020)). Consider the two sequences {wt}t≥0 and {w̃t}t≥0 generated
according to the following recursions respectively over the convex and G-Lipschitz objectives {ft}t≥0

and {f̃t}t≥0 from w0 = w̃0:

wt =ΠW (wt−1 − ηt∇ft−1(wt−1))

w̃t =ΠW

(
w̃t−1 − ηt∇f̃t−1(w̃t−1)

)
.

Let t0 := inf{t : ft ̸= f ′
t} and βt := 1{ft ̸=f ′

t}. Then for any T ≥ 1,

∥wT − w̃T ∥ ≤ 2G

√√√√T−1∑
t=t0

η2t + 4G

T−1∑
t=t0+1

ηtβt.

C.2 Proof of Lemma 1

Here we prove Lemma 1 that establishes the L2-uniform stability of ASGD-w with convex and smooth
loss functions.

Proof. Given any pair of data sets S, S̃ that differ in a single element, let us define the sequences
{wt}t∈[T ] and {w̃t}t∈[T ] that are respectively generated over S and S̃ via ASGD-w via sample path
ξ = {it}t∈[T ]. Note by assumption that w0 = w̃0. We distinguish the following two complementary
cases.

Case I: Zit = Z̃it . In this case, by invoking Lemma 12 we get

∥wt − w̃t∥2 =∥ΠW(wt−1 − ηt∇wℓ(wt−1;Zit))−ΠW(w̃t−1 − ηt∇wℓ(w̃t−1; Z̃it))∥2

≤∥wt−1 − ηt∇wℓ(wt−1;Zit)− (w̃t−1 − ηt∇wℓ(w̃t−1;Zit))∥2

≤∥wt−1 − w̃t−1∥2.
(31)

Case II: Zit ̸= Z̃it . In this case, we have

∥wt − w̃t∥2 =∥ΠW(wt−1 − ηt∇wℓ(wt−1;Zit))−ΠW(w̃t−1 − ηt∇wℓ(w̃t−1; Z̃it))∥2

≤∥wt−1 − ηt∇wℓ(wt−1;Zit)− (w̃t−1 − ηt∇wℓ(w̃t−1; Z̃it))∥2

≤
(
∥wt−1 − w̃t−1∥+ ηt(∥∇wℓ(wt−1;Zit)∥+ ∥∇wℓ(w̃t−1; Z̃it)∥)

)2
≤ (∥wt−1 − w̃t−1∥+ 2Gηt)

2

=∥wt−1 − w̃t−1∥2 + 4Gηt∥wt−1 − w̃t−1∥+ 4G2η2t ,

(32)

where in the last but inequality we have used ℓ(·; ·) is G-Lipschitz with respect to its first argument.

Let βt = βt(S, S̃, it) := 1{Zit ̸=Z̃it} be the random indication function associated with the event

Zit ̸= Z̃it . Based on the recursion forms (31) and (32) and the condition w0 = w̃0 we can show that
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for all t ≥ 1,

∥wt − w̃t∥2 ≤
t∑

τ=1

4Gβτητ∥wτ−1 − w̃τ−1∥+
t∑

τ=1

4G2βτη
2
τ .

Then applying Lemma 13 with simple algebraic manipulation yields

∥wt − w̃t∥2 ≤ 8G2

 t∑
τ=1

βτη
2
τ + 4

(
t∑

τ=1

βτητ

)2
 .

Since by assumption S and S̃ differ only in a single element, under the scheme of uniform sampling
without replacement, we can see that βt ∼ Bernoulli(1/N) and {βt}t∈[T ] is an i.i.d. sequence of
Bernoulli random variables. It follows that

E
[
∥wt − w̃t∥2

]
≤8G2

 t∑
τ=1

E [βτ ] η
2
τ + 4E

( t∑
τ=1

βτητ

)2


=8G2

 t∑
τ=1

E
[
βτ + 4β2

τ

]
η2τ + 4

∑
τ ̸=τ ′

1E [βτβτ ′ ] ητητ ′


=8G2

 5

N

t∑
τ=1

η2τ +
4

N2

(
t∑

τ=1

ητ

)2
 ≤ 40G2

 1

N

T∑
τ=1

η2τ +
1

N2

(
T∑

τ=1

ητ

)2
 ,

where we have used E[βt] = E[β2
t ] =

1
N . The convexity of squared Euclidean norm leads to

E
[
∥w̄T − ˜̄wT ∥2

]
≤
∑T

t=1 E
[
∥wt − w̃t∥2

]
T

≤ 40G2

 1

N

T∑
t=1

η2t +
1

N2

(
T∑

t=1

ηt

)2
 .

For each i ∈ [N ], let
{
w

(i)
t

}
t∈[T ]

be the sequence generated over S(i) by ASGD-w. Since the above

holds for any S
.
= S̃, we must have

sup
S,Z′

i

Eξ

[∥∥∥w̄T − w̄
(i)
T

∥∥∥2] ≤ 40G2

 1

N

T∑
t=1

η2t +
1

N2

(
T∑

t=1

ηt

)2
 .

Finally, since the loss is G-Lipschitz, it follows from the above that for all i ∈ [N ],

sup
S,Z′

i,Z

Eξ

[(
ℓ(w̄T ;Z)− ℓ(w̄

(i)
T ;Z)

)2]
≤ 40G4

 1

N

T∑
t=1

η2t +
1

N2

(
T∑

t=1

ηt

)2
 .

This proves the desired L2-uniform stability of algorithm.

C.3 Proof of Lemma 2

In this subsection we prove Lemma 2 that establishes the L2-uniform stability of ASGD-w with convex
and non-smooth loss functions.

Proof. The proof arguments follow closely those of Lemma 1. Here we reproduce the proof for the
sake of completeness. Let us define the sequences {wt}t∈[T ] and {w̃t}t∈[T ] that are respectively
generated over S and S̃ by ASGD-w via sample path ξ = {it}t∈[T ]. Suppose that S .

= S̃ and consider
a hitting time variable t0 = inf{t : Zit ̸= Z̃it}. Let βt = βt(S, S̃, it) := 1{Zit ̸=Z̃it} be the

random indication function associated with event Zit ̸= Z̃it . Then {βt}t∈[T ] is an i.i.d. sequence of
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Bernoulli(1/N) random variables. Conditioned on t0, it has been shown by Bassily et al. (2020)
(see Lemma 14) that

∥wt − w̃t∥ ≤ 2G

√√√√ t∑
τ=t0

η2τ + 4G

t∑
τ=t0+1

βτητ ≤ 2G

√√√√ t∑
τ=1

η2τ + 4G

t∑
τ=1

βτητ . (33)

Given S and S̃, based on the square of the bound (33) we can show that

E
[
∥wt − w̃t∥2

]
≤E

8G2
t∑

τ=1

η2τ + 32G2

(
t∑

τ=1

βτητ

)2


=8G2
t∑

τ=1

η2τ + 32G2E

 t∑
τ=1

β2
τη

2
τ +

∑
τ ̸=τ ′

βτβτ ′ητητ ′


=8G2

t∑
τ=1

η2τ + 32G2

 1

N

t∑
τ=1

η2τ +
1

N2

∑
τ ̸=τ ′

ητητ ′


≤40G2

t∑
τ=1

η2τ +
32G2

N2

(
t∑

τ=1

ητ

)2

,

where we have used E[βt] = E[β2
t ] =

1
N . It follows directly from the convexity of squared loss that

E
[
∥w̄T − ˜̄wT ∥2

]
≤ 40G2

T∑
t=1

η2t +
32G2

N2

(
T∑

t=1

ηt

)2

.

Since the above holds for any pair of S .
= S̃, we have that for all i ∈ [N ],

sup
S,Z′

i

Eξ

[∥∥∥w̄T − w̄
(i)
T

∥∥∥2] ≤ 40G2
T∑

t=1

η2t +
32G2

N2

(
T∑

t=1

ηt

)2

,

where {w(i)
t }t∈[T ] is generated over S(i) by ASGD-w. Finally, since the loss is G-Lipschitz, it follows

from the above bound that for all i ∈ [N ],

sup
S,Z′

i,Z

Eξ

[(
ℓ(w̄T ;Z)− ℓ(w̄

(i)
T ;Z)

)2]
≤ 40G4

T∑
t=1

η2t +
32G4

N2

(
T∑

t=1

ηt

)2

.

This proves the desired L2-uniform stability of algorithm.

C.4 Proof of Lemma 3

In this subsection we prove Lemma 3 which establishes the L2-uniform stability of ASGD-w with
non-convex and smooth loss functions.

Proof. Let us define the sequences {wt}t∈[T ] and {w̃t}t∈[T ] that are respectively generated over
S and S̃ by ASGD-w via sample path ξ = {it}t∈[T ]. Suppose that S .

= S̃. Let us consider ∆t :=
E [∥wt − w̃t∥]. Then based on the arguments of Hardt et al. (2016, Theorem 3.8) we know that
with probability 1 − 1

N over it, ∥wt − w̃t∥ ≤ (1 + ηtL)∥wt−1 − w̃t−1∥, and ∥wt − w̃t∥ ≤
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∥wt−1 − w̃t−1∥+ 2Gηt with probability 1
N . Therefore we have

∆t ≤
(
1− 1

N

)
(1 + ηtL)∆t−1 +

1

N
(∆t−1 + 2Gηt)

=

((
1− 1

N

)
(1 + ηtL) +

1

N

)
∆t−1 +

2Gηt
N

=

(
1 +

(
1− 1

N

)
ηtL

)
∆t−1 +

2Gηt
N

≤ exp

((
1− 1

N

)
ηtL

)
∆t−1 +

2Gηt
N

≤ exp (ηtL)∆t−1 +
2Gηt
N

,

where we have used 1 + x ≤ exp(x). Then we can unwind the above recursion form to obtain that
for all t ≥ 1,

∆t ≤
t∑

τ=1

t∏
i=τ+1

exp (ηiL)
2Gητ
N

=
2G

N

t∑
τ=1

exp

(
L

t∑
i=τ+1

ηi

)
ητ , (34)

where we have used ∆0 = 0. Now we consider Γt := E
[
∥wt − w̃t∥2

]
. Then we can verify that with

probability 1− 1
N over it, ∥wt − w̃t∥2 ≤ (1 + ηtL)

2∥wt−1 − w̃t−1∥2, and with probability 1
N ,

∥wt − w̃t∥2 ≤ (∥wt−1 − w̃t−1∥+ 2Gηt)
2 = ∥wt−1 − w̃t−1∥2 + 4Gηt∥wt−1 − w̃t−1∥+ 4G2η2t .

Therefore we have

Γt ≤
(
1− 1

N

)
(1 + ηtL)

2Γt−1 +
1

N

(
Γt−1 + 4Gηt∆t−1 + 4G2η2t

)

≤
((

1− 1

N

)
(1 + ηtL)

2 +
1

N

)
Γt−1 +

4G2

N

η2t + 2ηt

t−1∑
τ=1

exp

(
L

t−1∑
i=τ+1

ηi

)
ητ︸ ︷︷ ︸

ut


=

(
1 +

(
1− 1

N

)
(2ηtL+ η2tL

2)

)
Γt−1 +

4G2ut

N

≤ exp

((
1− 1

N

)
(2ηtL+ η2tL

2)

)
Γt−1 +

4G2ut

N

≤ exp
(
2ηtL+ η2tL

2
)
Γt−1 +

4G2ut

N
,

where in the second inequality we have used the bound (34) on ∆t. Recall that Γ0 = 0. Then we can
unwind the above recursion form to obtain

Γt ≤
4G2

N

t∑
τ=1

{
t∏

i=τ+1

exp
(
2ηiL+ η2iL

2
)}

uτ ≤ 4G2

N

t∑
τ=1

exp

(
3L

t∑
i=τ+1

ηi

)
uτ ,

where we have used ηt ≤ 1/L. It follows immediately from the convexity that

E
[
∥w̄T − ˜̄wT ∥2

]
≤
∑T

t=1 E
[
∥wt − w̃t∥2

]
T

≤ 4G2

N

T∑
t=1

exp

(
3L

T∑
τ=t+1

ητ

)
ut.

Since the above holds for any S
.
= S̃, we have that for all i ∈ [N ],

sup
S,Z′

i

Eξ

[∥∥∥w̄T − w̄
(i)
T

∥∥∥2] ≤ 4G2

N

T∑
t=1

exp

(
3L

T∑
τ=t+1

ητ

)
ut,
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Algorithm 3: ASGD-w/o: SGD under Without-Replacement Sampling
Input :Data set S = {Zi}i∈[N ], step-sizes {ηt}t≥1, #iterations T , initialization w0.
Output :w̄T = 1

T

∑
t∈[T ] wt.

for t = 1, 2, ..., T do
Uniformly randomly sample an index it ∈ [N ] without replacement;
Compute wt = ΠW (wt−1 − ηt∇wℓ(wt−1;Zit)).

end

where {w(i)
t }t∈[T ] is generated over S(i) by ASGD-w. Finally, since the loss is G-Lipschitz, it follows

from the above that for all i ∈ [N ],

sup
S,Z′

i,Z

Eξ

[(
ℓ(w̄T ;Z)− ℓ(w̄

(i)
T ;Z)

)2]
≤ 4G4

N

T∑
t=1

exp

(
3L

T∑
τ=t+1

ητ

)
ut.

This proves the desired L2-uniform stability of algorithm.

D Augmented Results for SGD under Without-Replacement Sampling

In this section, we further consider applying our main results in Theorem 2 to the variant of SGD
under without-replacement sampling (ASGD-w/o), as is outlined in Algorithm 3. For the sake of
simplicity and readability, we only consider single-epoch processing with T ≤ N . The extensions
of our analysis to multi-epoch processing, i.e., T ≤ rN for some integer r ≥ 1 are more or less
straightforward and thus the details are omitted.

D.1 Results for convex and smooth loss

We start by considering the regime where the loss function is convex and smooth. We need the
following lemma on the L2-uniform stability of ASGD-w/o which can be proved based on the result
from Bassily et al. (2020, Lemma 3.1).
Lemma 15. Suppose that the loss function ℓ(·; ·) is convex, G-Lipschitz and L-smooth with respect
to its first argument. Assume that ηt ≤ 2/L for all t ≥ 1. Consider T ≤ N . Then ASGD-w/o has
L2-uniform stability with parameter

γL2,N = 2G2

√√√√ 1

N

T∑
t=1

η2t .

Proof. For any fixed pair of data sets S, S̃ that differ in a single element, let us define the sequences
{wt}t∈[T ] and {w̃t}t∈[T ] that are respectively generated over S and S̃ by ASGD-w/o via sample path
ξ = {it}t∈[T ]. Recall that T ≤ N . Let us define a stopping time variable t0 such that Zξt0

̸= Z̃ξt0
.

Since S
.
= S̃, the uniform randomness of it implies that

P (t0 = j) =
1

N
, j ∈ [N ].

In the proof of Corollary 1 we have already shown that ∥wt − w̃t∥2 ≤ ∥wt−1 − w̃t−1∥2 if Zit = Z̃it
and ∥wt − w̃t∥2 ≤ ∥wt−1 − w̃t−1∥2 + 4Gηt∥wt−1 − w̃t−1∥ + 4G2η2t otherwise. Therefore, the
without-replacement sampling implies that the following bound holds for any given t0 ≤ t ≤ T :

∥wt − w̃t∥2 ≤ 4G2η2t0 ,

and ∥wt − w̃t∥2 = 0 for 0 ≤ t < t0. Then based on the law of total expectation we can show that

E
[
∥wt − w̃t∥2

]
≤ 4G2

N

t∑
t0=1

η2t0 ≤ 4G2

N

T∑
t=1

η2t .
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The convexity of squared Euclidean norm leads to

E
[
∥w̄T − ˜̄wT ∥2

]
≤
∑T

t=1 E
[
∥wt − w̃t∥2

]
T

≤ 4G2

N

T∑
t=1

η2t .

Since the above holds for any S
.
= S̃, we have that for all i ∈ [N ],

sup
S,Z′

i

Eξ

[∥∥∥w̄T − w̄
(i)
T

∥∥∥2] ≤ 4G2

N

T∑
t=1

η2t ,

where {w(i)
t }t∈[T ] is generated over S(i) by ASGD-w/o. Finally, since the loss is G-Lipschitz, it follows

from the above bound that for all i ∈ [N ],

sup
S,Z′

i,Z

Eξ

[(
ℓ(w̄T ;Z)− ℓ(w̄

(i)
T ;Z)

)2]
≤ 4G4

N

T∑
t=1

η2t .

This proves the desired L2-uniform stability of algorithm.

The following result is a direct consequence of Theorem 2 when invoking Algorithm 1 to ASGD-w/o
with convex and smooth loss.

Corollary 4. Suppose that the loss function ℓ(·; ·) ∈ [0,M ] is convex, G-Lipschitz and L-smooth
with respect to its first argument. Consider Algorithm 1 specified to ASGD-w/o with T = N and
learning rate ηt ≤ 2/L for all t ≥ 1. Then for any δ ∈ (0, 1) and K ≥ 2 log(2δ ), with probability
at least 1− δ over the randomness of S and {ξ}k∈[K], the generalization bound of Algorithm 1 is
upper bounded as

|R(ASGD-w/o(S1, ξk∗))−RS(ASGD-w/o(S1, ξk∗))|

≲G2 log(N) log

(
1

δ

)√√√√ 1

(1− µ)N

N∑
t=1

η2t +
M√

µ(1− µ)

√
log(K/δ)

N
.

Proof. For the considered convex and smooth losses, from Lemma 15 we know that ASGD-w/o with

T = N iterations has L2-uniform stability with parameter γL2,N = 2G2
√

1
N

∑N
t=1 η

2
t . Then the

generalization error bound follows immediately from Theorem 2.

Remark 12. Specially for constant learning rates ηt ≡ η ≍ 1√
N

and K ≍ log
(
1
δ

)
, Corollary 4

admits a high-probability generalization bound of order O
(√ log(1/δ)

N + log(N) log(1/δ)√
N

)
. For time

varying learning rates ηt ≍ 1√
t
, the generalization bound scales as O

( log(N) log(1/δ)√
N

+
√

log(1/δ)
N

)
.

Further assume that W is bounded with diameter D. Consider the constant learning rate ηt ≡
min{ 2

L ,
D

G
√
N
}. Then the following in-expectation optimization error bound of ASGD-w/o with convex

and smooth loss functions is known (Nagaraj et al., 2019, Theorem 3):

Eξ

[
RS(w̄T )− min

w∈W
RS(w)

]
≲

D2L

N
+

GD√
N

.

Invoking generic bound (14) combined with Lemma 15 and the above sub-optimality bound yields
the following excess risk bound of (modified) Algorithm 1:

R(ASGD-w/o(S1, ξk∗))−R∗ ≲G2 log(N) log

(
1

δ

)√√√√ 1

(1− µ)N

N∑
t=1

η2t +
M√

µ(1− µ)

√
log(K/δ)

N

+
GDK√
(1− µ)N

+
D2L

(1− µ)N
.
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D.2 Results for convex and non-smooth loss

We now turn to study the case of convex and non-smooth losses. The following lemma is about the
L2-uniform stability of ASGD-w/o in this case.
Lemma 16. Suppose that the loss function ℓ(·; ·) is convex and G-Lipschitz with respect to its first
argument. Consider T ≤ N . Then ASGD-w/o has L2-uniform stability with parameter

γL2,N = 2G2

√√√√ 1

N

T∑
t0=1

T∑
t=t0

η2t .

Proof. The proof arguments are similar to those of Lemma 15. Here we reproduce the proof for the
sake of completeness. For any fixed pair of data sets S, S̃ that differ in a single element, let us define
the sequences {wt}t∈[T ] and {w̃t}t∈[T ] that are respectively generated over S and S̃ by ASGD-w/o via
sample path ξ = {it}t∈[T ]. Recall that T ≤ N . Let us define a stopping time variable t0 such that
Zξt0

̸= z̃ξt0 . Since S
.
= S̃, the uniform randomness of it and the without-replacement sampling

strategy yield

P (t0 = j) =
1

N
, j ∈ [N ].

For any t0 ≤ t ≤ T , under without-replacement sampling, it follows from Lemma 14 that

∥wt − w̃t∥2 ≤ 4G2
t∑

τ=t0

η2τ .

We use the convention
∑t

τ=t0
η2τ = 0 for 0 ≤ t < t0. Then according to the law of total expectation

we must have

E
[
∥wt − w̃t∥2

]
≤ 4G2

N

t∑
t0=1

t∑
τ=t0

η2τ ≤ 4G2

N

T∑
t0=1

T∑
τ=t0

η2τ .

The convexity of squared Euclidean norm leads to

E
[
∥w̄T − ˜̄wT ∥2

]
≤
∑T

t=1 E
[
∥wt − w̃t∥2

]
T

≤ 4G2

N

T∑
t0=1

T∑
t=t0

η2t .

Since the above holds for any S
.
= S̃, the following bound holds for all i ∈ [N ]:

sup
S,Z′

i

Eξ

[∥∥∥w̄T − w̄
(i)
T

∥∥∥2] ≤ 4G2

N

T∑
t0=1

T∑
t=t0

η2t ,

where {w(i)
t }t∈[T ] is generated over S(i) by ASGD-w/o. Finally, since the loss is G-Lipschitz, it follows

from the above bound that for all i ∈ [N ],

sup
S,Z′

i,Z

Eξ

[(
ℓ(w̄T ;Z)− ℓ(w̄

(i)
T ;Z)

)2]
≤ 4G4

N

T∑
t0=1

T∑
t=t0

η2t .

This proves the desired L2-uniform stability of algorithm.

With the above lemma in hand, we can establish the following result as a direct consequence of
Theorem 2 when invoking Algorithm 1 to ASGD-w/o with convex and non-smooth losses.
Corollary 5. Suppose that the loss function ℓ(·; ·) is convex and G-Lipschitz with respect to its
first argument, and it is bounded in the interval [0,M ]. Consider Algorithm 1 specified to ASGD-w/o
with T = N . Then for any δ ∈ (0, 1) and K ≥ 2 log(2δ ), with probability at least 1 − δ over the
randomness of S and {ξk}k∈[K], the output of Algorithm 1 satisfies

|R(ASGD-w/o(S1, ξk∗))−RS(ASGD-w/o(S1, ξk∗))|

≲G2 log(N) log

(
1

δ

)√√√√ 1

(1− µ)N

N∑
t0=1

N∑
t=t0

η2t +
M√

µ(1− µ)

√
log(K/δ)

N
.
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Proof. For the considered convex and Lipschitz loss functions, from Lemma 16 we know that

ASGD-w/o with T = N iterations has L2-uniform stability by γL2,N = 2G2
√

1
N

∑N
t0=1

∑N
t=t0

η2t .
The results then follow immediately via invoking Theorem 2 to the considered setting.

Remark 13. Specially for constant learning rates ηt ≡ η and setting K ≍ log
(
1
δ

)
, Corollary 5

admits a high-probability generalization bound of scale O
(
η
√
N +

√
log(1/δ)

N

)
. For time decaying

learning rates ηt ≍ 1
t , the generalization bound scales as O

(√ log(N)
N +

√
log(1/δ)

N

)
.

Regarding the excess risk bound, under the conditions of Corollary 5 and K ≍ log
(
1
δ

)
, the risk

bound (14) combined with Lemma 16 yields the following exponential risk bound of (modified)
Algorithm 1:

R(ASGD-w/o(S1, ξk∗))−R∗

≲∆opt +G2 log(N) log

(
1

δ

)√√√√ 1

(1− µ)N

N∑
t0=1

N∑
t=t0

η2t +
M√

µ(1− µ)

√
log(1/δ)

N
.

In the special case of bounded-norm generalized linear models, Shamir (2016) established an in-
expectation empirical risk sub-optimality bound ∆opt ≲ 1√

N
under suitable learning rates. For

generic convex and non-smooth losses, however, it still remains unclear to us if similar sub-optimality
bounds are available for SGD under without-replacement sampling.

D.3 Results for non-convex and smooth loss

Finally, we study the performance of Algorithm 1 for ASGD-w/o on smooth but not necessarily convex
loss functions. We first establish the following lemma on the L2-uniform stability of ASGD-w/o in the
considered non-convex problem setting.
Lemma 17. Suppose that the loss function ℓ(·; ·) is G-Lipschitz and L-smooth with respect to its first
argument. Consider T ≤ N . Then ASGD-w/o has L2-uniform stability with parameter

γL2,N = 2G2

√√√√ 1

N

T∑
t=1

exp

(
2L

T∑
τ=t+1

ητ

)
η2t .

Proof. Let us define the sequences {wt}t∈[T ] and {w̃t}t∈[T ] that are respectively generated over S
and S̃ by ASGD-w/o via sample path ξ = {it}t∈[T ]. Suppose that S .

= S̃. Recall that T ≤ N . Let us
define a stopping time variable t0 such that Zξt0

̸= Z̃ξt0
. Since S

.
= S̃, the without-replacement

sampling implies that

P (t0 = j) =
1

N
, j ∈ [N ].

In view of Lemma 12 we know that ∥wt − w̃t∥ ≤ (1 + ηtL)∥wt−1 − w̃t−1∥ if Zit = Z ′
it

, and
∥wt0 − w̃t0∥ ≤ 2Gηt0 otherwise due to the assumption that the loss is G-Lipschitz. Therefore, it can
be directly verified that the following holds for any t0 ≤ t ≤ T :

∥wt − w̃t∥2 ≤ 4G2
t∏

τ=t0+1

(1 + ητL)
2η2t0 ,

where we have used
∏t

τ=t0+1(1 + ητL)
2 = 1 for t = t0. For t < t0, it is trivial that ∥wt − w̃t∥ = 0.

Therefore the law of total expectation yields

E
[
∥wt − w̃t∥2

]
≤4G2

N

t∑
t0=1

t∏
τ=t0+1

(1 + ητL)
2η2t0

≤4G2

N

t∑
t0=1

t∏
τ=t0+1

exp (2ητL) η
2
t0

≤4G2

N

T∑
t0=1

exp

(
2L

T∑
τ=t0+1

ητ

)
η2t0 ,
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where we have used 1 + x ≤ exp(x). The convexity of Euclidean norm leads to

E [∥w̄T − ˜̄wT ∥] ≤
4G2

N

T∑
t0=1

exp

(
2L

T∑
τ=t0+1

ητ

)
η2t0 .

Since the above holds for any S
.
= S̃, the following bound holds for all i ∈ [N ]:

sup
S,Z′

i

Eξ

[∥∥∥w̄T − w̄
(i)
T

∥∥∥2] ≤ 4G2

N

T∑
t0=1

exp

(
2L

T∑
τ=t0+1

ητ

)
η2t0 ,

where {w(i)
t }t∈[T ] is generated over S(i) by ASGD-w/o. Finally, since the loss is G-Lipschitz, it follows

from the above bound that for all i ∈ [N ],

sup
S,Z′

i,Z

Eξ

[(
ℓ(w̄T ;Z)− ℓ(w̄

(i)
T ;Z)

)2]
≤ 4G4

N

T∑
t0=1

exp

(
2L

T∑
τ=t0+1

ητ

)
η2t0 .

This proves the desired L2-uniform stability of algorithm.

With Lemma 17 in place, we can readily derive the following result as a direct application of
Theorem 2 to ASGD-w/o with Lipschitz and smooth losses.
Corollary 6. Suppose that the loss function ℓ(·; ·) is G-Lipschitz and L-smooth with respect to its
first argument, and it is bounded in the interval [0,M ]. Consider Algorithm 1 specified to ASGD-w/o
with T = N . Then for any δ ∈ (0, 1) and K ≥ 2 log(2δ ), with probability at least 1 − δ over the
randomness of S and {ξk}k∈[K], the output of Algorithm 1 satisfies

|R(ASGD-w/o(S1, ξk∗))−RS(ASGD-w/o(S1, ξk∗))|

≲G2 log(N) log

(
1

δ

)√√√√ 1

(1− µ)N

N∑
t=1

exp

(
L

N∑
τ=t+1

ητ

)
η2t +

M√
µ(1− µ)

√
log(K/δ)

N
.

Proof. For the considered smooth and Lipschitz loss functions, from Lemma 17 we know that
ASGD-w/o with T = N rounds of iteration has L2-uniform stability with parameter γL2,N =

2G2

√
1
N

∑T
t=1 exp

(
2L
∑T

τ=t+1 ητ

)
η2t . The desired results then follow immediately via invoking

Theorem 2 to the considered problem regime.

Remark 14. For K ≍ log
(
1
δ

)
and the choice of constant learning rates ηt ≡ 1

LN , Corollary 6

admits high-probability generalization bounds of scale O
( log(N) log(1/δ)

N +
√

log(1/δ)
N

)
. For the

choice of time decaying learning rates ηt = 1
Lνt with arbitrary ν > 2, it can be verified that the

corresponding generalization bound is of scale O
( log(N) log(1/δ)

νN1/2−1/ν +
√

log(1/δ)
N

)
.

E Some Additional Related Work

The idea of using stability of a learning algorithm, namely the sensitivity of estimated model to the
changes in training data, for generalization performance analysis dates back to the seventies (Vapnik
and Chervonenkis, 1974; Rogers and Wagner, 1978; Devroye and Wagner, 1979). For deterministic
learning algorithms, algorithmic stability has been extensively studied with a bunch of applications
to establishing strong generalization and excess risk bounds for stable learning models like k-NN
and regularized ERMs (Bousquet and Elisseeff, 2002; Zhang, 2003; Klochkov and Zhivotovskiy,
2021; Yuan and Li, 2023). The stability theory for randomized learning algorithms was formally
introduced and investigated by Elisseeff et al. (2005). In the celebrated work of Hardt et al. (2016), it
was shown in that the solution obtained via stochastic gradient descent is expected to be stable and
generalize well for smooth convex and non-convex loss functions. For non-smooth convex losses,
the stability induced generalization bounds of SGD have been established in expectation (Lei and
Ying, 2020) or deviation (Bassily et al., 2020). In the work of Kuzborskij and Lampert (2018), a set

33



of data-dependent generalization bounds for SGD were derived based on the stability of algorithm.
More broadly, generalization bounds for stable learning algorithms that converge to global minima
were established in Charles and Papailiopoulos (2018); Lei and Ying (2021). For non-convex sparse
learning, algorithmic stability theory has been applied to derive the generalization bounds of the
popularly used iterative hard thresholding (IHT) algorithm (Yuan and Li, 2022). The uniform
stability bounds on SGD have also been extensively used for designing differential privacy stochastic
optimization algorithms (Bassily et al., 2019; Feldman et al., 2020).

The confidence-boosting technique has long been applied for obtaining sharp high-probability excess
risk bounds from the corresponding in-expectation bounds (Shalev-Shwartz et al., 2010; Mehta, 2017;
Holland, 2021). For generic statistical learning problems, confidence-boosting has been used to
convert any low-confidence learning algorithm with linear dependence on 1/δ to a high-confidence
algorithm with logarithmic factor log(1/δ). For learning with exp-concave losses, a relevant ERM
estimator with in-expectation fast rate of convergence was converted to a high-confidence learning
algorithm with an almost identical fast rate of convergence up to a logarithmic factor on 1/δ (Mehta,
2017). While sharing a similar spirit, our generalization analysis is substantially more challenging
than the existing excess risk analysis in the sense that deriving a favorable first-moment generalization
bound for L2-uniformly stable randomized algorithms is highly non-trivial in itself. Bagging (or
bootstrap aggregating) is one of the earliest yet most popular ensemble methods that has been
widely applied to reduce the variance for unstable learning algorithms such as decision tree and
neural networks (Breiman, 1996; Opitz and Maclin, 1999), and sometimes stable algorithms such
as SVMs (Valentini and Dietterich, 2003). As an important variant of bagging, subbagging has
been proposed to reduce the computational cost of bagging via training base models under without-
replacement sampling (Bühlmann, 2012). The stability and generalization bounds of bagging
have been analyzed for both uniform (Elisseeff et al., 2005) and non-uniform (Foster et al., 2019)
averaging schemes. Unlike these prior results for bagging with averaging aggregation, our confidence-
boosting bounds are obtained based on a greedy aggregation scheme which turns out to yield sharper
dependence on the stability parameters.
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