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A ANNEXES

A.1 TRAINING ALGORITHM

Algorithm [T]shows the pseudocode of the method described in §4] Typical values for the loop trip
counts are found in §AT1]

A.2 PRELIMINARIES

Interventions. In a purely-observational setting, it is known that causal graphs can be distinguished
only up to a Markov equivalence class. In order to identify the true causal graph intervention data is
needed (Eberhardt et al.,[2012). Several types of common interventions may be available (Eaton &
Murphy, [2007b). These are: No intervention: only observational data is obtained from the ground
truth causal model. Hard/perfect: the value of a single or several variables is fixed and then ancestral
sampling is performed on the other variables. Soft/imperfect: the conditional distribution of the
variable on which the intervention is performed is changed. Uncertain: the learner is not sure of
which variable exactly the intervention affected directly. Here we make use of soft interventions for
several reasons: First, they include hard interventions as a limiting case and hence are more general.
Second, in many real-world scenarios, it is more difficult to perform a hard intervention compared to
a soft one. We also deal with a special case of uncertain interventions, where the variable selected for
intervention is random and unknown. We call these unidentified or unknown interventions.

Intervention setup. For our experiments, the groundtruth models of the synthetic datasets are
modeled by neural networks as described in section[A.6] Each neural network models the relationship
of the causal parents and a variable. We perform our intervention by first randomly selecting which
variable to intervene on, then soft-intervening on it. The selected variable is sampled from a uniform
distribution. The soft intervention is a reinitialization of its neural network’s parameters.

Causal sufficiency. The inability to distinguish which causal graph, within a Markov equivalence
class, is the correct one in the purely-observational setting is called the identifiability problem. In our
setting, all variables are observed (there are no latent confounders) and all interventions are random
and independent. Hence, within our setting, if the interventions are known, then the true causal
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Algorithm 1 Training Algorithm

1: procedure TRAINING(SCM Ground-Truth Entailed Distribution D, with M nodes and N categories)
2: Let ¢ an index from 0 to M — 1

3 for I iterations, or until convergence, do
4: if ] $ reinitialization_period == 0 then
5: D + reinitialize(D)

6 for F' functional parameter training steps do > Phase 1
7: X ~D

8: C ~ Ber(o(7))

9: L=—log P(X|C; 6)

10: 6t+1 < Adam(@t, VQL)

11: for () interventions do

> Phase 2

12: I_N< randint (0, M —1) > Uniform selection of target
13: D;y := D with intervention on node I_N > Apply intervention
14: if predicting intervention then > Phase 2 Prediction
15: Li<0 Vi

16: for Np prediction steps do

17: X ~ Dint

18: for C'p configurations do

19: C ~ Ber(o (7))
20: LZ‘ < Li — log PZ(X‘CZ, ﬁslow) Vi
21: I_N < argmax(L;)
22: gammagrads, logregrets = [], [] > Phase 2 Scoring
23: for Ns scoring steps do
24: X ~ Dim
25: gammagrad, logregret = 0, 0
26: for C's configurations do
27: C ~ Ber(o(v))
28: Lz = —IOgPZ'(X|Ci;951OW) VZ
29: gammagrad += o(y) —C > Collect o(y) — C for Equation
30: logregret += Y. L; > Collect £&'5(X) for Equation

1#I_N
31: gammagrads . append (gammagrad)
32: logregrets.append (logregret)
* " > Phase
. > (0 (i) — Cij )Loi (X) . . .

33: gij = S, [/C(,Iz) x) > Gradient Estimator, Equation [2
34: g g+ v'y (Asparsc Lsparsc ('Y) + >\DAG Lpac ('Y)) > Regularizers
35: Ye+1 < Adam(vt, g)

graph is always identifiable in principle (Eberhardt et al., 2012} Heinze-Deml et al., 2018a). We also
consider here situations where a single variable is randomly selected and intervened upon with a
soft or imprecise intervention, its identity is unknown and must be inferred. In this case, there is no
theoretical guarantee that the causal graph is identifiable. However, there is existing work Peters et al.
(2016) that handles this scenario and the proposed method is also proven to work empirically.

Faithfulness. It is possible for causally-related variables to be probabilistically independent purely
by happenstance, such as when causal effects along multiple paths cancel out. This is called
unfaithfulness. We assume that faithfulness holds, since the v gradient estimate is extracted from
shifts in probability distributions. However, because of the “soft” nature of our interventions and their
infinite variety, it would be exceedingly unlikely for cancellation-related unfaithfulness to persist
throughout the causal-learning procedure.
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A.3 EXPERIMENTAL SETUP

For all datasets, the weight parameters for the learned model is initialized randomly. In order to not
bias the structural parameters, all o(vy) are initialized to 0.5 in the beginning of training. Details of
hyperparameters of the learner model are described in Section[A.5] The experimental setup for the
groundtruth model for the synthetic data can be found in Section[A.6|and the details for the real world
data are described in Section[A.7]

A.4 MODEL SETUP

As discussed in section[d], we model the M variables in the graph using M independent MLPs, each
possesses an input layer of M x N neurons (for M one-hot vectors of length N each), a single
hidden layer chosen arbitrarily to have max(4M,4N) neurons with a LeakyReLU activation of
slope 0.1, and a linear output layer of N neurons representing the unnormalized log-probabilities of
each category (a softmax then recovers the conditional probabilities from these logits). To force f;
to rely exclusively on the direct ancestor set pa(i, C') under adjacency matrix C' (See Eqn. , the
one-hot input vector X; for variable X;’s MLP is masked by the Boolean element c;;. The functional
parameters of the MLP are the set 8 = {W0;p;n, BOsp, Wlinn, Bliy .An example of the multi-MLP
architecture with M =3 categorical variables of N=2 categories is shown in Figure[3]

A.5 HYPERPARAMETERS

Learner model. All experiments on the synthetic graphs of size 3-8 use the same hyperparameters.
Both the functional and structural parameters are optimized using the Adam optimizer Kingma & Ba
(2014). We use a learning rate of 5e — 2 with alpha of 0.9 for the functional parameters, and we use a
learning rate of 5e — 3 with alpha of 0.1 for the structural parameters. We perform 5 runs of each
experiment with random seeds 1 — 5 and error bars are plotted for various graphs from size 3 to 8 in
Figure ] We use a batch size of 256. The L1 norm regularizer is set to 0.1 and the D AG regularizer
is set to 0.5 for all experiments. For each v update step, we sample 25 structural configurations from
the current y. In all experiments, we use 100 batches from the interventional distribution to predict
the intervened node.

A.6 SYNTHETIC DATA

% > 4
A\

Figure 5: Every possible 3-variable connected DAG.

Synthetic datasets. The synthetic datasets in the paper are modeled by neural networks. All
neural networks are 2 layered feed forward neural networks (MLPs) with Leaky ReLLU activations
between layers. The parameters of the neural network are initialized orthogonally within the range of
(—2.5,2.5). This range was selected such that they output a non-trivial distribution. The biases are
initialized uniformly between (—1.1,1.1).

SCM with n variables are modeled by n feedforward neural networks (MLPs) as described in §@
We assume an acyclic causal graph so that we may easily sample from them. Hence, given any pair
of random variables A and B, either A — B, B — A or A and B are independent.

The MLP representing the ground-truth SCM has its weights 6 initialized use orthogonal initialization
with gain 2.5 and the biases are initialized using a uniform initialization between —1.1 and 1.1, which
was empirically found to yield "interesting" yet learnable random SCMs.
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Figure 6: Figures for various synthetic graphs. chain, collider, bidiagonal, full and jungle graph.

We study a variety of SCMs with different ground-truth edge structures ~. Our selection of synthetic
graphs explores various extremes in the space of DAGs, stress-testing The chain graphs
are the sparsest connected graphs possible, and are relatively easy to learn. The bidiag graphs
are extensions of chain where there are 2-hops as well as single hops between nodes, doubling
the number of edges and creating a meshed chain of forks and colliders. The jungle graphs are
binary-tree-like graphs, but with each node connected directly to its grandparent in the tree as well.
Half the nodes in a jungle graph are leaves, and the out-degree is up to 6. The collider graphs
deliberately collide independent M — 1 ancestors into the last node; They stress maximum in-degree.
Lastly, the full graphs are the maximally dense DAGs. All nodes are direct parents of all nodes
below them in the topological order. The maximum in- and out-degree are both A/ — 1. These graphs
are depicted in Figure[6]

A.6.1 SYNTHETIC DATA RESULTS

The model can recover correctly all synthetic graphs with 10 variables or less, as shown in Figure [T0]
and Table [T} For graphs larger than 10 variables, the model found it more challenging to recover the
denser graphs (e.g. ful1M), as shown in Table[l} Plots of the training curves showing average cross
entropy (CE) and Area-Under-Curve(AUC/AUCROC) for edge probabilities of the learned graph
against the ground-truth graph for synthetic SCMs with 3-13 variables are available in Figure[T0]

A.7 BNLEARN DATA REPOSITORY

The repo contains many datasets with various sizes and structures modeling different variables. We
evaluate the proposed method on 3 of the datasets in the repo, namely the Earthquake (Korb &
Nicholson, [2010), Cancer (Korb & Nicholson, 2010) and Asia (Lauritzen & Spiegelhalter, [1988)
datasets. The ground-truth model structure for the Cancer (Korb & Nicholson,|2010) and Earthquake
(Korb & Nicholsonl 2010) datasets are shown in Figurem Note that even though the structure for the
two datasets seems to be the same, the conditional probability tables (CPTs) for these datasets are
very different and hence results in different structured causal models (SCMs) for each.
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Figure 7: Left to right: Ground Truth SCM for Cancer, Groundtruth SCM for Earthquake, Groundtruth SCM for Asia.

Method Asia chain8 Jjungle8 collider7 collider8 full8
Zheng et al., 2018 14 24 14 11 18 21
Yu et al., 2019 10 7 12 6 7 25

(Heinze-Deml et al.,|2018b) 8 7 12 6 7 28

(Peters et al.,[2016 5 3 8 4 2 16
(Eaton & Murphy, 2007a) 0 0 0 7 7 1

m. 0 0 0 0 0 0

Table 5: Baseline comparisons: Hamming distance (lower is better) for learned and ground-truth edges on various graphs from both synthetic

and real datasets, compared to (Peters et al} 2016), (Heinze-Deml et al’}[2018b), (Eaton & Murphy} 20076), (Yu et al}[2019) and (Zheng et al]
2018). The proposedis run on random seeds 1 — 5 and we pick the worst performing model out of the random seeds in the table.

Figure 8: Learned edges at three different stages of training. Left: chain4 (chain graph with 4 variables). Right: ful1l4 (tournament graph
with 4 variables).

A.8 COMPARISONS TO OTHER METHODS

As described in section[5.4] we compare to 5 other methods. The full comparison between [SDIf and
other methods on various graphs can be found in Table[T]

One of these methods, DAG-GNN (2019), outputs 3 graphs based on different criteria: best
mean square error (MSE), best negative loglikelihood (NLL) and best evidence lower bound (ELBO).
We report performance of all outputs of DAG-GNN in Table[f] and the best one is
selected for Table [Tl

A.9 SPARSITY OF GROUND-TRUTH GRAPH

We evaluated the performance of on graphs of various size and sparsity to better understand the
performance of the model. We evaluated the proposed model on 4 representative types of graphs in
increasing order of density. They are the chain, jungle, bidiagand full graphs. As shown
in the results in figure[I2] for graphs of size 5 or smaller, there is almost no difference in the final
results in terms of variance and sample complexity. However, as the graphs gets larger (than 6), the
denser graphs (full graphs) gets progressively more difficult to learn compared to the sparser graphs
(chain, jungle and bidiag). The models learned for denser graphs have higher complexity,
higher variance and slightly worse results.
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Figure 9: Top Left: Earthquake: Learned edges at three different stages of training. Top Right: Asia: Learned edges at three different stages
of training. Bottom: chain10 at different stages of training, clearly displaying Markov-equivalence of causal and anti-causal chain. Training
resolves in causal direction after further training.

Best MSE  Best NLL  Best Elbo

Asia 0 10 10 13
chain8 0 7 7 7
jungle8 0 12 12 13
collider?7 0 6 6 6
colliders 0 8 8 7
fulls 0 27 25 27

Table 6: Baseline comparisons: Hamming distance (lower is better) for learned and ground-truth edges on Asia and various synthetic graphs.
compared to DAG-GNN|Yu et al| (2019). DAG-GNN outputs 3 graphs according to different criterion. We show results on all outputs in this
table and we show the best performing result in TableEl

A.10 PREDICTING INTERVENTIONS

In Phase 2, we score graph configurations based on how well they fit the interventional data. We find
that it is necessary to avoid disturbing the learned parameters of intervened variables, and to ignore
its contribution to the total negative log-likelihood of the sample. Intuitively, this is because, having
been intervened upon, that variable should be taken as a given. It should especially not be interpreted
as a poorly-learned variable requiring a tuning of its functional parameters, because those functional
parameters were not responsible for the value of that variable; The extrinsic intervention was.

Since an intervened variable is likely to be unusually poorly predicted, we heuristically determine
that the most poorly predicted variable is the intervention variable. We then zero out its contribution
to the log-likelihood of the sample and block gradient into its functional parameters.

Figure [T T]illustrates the necessity of this process. When using the prediction heuristic, the training
curve closely tracks training with ground-truth knowledge of the identity of the intervention. If no
prediction is made, or a random prediction is made, training proceeds much more slowly, or fails
entirely.

A.11 SAMPLE COMPLEXITY

Our method is heavily reliant on sampling of configurations and data in Phases 1 and 2. We present
here the breakdown of the sample complexity. Let

e [ be the number of iterations of the method, (typical: 500-2000)
e [3 the number of samples per batch, (typical: 256)
e [’ the number of functional parameter training iterations in Phase 1, (typical: 10000)
e () the number of interventions performed in Phase 2, (typical: 100)
e Np the number of data batches for prediction, (typical: 100)
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Chain Jungle Full
345678|3456728|3456738
ldag=0.5, Isparse=0.1 |0 |{0|{0|0|0|{0(0[0{0({0[0|0[0[0|0[0[|0]|0
ldag=0.5, Isparse=0. |[0/0]0|0[0[0|0|0[0O[O[0[O[O[O[O|O[O]0O
ldag=0., Isparse=0.1 |[0|/0]0[1|0[0|0|0[0O[1|3][1|0[0[0O|O[1]6

Table 7: Regularizer: performance measured by Hamming distance to the ground-truth graph. Comparisons are between with
different regularizer settings for different graphs. Our default setting is ldag = 0.5, Isparse = 0.1, with ldag the DAG regularization
strength and Isparse the sparsity regularization strength. As shown in the table, is not very sensitive to different regularizer settings.
Tasks with non-zero Hamming distance (errors) are in bold.
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Figure 10: Cross entropy (CE) and Area-Under-Curve (AUC/AUROC) for edge probabilities of learned graph against ground-truth for synthetic
SCMs. Error bars represent 10 over PRNG seeds 1-5. Left to right, up to down: chainM,jungleM,fullMM = 3...8(9...13
in Appendix m Graphs (3-13 variables) all learn perfectly with AUROC reaching 1.0. However, denser graphs (fullM) take longer to
converge.

e (C'p the number of graph configurations drawn per prediction data batch, (typical: 10)
e Ng the number of data batches for scoring, (typical: 10)
e (g the number of graph configurations drawn per scoring data batch. (typical: 20-30)

Then the total number of interventions performed, and configurations and samples drawn, over an
entire run are:

Interventions = I() = ~y updates 3)
Samples = I(_F + Q(Np + Ng))B “4)
Phase 1 Phase 2
Configurations = I(_ F' + Q(CpNp + CsNg)) )
Phase 1 Phase 2

Because of the multiplicative effect of these factors, the number of data samples required can quickly
spiral out of control. For typical values, as many as 500 x 10000 x 256 = 1.28e9 observational
and 500 x 100 x (100 + 10) x 256 = 1.408e9 interventional samples are required. To alleviate
this problem slightly, we limit the number of samples generated for each intervention; This limit is
usually 500-2000.
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Figure 11: Ablation Study of Intervention Prediction Cross-entropy loss over time on multiple graphs and intervention prediction modes.
Above Left: All 3-variable graphs. Solid/dashed lines: Ground-truth & Prediction strategies. Dotted lines: Random- & No-Prediction strate-
gies. Training with prediction closely tracks ground-truth. Above Right: Comparison for 7-variable graphs, ground-truth against prediction
strategy. Training with prediction still closely tracks ground-truth at larger scales. Below: Performance on 15-variable graphs with known
intervention targets.

A.12 EFFECT OF REGULARIZATION

Importance of sparsity regularizer. We use a L1 regularizer on the structure parameters v to
encourage a sparse representation of edges in the causal graph. In order to better understand the
effect of the L1 regularizer, we conducted ablation studies on the L1 regularizer. It seems that the
regularizer has an small effect on rate of converges and that the model converges faster with the
regularizer, This is shown in Figure [[3] However, this does not seem to affect the final value the
model converges to, as is shown in Table

Importance of DAG regularizer. We use an acyclic regularizer to discourage length-2 cycles in
the learned model. We found that for small models (< 5 variables), the acyclic regularizer helps with
faster convergence, without improving significantly the final cross-entropy. This is illustrated for the
3-variable graphs in Figure[I4] However, for graphs larger than 5 variables, the acyclic regularizer
starts playing an important role in encouraging the model to learn the correct structure. This is shown
in the ablation study in Table

A.13 NEAR-OPTIMUM PERFORMANCE OF GRADIENT ESTIMATOR

The gradient estimator g;; we use to minimize the empirical risk w.r.t. the structural parameters -,
defined in Eq. 2]is adapted from Bengio et al.| (2019). We verify that the estimator samples the correct
gradient by an experiment that tests convergence near the optimum.

To do this, we pre-initialize the structural and functional parameters near the global minimum,
and verify that v converges. Specifically, the ground-truth functional parameters 6 are copied and
disturbed by a small Gaussian noise, while the ground-truth structural parameters y are copied, but
the confidences in an edge or non-edge are set to 88% and 12% rather than 100% and 0%. The
experiment is then expected to quickly converge to the global minimum.
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Figure 13: Effect of sparsity (Isparse) regularizer : On 5 variable, 6 variable and 8 variable Nodes

As shown in Figure[T6] the gradient estimator correctly enables Stochastic Gradient Descent towards
the minimum, for the chain and jungle graphs of size 15, 20 and 25. The average cross-entropy
rapidly approaches its floor of 0.01, a consequence of our clamping of all 7;; to the range £5
(equivalently, clamping o(y;;) to the range [0.0067, 0.9933)).

A.14 IMPORTANCE OF DROPOUT
To train the functional parameters on an observational distribution, one would need sampling adja-

cency matrices. One may be tempted to make these “complete directed graph” (all-ones except for a
zero diagonal), to give the MLP maximum freedom to learn any potential causal relations itself. We
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Figure 16: Near-optima performance of gradient estimator: Performance on chain and jungle, M =15, 20, 25, and initialized from
near the global optimum. Illustrates correctness and rapid convergence using the gradient estimator in Eq. Elnear the optimum.

demonstrate that functional parameter training cannot be carried out this way, and that it is necessary
to “drop out” each edge (with probability of the current v value in our experiments) during pre-
training of the conditional distributions of the SCM. We attempt to recover the previously-recoverable
graphs chain3, fork3 and confounder3 without dropout, but fail to do so, as shown in Figure

IS
[Eaton & Murphy| (2007b)

Asia 0 0

chain8 0 0

jungle8 0 0

collider? 0 7

collider8 0.0 7

fulls 0.0 1
Table 8: Comparisons: Structured hamming distance (SHD) on learned and ground-truth edges on asia and various synthetic graphs.
(2007b) can not scale to larger variables graphs as shown in Tablem hence, we compare to the largest graph that

2007b) can scale up to. [SDI)is compared to (Eaton & Murphy}[2007b) for collider7, collider8 and fulls, (Eaton & Murp

asserts with 100% confidence a no-edge where there is one (false negative). For comparisons with all other methods
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Figure 18: Cross-entropy for edge probability between learned and ground-truth SCM.
Figure 17: Cross-entropy for edge prob- Left: The Earthquake dataset with 6 variables. Right: The Asia dataset with 8 vari-
ability between learned and ground-truth ables

SCM for Cancer at varying temperatures.
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