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Low-rank Prompt Interaction for Continual Vision-Language
Retrieval

Anonymous Authors

ABSTRACT
Research on continual learning in multi-modal tasks has been re-
ceiving increasing attention. However, most existing work over-
looks the explicit cross-modal and cross-task interactions. In this
paper, we innovatively propose the Low-rank Prompt Interaction
(LPI) to address this general problem of multi-modal understand-
ing, which considers both cross-modal and cross-task interactions.
Specifically, as for the former, we employ multi-modal correlation
modules for corresponding Transformer layers. Considering that
the training parameters scale to the number of layers and tasks, we
propose Low-rank Interaction-augmented Decomposition to avoid
memory explosion while enhancing the cross-modal association
through sharing and separating common-specific low-rank factors.
In addition, due to the multi-modal semantic differences carried
by the low-rank initialization, we adopt hierarchical low-rank con-
trastive learning to ensure training robustness. As for the latter,
we initially employ a visual analysis and identify that different
tasks have clear distinctions in proximity. Therefore, we introduce
explicit task contrastive constraints in the prompt learning pro-
cess based on task semantic distance. Experiments on two retrieval
tasks show performance improvements with the introduction of a
minimal number of parameters, demonstrating the effectiveness of
our method.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval.

KEYWORDS
Multi-modal, vision-language retrieval, continual learning, prompt
learning

1 INTRODUCTION
The vision-language retrieval task requires us to train models to
solve various retrieval challenges, including text retrieval, image
retrieval, video retrieval, and referring expression comprehension.
Addressing multi-modal downstream tasks under a continual learn-
ing setting aligns more closely with real-world demands. The model
needs to continuously learn on tasks with non-stationary data
distributions, which can lead to overfitting on current tasks and
consequently cause catastrophic forgetting [23].
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Figure 1: Three Paradigms of PromptTuning in theContinual
Learning Scenario.

Traditional solutions to address catastrophic forgetting can be
categorized into three types. The replay-based approach involves
storing samples from previous tasks in a memory bank for train-
ing on future tasks. However, this can lead to data leakage and
security issues, making it unacceptable in certain scenarios. The
regularization-based approach seeks to prevent model forgetting by
regularizing parameter updates, but it can only mitigate forgetting
to a certain extent. The architecture-based approach allows for the
independent learning of parameters for each task, which introduces
many additional parameters.

Recently, prompt-based learning has made significant progress in
the field of natural language processing (NLP). Inspired by this tech-
nology, some works have incorporated prompt techniques within
pre-trained multi-modal models. Pre-trained vision-language mod-
els, such as CLIP (Contrastive Language-Image Pre-Training) [24]
and GLIP (Grounded Language-Image Pre-training) [16] are trained
on web-scale data, exhibit strong generalization capabilities. When
we need to employ the model for downstream tasks, full model
fine-tuning consumes a significant amount of computational and
storage resources. By freezing the pre-trained model and training
only a small number of prompt tokens, the model can achieve satis-
factory results. We summarize the application of prompt learning
in continual learning into three paradigms, as illustrated in Fig. 1.
Paradigm (a) uses the uni-encoder to extract features, Paradigm (b)
considers the cross-modal interaction, and Paradigm (c) considers
both cross-modal and cross-task interactions.

Works [35, 36] have been developed for continual learning sce-
narios, however, numerous aspects could be improved. Such ap-
proaches are confined to single-modality tasks, such as image clas-
sification, and they have not taken into account the interactions
between different modalities and tasks, thus failing to fully leverage

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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the performance of pre-trained models. Works [12, 19] have incor-
porated the cross-modal interaction within single-task scenarios,
demonstrating the effectiveness of the interaction between differ-
ent modalities. However, the introduction of interaction modules
results in a substantial increase in the number of parameters, which
becomes unacceptable as the number of tasks grows. How can we
reduce the introduction of parameters while still incorporating
interaction modules? In large language models, LoRA (Low-Rank
Adaptation) [9] compress updates to network parameters. Inspired
by this approach, we can employ a similar strategy to compress all
learnable parameters within our model.

Taking into consideration the issues discussed above, we adhere
to the third paradigm shown in Fig. 1 (c) to propose a novel Low-
rank Prompt Interaction (LPI) method which accounts for both
the cross-modal and cross-task interactions. For the cross-modal in-
teraction, we integrate a low-rank interaction decomposition mod-
ule, utilizing a shared low-rank factor to construct high-dimensional
visual and textual prompts, which not only establishes cross-modal
prompt associations but also reduces the number of introduced
parameters. Since the low-rank interaction decomposition does
not account for the hierarchical relationships among prompts, we
introduce hierarchical prompt contrastive learning to achieve the
hierarchical alignment of cross-modal prompts. Furthermore, we
employ a cross-modal prompt fusion module to achieve the integra-
tion of cross-modal information within visual and textual prompts
from different layers. For the cross-task interaction, we compute se-
mantic distances across various tasks, classifying tasks into positive
or negative samples based on the closeness of these distances in the
semantic space. By applying contrastive learning, positive samples
are drawn closer while negative samples are pushed further apart.

We conducted experiments on two retrieval tasks: image-text re-
trieval and referring expression comprehension. The results demon-
strate that our method outperforms other approaches in the class-
incremental learning setting [30], thus proving the efficacy of our
method. In summary, our contributions are as follows:

• We propose Low-rank Prompt Interaction, a novel method
that considers the cross-modal and cross-task interactions.
The cross-modal interaction facilitates interaction between
modalities, achieves hierarchical prompt alignment, and re-
duces introduced parameters while the cross-task interaction
constrains prompt updates based on task semantic distance.

• In the class incremental setting, we conduct experiments on
two complex vision-and-language tasks: image-text retrieval
and referring expression comprehension. Our experimental
results surpass the state-of-the-art approaches, demonstrat-
ing the efficacy of our method.

2 RELATEDWORK
2.1 Continual Learning
Within the context of continual learning, an intelligent system is
expected to acquire a sequence of knowledge. Unlike traditional
models that are designed to learn from a single data distribution,
these models are required to adapt to dynamically changing data
distributions. A significant challenge arises if the model overfits on
a particular task, leading to catastrophic forgetting, a significant
decline in performance on previously learned tasks. To address

this problem, common methods include: (1) rehearsal-based meth-
ods [5, 26–29] that preserve representative or pseudo-samples to
avoid catastrophic forgetting; (2) regularization-based methods
[1, 13, 40]that constrain parameter updates; (3) architecture-based
methods [14, 37] that allocate distinct parameters for each task to
learn independently. Recent works [34–36] employ prompt-based
learning techniques to train unique prompts for each task. These
approaches have only been applied to simple uni-modal tasks and
do not take into account the interactions between modalities or
tasks. Consequently, they have not fully leveraged the potential of
the pre-trained model’s performance in more complex, multi-modal
application scenarios.

2.2 Pre-trained Vision-Language Models
The Transformer architecture model has achieved tremendous suc-
cess in natural language processing [3, 25, 33]. Subsequently, works
[4, 8] have demonstrated their effectiveness in the field of computer
vision as well, effectively establishing connections betweenmultiple
modalities. Due to its powerful representational capabilities and flex-
ible structure, the Transformer-based architecture has become the
ideal choice for linking multi-modal data. Following this, numerous
effective pre-trained vision-language models like CLIP [24], GLIP
[16], ALIGN [10] and Florence [39] have emerged. These models are
trained on extensive datasets, learning rich joint visual-language
representations, and exhibit commendable performance on zero-
shot and few-shot learning. By employing fine-tuning techniques,
these pre-trained models can be applied to specific downstream
tasks, such as image-text retrieval, visual question answering, and
more, finding widespread application across both the academic and
industrial sectors.

2.3 Prompt Learning
Prompt learningwas initially applied in the field of natural language
processing [15, 17], enhancing the performance of pre-trained mod-
els through artificially designed or learnable prompts. Works [2, 11]
introduces prompt learning into computer vision by adding prompts
to visual input. Works like CoOp [42] and CoCoOp [41] apply it to
Vision-Language (V-L) models. Furthermore, works like L2P [36],
DualPrompt [35] and S-Prompts [34] adopt prompt learning in the
continual learning setting. To further boost model performance,
MaPle [12] and DCP [19] integrate prompts into both the visual and
language encoders, taking into account the cross-modal interaction
of prompts. In this work, we make full use of prompt tuning to
maximize the performance of pre-trained vision-language models
in the continual learning setting.

3 PRELIMINARY
3.1 Problem Formulation
We concentrate on tackling the problem of multi-modal contin-
ual learning for vision-language retrieval in the class-incremental
learning(Class-IL) scenario [30]. Specifically, we conduct experi-
ments on text-image retrieval and referring expression comprehen-
sion tasks. For the image-text retrieval task, we need to retrieve
images based on captions while retrieving captions based on im-
ages. For the referring expression comprehension task, given a
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Figure 2: Illustration of the proposed LPI method. LPI consists of two parts, the cross-modal and cross-task interactions. As
for the cross-modal interaction, we introduce three modules, low-rank interaction decomposition (LID), hierarchical prompt
alignment (HPA), and cross-modal prompt fusion (CPF). LID decomposes high-dimensional prompts into low-rank vectors.
HPA utilizes contrastive learning to align prompts across different layers. CPF achieves cross-layer information fusion between
modalities. As for the cross-modal interaction, we introduce the cross-task prompt alignment (CPA) module which aligns
prompts with task semantic distance. For each task, our method learns unique visual and textual prompts and interact modules.
We store the prompts in the visual and textual prompt pool with task-specific keys which are used for predicting task identity
during the inference period. As the task identity is unknown during the inference stage, we employ a method similar to that
used in S-Prompts [34] to predict the task identity.

caption and an image, we need to locate the position of the content
described by the caption within the image.

Our model is designed to progressively acquire knowledge across
a sequence of tasks, with the ultimate goal of achieving comprehen-
sive expertise in all tasks. Formally, the model sequentially acquires
knowledge on a series of tasks, denoted as 𝑇 = {𝑇 1,𝑇 2, ...,𝑇𝐾 },
where 𝐾 represents the overall count of tasks seen. For each task
𝑇𝑘 , we denote D𝑘 = {𝑣𝑘

𝑖
, 𝑞𝑘
𝑖
, 𝑎𝑘
𝑖
}𝑁𝑘

𝑖=1 as the available data with 𝑁𝑘
samples, where 𝑣𝑘

𝑖
, 𝑞𝑘
𝑖
is the 𝑖-th input vision and language rep-

resentation respectively and 𝑎𝑘
𝑖
is the corresponding label. Dur-

ing training period, given visual input 𝑣𝑖 and textual input 𝑞𝑖 ,
we can compute the task-specific output 𝑜𝑖 = 𝑀𝑂𝐷𝐸𝐿(𝑣𝑖 , 𝑞𝑖 ),
L𝑏𝑎𝑠𝑒 = L𝑝𝑟𝑜𝑏𝑙𝑒𝑚 (𝑜𝑖 , 𝑎𝑖 ) where L𝑝𝑟𝑜𝑏𝑙𝑒𝑚 is the task-specific loss.
For the image-text retrieval task, L𝑝𝑟𝑜𝑏𝑙𝑒𝑚 is the cross-entropy
loss between logits and the truth label. For the referring expression
comprehension, L𝑝𝑟𝑜𝑏𝑙𝑒𝑚 is the same as that in GLIP. During the
testing phase, we evaluate the model’s performance on both the
current and all previously learned tasks.

3.2 Base Network
Our proposed method is based on the pre-trained vision-language
models, CLIP for the image-text retrieval task and GLIP for the
referring expression comprehension task. Both CLIP and GLIP can
be extracted as a vision encoder, a language encoder, and a down-
stream head. We omit the downstream head here for clarity. We
only make improvements at the feature extraction stage, while
maintaining consistency in structure and parameters for the rest of
the model. Both the vision encoder and the language encoder have
𝑁𝐿 transformer layers, denoted as {V𝑖 (·)}𝑁𝐿−1

𝑖=0 for vision encoder
and {L𝑖 (·)}𝑁𝐿−1

𝑖=0 for language encoder. The feature embedding di-
mension of the vision encoder is 𝑑𝑣 , while the feature embedding
dimension of the language encoder is 𝑑𝑙 . Visual input 𝑣𝑘𝑖 is divided
into patches and projected into patch embeddings as the vision
encoder input. Textual input 𝑞𝑘

𝑖
is tokenized and projected into

word embeddings as the language encoder input.

3.3 Deep Prompting
Deep prompting attaches learnable visual and textual prompts to
the input of the first 𝐷 transformer layers.
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Deep Prompting. Deep vision prompting and deep language
prompting adopt the same strategy. To learn the modality prompts,
we introduce learnable tokens {𝑃𝑚

𝑖
∈ R𝐿𝑚×𝑑𝑚 }𝐷

𝑖=1 where m repre-
sents v(ision) or l(anguage) modality, 𝐿𝑚 is the prompt length and
𝑑𝑚 is the prompt dimension. The input token can be denoted as
[𝐸𝑚0 ,𝑊

𝑚
0 ]. 𝐸𝑚0 and 𝑃𝑚0 have the same token length and embedding

dimension. For the first D transformer layer, the forward process
can be formulated as:

𝐼𝑚𝑖−1 =𝑃
𝑚
𝑖−1 + 𝐸

𝑚
𝑖−1,

[𝐸𝑚𝑖 ,𝑊
𝑚
𝑖 ] =M𝑖−1 ( [𝐼𝑚𝑖−1,𝑊

𝑚
𝑖−1]),

𝑖 =1, 2, · · · , 𝐷.
(1)

For the rest transformer layers, the forward process can be formu-
lated as:

[𝐸𝑚𝑖 ,𝑊
𝑚
𝑖 ] = M𝑖−1 ( [𝐸𝑚𝑖−1,𝑊

𝑚
𝑖−1]), 𝑖 = 𝐷 + 1, · · · , 𝑁𝐿, (2)

where M represents V (vision encoder) or L (language encoder).

4 LPI: LOW-RANK PROMPT INTERACTION
Our proposed method, Low-rank Prompt Interaction is illustrated
in Fig. 2. Concretely, LPI consists of two parts, the cross-modal and
cross-task interaction. As for the cross-modal interaction, we intro-
duce three modules, low-rank interaction decomposition in Sec. 4.1,
hierarchical prompt alignment in Sec. 4.2, and cross-modal prompt
fusion Sec. 4.3. As for the cross-modal interaction, we introduce
the cross-task prompt alignment in Sec. 4.4. Finally, we introduce
the training details in Sec. 4.5.

4.1 Low-rank Interaction Decomposition
The Low-rank Interaction Decomposition decomposes the high-
dimensional prompts into multiple low-rank vectors, which is
shown in Fig. 2 (a). To establish the interaction between modalities,
we have the visual prompts and textual prompts share the same low-
rank vector, which not only facilitates the cross-modal interaction
but also compresses the number of parameters introduced.

For a three-dimensional vector P ∈ R𝑖× 𝑗×𝑘 , we can decompose
it into three low-rank two-dimensional vectors, 𝐷1 ∈ R𝑖×𝑟 , 𝐷2 ∈
R𝑗×𝑟 and 𝐷3 ∈ R𝑘×𝑟 . P can be formulated as:

P[𝑖] [ 𝑗] [𝑘] = 𝐴𝑉𝐺 (𝐷1 [𝑖]@𝐷2 [ 𝑗]@𝐷3 [𝑘]), (3)

where @ means the dot product and [i] means the index 𝑖 of the
specific dimension.

The visual prompts 𝑃𝑉 ∈ R𝐷×𝐿𝑣×𝑑𝑣 in the vision encoder are de-
composed into 𝐷1,𝐷𝑣2 and 𝐷𝑣3 and textual prompts 𝑃𝐿 ∈ R𝐷×𝐿𝑙×𝑑𝑙

in the language encoder are decomposed into three low-rank factors
𝐷1, 𝐷𝑙2 and 𝐷

𝑙
3. The visual prompts and textual prompts share the

same low-rank factor 𝐷1, thus establishing the interaction between
visual and textual modality.

4.2 Hierarchical Prompt Alignment
As low-rank interaction decomposition fails to consider the hier-
archical relationships among prompts from different transformer
layers, we design Hierarchical Prompt Alignment (HPA) to mitigate
the multi-modal semantic discrepancy between different layers.

As shown in Fig. 2 (b), the objective of HPA is to perform con-
trastive learning over the learnable visual and textual prompts

between different transformer layers. We consider visual prompts
and text prompts that are on the same layer as positive samples, and
those that are not on the same layer as negative samples, utilizing
the cross-entropy loss function to calculate the semantic disparity
of cross-modal prompts. For 𝑃𝑉 = {𝑃𝑣1 , 𝑃

𝑣
2 , · · · , 𝑃

𝑣
𝐷
} ∈ R𝐷×𝐿𝑣×𝑑𝑣

and 𝑃𝐿 = 𝑃𝑙1, 𝑃
𝑙
2, · · · , 𝑃

𝑙
𝐷

∈ R𝐷×𝐿𝑙×𝑑𝑙 , we first calculate the average
values within the last dimension,

˜𝑃𝑉 = 𝐴𝑉𝐺 (𝑃𝑉 ), ˜𝑃𝐿 = 𝐴𝑉𝐺 (𝑃𝐿). (4)

We set 𝐿𝑣 = 𝐿𝑙 . At this point ˜𝑃𝑉 and ˜𝑃𝐿 have the same shape,
thus we can compute their score matrix𝑀𝑆 and cross-modal loss
L𝑚𝑜𝑑𝑎𝑙 ,

𝑀𝑆 = ( ˜𝑃𝑉 /𝜏𝑚𝑜𝑑𝑎𝑙 ) ( ˜𝑃𝐿𝑇 /𝜏𝑚𝑜𝑑𝑎𝑙 ),

L𝑚𝑜𝑑𝑎𝑙 = − 1
𝐷

𝐷∑︁
𝑖=1

𝐷∑︁
𝑗=1

𝑦𝑖 𝑗 log𝑀𝑆𝑖 𝑗 , 𝑦𝑖 𝑗 =

{
0 i != j,
1 i = j.

(5)

where𝜏𝑚𝑜𝑑𝑎𝑙 represents the temperature for the hierarchical prompt
alignment module and 𝑦 is the corresponding label.

4.3 Cross-modal Prompt Fusion
The LPImodule establishes cross-modal associations, while the HPA
accomplishes hierarchical alignment. Furthermore, we introduce
the Cross-modal Prompt Fusion (CPF) to achieve cross-layer infor-
mation fusion, which involves considering the outputs of previous
layers from different modalities during the forward propagation
process of the encoder. We conduct the cross-modal prompt fusion
across the remaining 𝐷 − 1 layers except for the first layer. The
specific interaction process is shown in Fig. 3.

Figure 3: Interaction Module.

Before feeding the 𝐼 𝑣
𝑖
and 𝐼 𝑙

𝑖
into the encoders, we facilitate the

cross-modal interaction and employ a fully connected layer to per-
form cross-modal mapping, thereby projecting different modalities
onto the same dimensional space. To take previous prompt infor-
mation into account, we combine the interactive information with
the output from the preceding layer using momentum summation,

˜𝐼 𝑣
𝑖
= 𝜆𝑣𝐼

𝑣
𝑖 + (1 − 𝜆𝑣)𝑉 𝐼𝑆 (𝐼 𝑙𝑖 ),

𝐼 𝑙
𝑖
= 𝜆𝑙 𝐼

𝑙
𝑖 + (1 − 𝜆𝑙 )𝑇𝐸𝑋𝑇 (𝐼 𝑣𝑖 ),

𝑖 = 1, · · · , 𝐷 − 1,

(6)

where 𝑉 𝐼𝑆 is the language to vision projection layer, 𝑇𝐸𝑋𝑇 is the
vision to language projection layer, 𝜆𝑣 is the visual momentum and
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𝜆𝑙 is the textual momentum. Then 𝐼𝑖 will be replaced with 𝐼𝑖 as
input to the transformer layer.

To avoid the introduction of an excessive number of parameters
by the linear layer, we use the same decomposition strategy in
Sec. 4.1 to decompose 𝑝𝑡 into three low-rank factors. As for the
parameters in the interaction module, assuming the input dimen-
sion is 𝑑𝑖𝑛 and the output dimension is 𝑑𝑜𝑢𝑡 . The weight can be
denoted as 𝑝𝑤 ∈ R(𝐷−1)×𝑑𝑖𝑛×𝑑𝑜𝑢𝑡 and the bias can be denoted
as 𝑝𝑏 ∈ R(𝐷−1)×𝑑𝑜𝑢𝑡 . Thus the total learnable parameters can be
denoted as 𝑝𝑡 ∈ R(𝐷−1)×(𝑑𝑖𝑛+1)×𝑑𝑜𝑢𝑡 . Thus we can decompose 𝑝𝑡
into 𝐷1 ∈ R(𝐷−1)×𝑟 , 𝐷2 ∈ R(𝑑𝑖𝑛+1)×𝑟 and 𝐷3 ∈ R𝑑𝑜𝑢𝑡×𝑟 .

4.4 Cross-task Prompt Alignment
When training on task 𝑇𝑘 , we utilize the word embedding to con-
vert the task name seen, denoted as 𝑁1, 𝑁2, ·, 𝑁𝑘 , to vectors as the
task semantic embeddings. Using the visualization technique, we
observe a clear distance relationship between tasks, which is shown
in Fig. 4.

Figure 4: Task Distance Visualization using t-SNE [32].

Subsequently, we calculate the cosine similarity for each task’s
semantic embeddings. Pairs of tasks with cosine similarity greater
than and equal to a predefined threshold are considered positive
tasks, while those below the threshold are treated as negative tasks,
we calculate the label 𝑧 for cross-entropy loss as follows:

𝑆𝑖 = 𝐸𝑀𝐵𝐸𝐷𝐷𝐼𝑁𝐺 (𝑁𝑖 ),
𝑐𝑖 𝑗 = 𝐶𝑂𝑆 (𝑆𝑖 , 𝑆 𝑗 ),

𝑧𝑖 𝑗 =

{
0 𝑐𝑖 𝑗 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,

1 𝑐𝑖 𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.

(7)

We denote 𝑃𝑉𝑖 , 𝑃𝐿𝑖 as the prompts for task 𝑇 𝑖 . Prompts in pos-
itive tasks are considered positive of each other, and prompts in
negative tasks are considered negative of each other. Thereby, we
can calculate visual score𝑇𝑆𝑣 and textual score𝑇𝑆𝑙 among different
tasks, For visual prompts and textual prompts in task 𝑇𝑘 , We first
merge the second and third dimensions, stretching each prompt
into a one-dimensional vector. We then compute the scores between
visual prompts and textual prompts across different tasks,

𝑇𝑆𝑣𝑖 𝑗 = 𝑆𝑈𝑀 (𝑃𝑉𝑖𝑃𝑉𝑇𝑗 ),

𝑇𝑆𝑙𝑖 𝑗 = 𝑆𝑈𝑀 (𝑃𝐿𝑖𝑃𝐿𝐿𝑗 ) .
(8)

Using the visual and textual scores, we can calculate the visual and
textual losses 𝐿𝑚 . Considering the numerical imbalance between
positive and negative samples, we employ the NT-BXent (Normal-
ized Temperature-scaled Binary cross-entropy) [7] loss function for
computation, which is based on NT-Xent (Normalized Temperature-
Scaled Cross-Entropy) [6]. Cross-task prompt loss between task 𝑇 𝑖
and 𝑇 𝑗 can be presented as follows:

𝑙𝑚𝑖 𝑗 = −𝑧𝑖 𝑗 log𝜎 (𝑇𝑆𝑚𝑖 𝑗 /𝜏𝑡𝑎𝑠𝑘 )− (1−𝑧𝑖 𝑗 ) log𝜎 ((1−𝑇𝑆𝑚𝑖 𝑗 )/𝜏𝑡𝑎𝑠𝑘 ), (9)

where 𝜏𝑡𝑎𝑠𝑘 represents the temperature for the cross-task interac-
tion, 𝜎 stands for the Sigmoid function, Thus we can compute the
loss 𝐿𝑚

𝑖
for each task 𝑇 𝑖 ,

𝐿𝑚𝑖 =
1

𝑁𝑝𝑜𝑠

𝑘∑︁
𝑗=1

𝑧𝑖 𝑗 𝑙
𝑚
𝑖 𝑗 +

1
𝑁𝑛𝑒𝑔

𝑘∑︁
𝑗=1

(1 − 𝑧𝑖 𝑗 )𝑙𝑚𝑖 𝑗 , (10)

where 𝑁𝑝𝑜𝑠 and 𝑁𝑛𝑒𝑔 are positive and negative sample number of
task 𝑇 𝑖 respectively. The final cross-task loss L𝑡𝑎𝑠𝑘 can be formu-
lated as following:

L𝑡𝑎𝑠𝑘 =

∑𝑘
𝑖=1 𝐿

𝑣
𝑖
+∑𝑘

𝑖=1 𝐿
𝑙
𝑖

2𝑘
. (11)

4.5 Training
We combine the problem-specific loss, the cross-modal loss and
cross-task loss to train the model, i.e.,

L𝑜𝑢𝑟 = 𝜆1L𝑏𝑎𝑠𝑒 + 𝜆2L𝑚𝑜𝑑𝑎𝑙 + 𝜆3L𝑡𝑎𝑠𝑘 , (12)

where 𝜆1,𝜆2 and 𝜆3 are set to 0.8,0.1,0.1 to balance the three losses.
Additional training and inference details are provided in the sup-
plementary material.

5 EXPERIMENTS
In this section, we perform experiments on two vision-language
retrieval tasks under the same class-incremental learning scenario
[31], where we need to solve each task seen so far with task iden-
tity unknown. We compare our proposed LPI with state-of-the-art
methods and conduct ablation studies.

5.1 Experiment Setting
5.1.1 Model. We propose two models, LPI-M(ini) and LPI-P(ro).

LPI-M: The LPI-M employs the Low-rank Interaction Decom-
position module to compress visual and textual prompts and in-
corporates Hierarchical Prompt Alignment and Cross-task Prompt
Alignment during the training phase.

LPI-P: The LPI-P incorporates Cross-modal Prompt Fusion on
top of LPI-M.

LPI-M can extract uni-modal features separately, and saving the
uni-modal features of the retrieved objects in advance can enhance
retrieval speed. LPI-P, on the other hand, carries out the cross-modal
interaction, demonstrating higher performance.

5.1.2 Dataset and Task Division. We conduct experiments on two
visual-language retrieval tasks, namely image-text retrieval and
referring expression comprehension. For the image-text retrieval
task, we select the MS-COCO [18] dataset, while for the referring
expression comprehension task, we choose the RefCOCO[38], Re-
fCOCO+[38], and RefCOCOg[22] datasets. We divide the whole
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Table 1: Performance Evaluation on Image-Text Retrieval. Bold: best results, Underline: second best results.

Method Image-to-Text Retrieval Text-to-Image Retrieval
R@1(↑) R@5(↑) R@10(↑) Forgetting(↓) R@1(↑) R@5(↑) R@10(↑) Forgetting(↓)

CLIP [24] 67.87 87.71 93.78 0.71 49.38 78.55 88.45 2.17

L2P [36] 64.45 84.09 91.30 7.17 52.98 80.54 89.62 3.75
S-Prompt [34] 67.27 87.88 93.56 4.48 54.13 83.02 91.24 3.41

LPI-M 70.29 88.92 95.46 3.71 56.09 84.21 92.03 4.73

Table 2: Performance Evaluation on Referring Expression Comprehension. Bold: best results, Underline: second best results.

Dataset Metric GLIP-T (A) [16] L2P [36] S-Prompts [34] MaPLe [12] DCP [19] LPI-M LPI-P

RefCOCO

val

R@1(↑) 29.58 29.65 30.48 27.93 27.45 31.27 33.00
R@5(↑) 74.10 74.54 77.72 79.12 79.28 82.05 83.55
R@10(↑) 81.87 81.62 88.96 90.44 89.95 90.72 91.39
Forgetting(↓) - 0.38 1.85 3.54 2.86 2.45 2.38

testA

R@1(↑) 29.62 29.65 33.50 28.33 35.34 37.38 37.17
R@5(↑) 76.00 74.92 74.24 76.95 71.98 82.33 84.56
R@10(↑) 81.54 80.73 82.62 82.05 80.20 92.01 91.95
Forgetting(↓) - -0.09 2.07 3.32 7.37 11.66 12.26

testB

R@1(↑) 32.48 32.40 34.28 32.95 32.93 35.30 37.10
R@5(↑) 77.73 78.18 84.06 84.54 84.18 85.27 86.24
R@10(↑) 83.26 84.31 91.56 92.26 91.41 92.60 92.74
Forgetting(↓) - 0.40 1.65 1.61 1.08 1.56 1.53

RefCOCO+

val

R@1(↑) 29.77 29.67 29.73 27.78 27.97 30.99 31.72
R@5(↑) 72.43 72.61 79.07 79.78 80.47 80.43 82.76
R@10(↑) 79.05 79.03 89.28 90.06 89.75 90.86 91.81
Forgetting(↓) - 0.46 2.46 3.28 3.28 2.37 2.53

testA

R@1(↑) 34.32 31.31 33.89 31.96 32.11 33.03 30.20
R@5(↑) 73.91 74.29 75.94 75.72 72.05 75.20 74.95
R@10(↑) 81.88 81.95 86.63 81.83 80.59 84.77 84.31
Forgetting(↓) - 0.44 6.59 4.03 15.31 4.69 3.29

testB

R@1(↑) 32.15 31.95 35.91 33.49 32.82 35.98 37.02
R@5(↑) 75.63 76.67 83.75 85.23 83.87 84.68 86.52
R@10(↑) 82.07 83.20 92.00 92.09 91.05 93.52 93.32
Forgetting(↓) - 0.24 2.22 2.14 2.07 2.04 1.40

RefCOCOg

val

R@1(↑) 41.81 42.07 39.32 36.79 35.47 40.94 42.30
R@5(↑) 81.49 81.45 83.84 79.88 78.86 84.48 84.66
R@10(↑) 85.94 85.73 89.85 88.71 87.03 91.09 91.68
Forgetting(↓) - 0.34 3.20 4.89 4.83 4.07 4.26

test

R@1(↑) 41.48 41.07 37.99 36.74 34.76 40.02 41.46
R@5(↑) 82.26 82.14 83.12 79.19 78.84 84.81 84.50
R@10(↑) 86.57 86.67 90.51 87.63 86.97 91.61 91.70
Forgetting(↓) - 0.55 3.78 5.02 4.97 4.44 4.66

dataset into 12 categories according to the super category of the
images, which are appliance, sports, outdoor, electronic, accessory,
indoor, kitchen, furniture, vehicle, food, animal, and person. Further
details can be found in the supplementary materials.

5.1.3 Evaluation Metrics. We conduct experiments under the class-
increment setting, utilizing Average Accuracy and Forgetting as

metrics following previous work [20, 21]. Specifically, we compute
the Recall at K, denoted as 𝑅@𝐾 , which means the recall rate of
samples containing the target within the top K results ranked by the
predicted probability of retrieval. The forgetting rate, represented
as 𝐹@𝐾 , is derived by subtracting the maximum value of 𝑅@𝐾
from previous tasks from the value of 𝑅@𝐾 obtained from the most
recent task test. 𝐹𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑛𝑔 is the average of 𝐹@1, 𝐹@5, and 𝐹@10.



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Low-rank Prompt Interaction for Continual Vision-Language Retrieval ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

5.1.4 Implementation Detail. We set the prompt length 𝐿𝑣 = 𝐿𝑙 =
16, 𝜏𝑚𝑜𝑑𝑎𝑙 = 0.01, 𝜏𝑡𝑎𝑠𝑘 = 0.01, and 𝜆𝑣 = 𝜆𝑙 = 0.9. The prompt and
interaction rank is set to 4. For the image-text retrieval task, all
the training images are resized to 224 × 224. We select CLIP(ViT-
B/16) as the backbone. We set 𝑑𝑣 = 768, 𝑑𝑙 = 512, 𝑒𝑝𝑜𝑐ℎ = 5,
learning rate 𝑙𝑟 = 0.01. For the referring expression comprehension
task, all the training images are resized to 448 × 448. We select
GLIP-T(A) as the backbone. We set 𝑑𝑣 = 96, 𝑑𝑙 = 768, 𝑒𝑝𝑜𝑐ℎ = 10,
learning rate 𝑙𝑟 = 0.05, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.4. To train Our model, we
use Adam optimizer with the cosine annealing scheduler. Further
experimental details can be found in the supplementary material.

5.2 Performance Evaluation
5.2.1 Baselines. We compare our proposedmethodwith pre-trained
CLIP [24], GLIP [16], and prompt-based methods including L2P [36],
S-Prompts [34], MaPLe [12], and DCP [19]. L2P and S-Prompts
employ the uni-encoder for feature extraction. MaPLe and DCP
account for the cross-modal interaction. Given that some of these
methodologies are not originally tailored for a continual learning
framework, we adapt them by incorporating their prompt tuning
strategies.

5.2.2 Image-text Retrieval. The results of the image-text retrieval
are shown in Tab. 1. Compared to CLIP, LPI-M shows improvements
across all metrics, yet it has a higher 𝐹𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑛𝑔. In contrast to L2P,
LPI-M demonstrates enhancements in every benchmark. LPI-M
marginally surpasses S-Prompts in 𝑅@1, 𝑅@5, and 𝑅@10, while
maintaining a similar 𝐹𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑛𝑔.

5.2.3 Referring Expression Comprehension. Tab. 2 presents the re-
sults of the referring expression comprehension. Our method shows
significant improvements in 𝑅@1, 𝑅@5, and 𝑅@10, while its per-
formance on the 𝐹𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑛𝑔 is average. We observe that L2P has
the lowest 𝐹𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑛𝑔 in most tasks but limited improvement in
𝑅𝑒𝑐𝑎𝑙𝑙 . In some tasks, its performance is even lower than the base
model GLIP. This is attributed to training prompts for each task,
where an incorrect prediction of task identity can mislead the infer-
ence. S-Prompts achieves a more balanced improvement in Recall
compared to the base model. MaPLe and DCP show significant
improvements in 𝑅@5 and 𝑅@10, though their 𝑅@1 is lower than
GLIP on some test datasets.

DCP, LPI-M, and LPI-P exhibit a high 𝐹𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑛𝑔 of up to 10%
on testA of refcoco and refcoco+. A deeper analysis reveals that
testA datasets have very few test samples in most tasks, leading to
a significant drop in recall if even one sample is forgotten.

LPI-M and LPI-P surpass other comparative approaches on most
metrics for the referring expression comprehension task. Specif-
ically, LPI-M is well-suited for scenarios with a small number of
training samples per task, while LPI-P is appropriate when there is
an abundance of training samples for each task, as this allows for
better learning of cross-modal and cross-task interactions, resulting
in improved performance.

5.3 Ablation Study
We conduct ablation experiments on RefCOCO for the referring
expression comprehension and calculate the metrics on the val

dataset. We adopt the approach known as Decomposition Prompt-
ing (DP), which utilizes the low-rank interaction decomposition
module. The method without prompt compression is referred to as
Common Prompting (CP). Tab. 3 presents the metrics associated
with the incorporation of different modules. TP indicates the type
of prompting, DP or CP. The ablation experiment on prompt and
interaction depth, as well as qualitative analysis, are provided in
the supplementary material.

5.3.1 Effectiveness of Different Modules. We conduct an ablation
study to explore the effectiveness of different modules, Hierarchical
Prompt Alignment (HPA), Cross-modal Prompt Fusion (CPF), and
Cross-task Prompt Alignment (CPA). The results are shown in the
Tab. 3. It can be observed that HPA, CPF, and CPA all contribute to
improvements in 𝑅@1, 𝑅@5, and 𝑅@10. Specifically, CPF allows
the encoder to extract features more effectively by leveraging in-
formation from other modalities, which significantly enhances the
𝑅@1, 𝑅@5, and 𝑅@10. CPA reduces the distance between prompts
of similar tasks, meaning that even if the task identity predicted
during the inference stage is for a similar task, the prompts of these
similar tasks still provide a certain level of guidance. Therefore, this
increases the model’s fault tolerance. The HPA achieves hierarchi-
cal alignment of encoders across different modalities, effectively
constraining prompt updates and reducing the 𝐹𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑛𝑔.

We further conduct experiments on Low-rank Interaction De-
composition and find that not compressing the prompt results in
very poor performance on 𝑅@1. Although there is a slight improve-
ment in the 𝑅@5 and 𝑅@10 metrics, it leads to a higher 𝐹𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑛𝑔.
Utilizing the CP strategy on LPI-P even underperforms the method
that only uses DP. The analysis suggests that the prompts require
more resources to train and random initialization cannot align well
between modalities during the training process.

Table 3: Ablation Study for Different Modules.

Module Metric

HPA CPF CPA TP R@1 R@5 R@10 Forgetting

- - - - 29.58 74.10 81.87 -
- - - CP 27.10 76.04 87.25 3.19
- - - DP 31.14 79.52 89.26 2.80
- - ✓ DP 31.22 82.21 90.78 2.52
- ✓ - DP 31.99 83.33 90.99 2.50
✓ - - DP 30.84 80.98 89.87 2.24
✓ ✓ - DP 31.74 83.76 91.30 2.65
✓ - ✓ DP 31.27 82.05 90.72 2.45
- ✓ ✓ DP 32.34 83.37 91.05 2.52
✓ ✓ ✓ CP 27.72 77.68 88.90 3.13
✓ ✓ ✓ DP 33.00 83.55 91.39 2.38

5.3.2 Rank. We set the rank of the interaction module to 4 and
vary the prompt rank at 1, 2, 4, 8, and 16. The results, as shown
in Fig. 5 (a) and (b), indicate that 𝑅@𝐾 initially increases and then
decreases with the increase of the prompt rank, peaking at a rank
of 4. Conversely, 𝐹𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑛𝑔 follows the exact opposite pattern. We
set the prompt rank to 4 and experiment with interaction rank at
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1, 2, 4, 8, and 16, obtaining comparable results, as shown in Fig. 5
(c) and (d). Overall, as the interaction rank increases, 𝑅@𝐾 initially
rises and then falls, with a significant decrease in the 𝑅@1 only
observed when the interaction rank is set to 8. As for the 𝐹𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑛𝑔,
the value initially increases and then decreases, similar to that of
prompt rank.

(a) Recall@K (b) Forgetting

(c) Recall@K (d) Forgetting

Figure 5: Metrics with Different Prompt and Interaction
Rank.

5.4 In-depth Analysis
5.4.1 Computational Complexity. Tab. 4 presents the number of in-
troduced parameters and computational requirements for different
models. Our proposed model introduces a minimal number of pa-
rameters to facilitate the interaction between modalities compared
with MaPLe and DCP. Notably, the computational requirement of
LPI-M is consistent with that of L2P and S-Prompts.

Table 4: Comparison of Computational Complexity.

Method Param Param% Param%/Task GFLOPS

L2P [36] 5760 0.0038 0.0003 3349.41
S-Prompts [34] 0.17M 0.1089 0.0091 3349.41
MaPLe [12] 9.30M 5.7586 0.4799 3349.92
DCP [19] 88.36M 36.7320 3.0610 3354.47

LPI-M 0.04M 0.0285 0.0024 3349.41
LPI-P 0.148M 0.0971 0.0081 3349.47

5.4.2 Metrics for All Tasks. Fig. 6 presents the metrics across 12
tasks for GLIP, Decomposition Prompting (DP) which solely em-
ploys the low-rank interaction decomposition module, LPI-M, and
LPI-P. From the figure, it is evident that for the Recall metrics, LPI-P
performs the best in most tasks, followed by LPI-M, then DP, with
GLIP showing the lowest performance. In terms of the 𝑅@1 met-
ric, the GLIP outperforms other methods in the appliance, person,

and furniture tasks. For the 𝑅@5 and 𝑅@10, the use of the prompt
technique results in improvements across all tasks. Regarding the
𝐹𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑛𝑔, DP, LPI-M, and LPI-P exhibit the high 𝐹𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑛𝑔 in
sports, furniture, kitchen, accessory, and electronic tasks.

R@1 R@5

R@10 Forgetting

Figure 6: Metrics for All Tasks.

5.4.3 Prompt Visualization. We employ t-SNE [32] to visualize
the visual and textual prompts learned by different methods. As is
observed from the Fig. 7, prompts obtained through low-rank inter-
action decomposition are more clustered, whereas uncompressed
prompts are quite dispersed.

Figure 7: Visual and Textual Prompt Visualization.

6 CONCLUSION
In this paper, we propose a novel Low-rank Prompt Interaction
method that considers both cross-modal and cross-task interactions.
We further conduct experiments in the class-incremental setting
on two vision-language tasks, image-text retrieval and referring
expression comprehension. The results compared with state-of-the-
art methods demonstrate the effectiveness of our method.
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