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1 METHOD
1.1 Training and Inference
1.1.1 Training. After the training is completed, we employ the
visual encoder to extract the visual features from all the training
images without prompts. Subsequently, we apply K-Means clus-
tering to these visual features, selecting five visual centroids as
task-specific keys. For the image-text retrieval task, we extract
five textual centroids the same as visual centroids for task identity
prediction.

1.1.2 Inference. During the inference stage, we first predict which
task the image/caption belongs to by extracting its visual/textual
features without prompts. We then use the K-NN (k-nearest neigh-
bors) algorithm to find the task-specific keys closest to the image/-
caption features. The task associated with this task-specific keys
is identified as the task to which the predicted image/caption be-
longs. For the image-text retrieval task, we should predict image
task identity and caption task identity independently while for the
referring expression comprehension task, we only need to predict
the task identity according to the image. Subsequently, we select
the prompts and interaction module associated with this task to
perform target prediction.

2 EXPERIMENT
2.1 Dataset and Task division
We conduct experiments on two visual-language retrieval tasks,
Image-text Retrieval and Referring Expression Comprehension. For
the image-text retrieval task, we select the MS-COCO [3] dataset,
while for the referring expression comprehension task, we chose
the RefCOCO [6], RefCOCO+ [6], and RefCOCOg [4] datasets.

All four datasets are based on the same MSCOCO2014 image
dataset but come with different annotations, with each image cor-
responding to multiple captions. Thus, we adhere to the same task
division criteria. We divide all data into 12 categories according
to the super category, which are appliance, sports, outdoor, elec-
tronic, accessory, indoor, kitchen, furniture, vehicle, food, animal
and person.

For the referring expression comprehension task, we select three
datasets, eachwith distinct characteristics. RefCOCO and RefCOCO+
include subsets for train, val, testA, and testB; while RefCOCOg
comprises subsets for train, val, and test. Throughout our exper-
imental process, we exclusively use the train dataset to train our
models and subsequently evaluate their performance on both the
test and val subsets.For RefCOCO and RefCOCO+, the val subsets
provide a sufficient number of training samples for each task. TestA
is predominantly human-centered; therefore, for tasks except for
person, there are fewer training samples available. As for testB, this
subset does not contain images with people, leading us to define
only 11 tasks for evaluation on testB.

2.2 Implementation Detail
For the image-text retrieval task, we employ CLIP as the backbone.
CLIP extracts features from images and text, after which we directly
compute logits using visual and textual features. These logits are
then utilized as scores for retrieval purposes. Regarding the task of
referring expression comprehension, we use GLIP as the backbone.
GLIP comprises a vision encoder, a language encoder and a Region
Proposal Network (RPN). We use the vision encoder and language
encoder to extract the visual and textual features. Then input the
visual and textual features to the RPN to predict bounding boxes.
We freeze these networks and only update the prompts and the
cross-modal prompt fusion module.

3 ABLATION STUDY
We add more ablation experiments in this section.

3.1 Prompt Depth

R@K Forgetting

Figure 1: Metrics for Different Prompt Depth.

We investigate the impact of prompt depth. Specifically, with
prompt depth set to 𝑖 , we employ decomposition prompting and
the cross-modal prompt fusion module in the first 𝑖 layers of the
encoder. The experimental results are shown in Figure 1.

The performance of 𝑅@1 initially increases and then decreases,
achieving optimal performance at a depth of 4. As the depth in-
creases,𝑅@5and𝑅@10 experience a gradual increase. The 𝐹𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑛𝑔
first decreases and then increases when the depth is less than 9,
followed by a decreasing trend at greater depths.

3.2 Qualitative Analysis
In this section, we conduct a qualitative analysis of GLIP [2], S-
Prompts [5], MaPLe [1], and LPI-P. Fig. 2 and 3 present the visu-
alization results of different models. In the caption, the red font
indicates positive tokens. For the inference results, we select the
top five predicted bounding boxes for visualization, namely the
𝑅@5 candidate boxes. These are sorted by confidence scores, from
highest to lowest, with the bounding boxes colored inBLUE,CYAN,
RED, GREEN, and PINK, respectively. The targets are annotated
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Figure 2: Qualitative Analysis of Task 0 to 5.
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Figure 3: Qualitative Analysis of Task 6 to 11.
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within white bounding boxes in the Ground Truth column. From
these images, we can draw the following conclusions:

• The pre-trained GLIP model is capable of identifying objects
in captions, but it exhibits weaker recognition abilities for
positional words such as "middle," "left," "right," and colors
like "orange" and "red,".

• For objects with unclear references, GLIP struggles to accu-
rately identify them, as seen in tasks 3 and 5.

• When it comes to captions with spelling errors, GLIP’s ac-
curacy significantly drops, as observed in tasks 2, 4, and
10.

• In the case of complex captions, LPI-P performs optimally,
as shown in task 8.

• Maple tends to overfit, meaning it underperforms compared
to GLIP on simple tasks like task 9 and 11.

In summary, the GLIP model struggles to understand positional
words and colors in captions. S-Prompts using prompt techniques
can enhance the understanding of captions while it falls short
in aligning text and image content accurately. MaPLe and LPI-P
demonstrate superior performance in most tasks. However, due to
a lack of constraints in learning prompts, MaPLe is prone to over-
fitting, failing to achieve desired results in simple tasks. Our model

LPI-P employs contrastive learning with additional constraints for
improved performance and is capable of understanding more com-
plex texts.

REFERENCES
[1] Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan,

and Fahad Shahbaz Khan. 2023. Maple: Multi-modal prompt learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
19113–19122.

[2] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan
Li, Yiwu Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. 2022.
Grounded language-image pre-training. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 10965–10975.

[3] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer, 740–
755.

[4] Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L. Yuille,
and Kevin Murphy. 2016. Generation and Comprehension of Unambiguous Object
Descriptions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[5] Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. 2022. S-prompts learning with
pre-trained transformers: An occam’s razor for domain incremental learning.
Advances in Neural Information Processing Systems 35 (2022), 5682–5695.

[6] Licheng Yu, Patrick Poirson, Shan Yang, Alexander C. Berg, and Tamara L. Berg.
2016. Modeling Context in Referring Expressions. arXiv:1608.00272 [cs.CV]

https://arxiv.org/abs/1608.00272

	1 Method
	1.1 Training and Inference

	2 Experiment
	2.1 Dataset and Task division
	2.2 Implementation Detail

	3 Ablation Study
	3.1 Prompt Depth
	3.2 Qualitative Analysis

	References

