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Appendix A META LEARNING FOR
GENERALIZABILITY

By leveraging meta-learning to enhance generalizability [62], our

representative model selection (see Section 4.4 for details) with the

limited selection of models does not compromise the effectiveness

of generated fingerprint samples in detecting unseen tampering

types.

It is impossible to directly minimize Eq. 3 for each potentially

rejected model since there are too many potential variations in

real-world applications. We leverage meta-learning to generate

generalizable fingerprint samples with a small number of rejected

models. Let Z be the model zoo in meta-learning, and rejected

models inZ be F𝑟𝑖 , 𝑖 = 0, · · · , |Z| − 1, where |Z| is the cardinality
ofZ. We randomly partition rejected models inZ into train models

and test models in each meta-learning iteration, and reduce the gap

of effectiveness between the two sets of models. More specifically,

in (𝑘+1)𝑡ℎ iteration, the fingerprint updated in the 𝑘𝑡ℎ iteration, 𝑥𝑘 ,
is taken as the start point,𝑚 rejected models are randomly selected

fromZ to as the train model setS𝑘+1
𝑡𝑟𝑎𝑖𝑛

, with the remaining rejected

models as the test model set S𝑘+1𝑡𝑒𝑠𝑡 . First, the train model set is used

to update 𝑥𝑘 for 𝑇 iterations to get 𝑥𝑇
𝑘
:

𝑥0
𝑘
= 𝑥𝑘 ,

𝑥𝑡+1
𝑘

= 𝐶𝑙𝑖𝑝𝜖 (𝑥𝑡𝑘 − 𝜂 · ∇𝑥𝑡𝑘 ℓ𝑠𝑒𝑡 (𝑥
𝑡
𝑘
, F𝑝 ,S𝑘+1𝑡𝑟𝑎𝑖𝑛)),

(6)

where 𝑡 = 0, 1, · · · ,𝑇 − 1 and

ℓ𝑠𝑒𝑡 (𝑥, F𝑝 ,S) =
1

|𝑆 |
∑︁
F𝑟𝑖 ∈S

ℓ𝑡𝑜𝑡𝑎𝑙 (𝑥, F𝑝 , F𝑟𝑖 ) (7)

Then, the test model set is used to calculate the gradient over 𝑥𝑇
𝑘
to

update 𝑥𝑘 as follows,

𝑥𝑘+1 = 𝐶𝑙𝑖𝑝𝜖 (𝑥𝑘 − 𝜂 · ∇𝑥𝑇
𝑘
ℓ𝑠𝑒𝑡 (𝑥𝑇𝑘 , F𝑝 ,S

𝑘+1
𝑡𝑒𝑠𝑡 )) (8)

Appendix B MISENTRY’S GENERATION
ALGORITHM

The optimization process of MiSentry’s fingerprint generation is

illustrated in Algorithm 1.

Appendix C IMPLEMENTATION DETAILS
In the main paper, we have presented the overall pipeline of MiS-

entry. Here we provide more implementation details of fingerprint

generation, tampering construction, model zoo, and experimental

settings.

C.1 Fingerprint Generation Settings
We use the existing state-of-the-art (SOTA) fingerprinting methods,

SSF [22] and PublicCheck [58], as the baselines to compare within

our evaluation. For SSF, its official open-source code [20] with

default settings is used in our experiments. In SSF, the 𝐿2-norm

is used to bind a fingerprint sample from a normal sample. To

compare with SSF, the 𝐿2-norm is also used in Eq.3 in the main

paper for MiSentry. In our experiments, we set the 𝐿2-norm bound,

𝜖 in Eq.3, as 3.5, 3.5, and 21.5 for CIFAR10, GTSRB, and ImageNet,

respectively, for both SSF and MiSentry. For PublicCheck, we use

VQVAE [55] to generate fingerprint samples located around the

Algorithm 1 Fingerprint Generation of MiSentry

Input: Max iteration of meta-train update 𝑡𝑡𝑟𝑎𝑖𝑛 , Max iteration

of meta-test update 𝑡𝑡𝑒𝑠𝑡 , Initial data 𝑥0, Model to reject for

meta-train update F 𝑡𝑟𝑎𝑖𝑛𝑟 , Model to reject for meta-test update

F 𝑡𝑒𝑠𝑡𝑟 , distortion bound 𝜖 , Target model F𝑝 , learning rate 𝜂
Output: Fingerprint 𝑥𝑡
1: procedure Fingerprint Genera-

tion(𝑡𝑡𝑟𝑎𝑖𝑛, 𝑡𝑡𝑒𝑠𝑡 , 𝑥0, F 𝑡𝑟𝑎𝑖𝑛𝑟 , F 𝑡𝑒𝑠𝑡𝑟 , F𝑝 , 𝜖, 𝜂, 𝛼)
2: 𝑥𝑡𝑒𝑠𝑡

0
= 𝑥0 ← init outer state

3: for i=1:𝑡𝑡𝑒𝑠𝑡 do # meta-test loop

4: 𝑥𝑡𝑟𝑎𝑖𝑛
𝑖,0

= 𝑥𝑡𝑒𝑠𝑡
𝑖

5: for k=1:𝑡𝑡𝑟𝑎𝑖𝑛 do # meta-train loop

6: Compute ℓ𝐷 (𝑥𝑡𝑟𝑎𝑖𝑛𝑖,𝑘
, F𝑝 , F 𝑡𝑟𝑎𝑖𝑛𝑟 )

7: Compute ℓ𝐸𝑝 (𝑥𝑡𝑟𝑎𝑖𝑛𝑖,𝑘
, F𝑝 )

8: Compute ℓ𝐸𝑡𝑟𝑎𝑖𝑛𝑟
(𝑥𝑡𝑟𝑎𝑖𝑛
𝑖,𝑘

, F 𝑡𝑟𝑎𝑖𝑛𝑟 )
9: ℓ𝑡𝑜𝑡𝑎𝑙 (𝑥𝑡𝑟𝑎𝑖𝑛𝑖,𝑘

, F𝑝 , F 𝑡𝑟𝑎𝑖𝑛𝑟 ) = ℓ𝐷 +𝜆1 · ℓ𝐸𝑝 +𝜆2 · ℓ𝐸𝑡𝑟𝑎𝑖𝑛𝑟

10: 𝑥𝑡𝑟𝑎𝑖𝑛
𝑖,𝑘+1 = 𝐶𝑙𝑖𝑝𝜖 (𝑥𝑡𝑟𝑎𝑖𝑛𝑖,𝑘

− 𝜂 · ∇𝑥𝑡𝑟𝑎𝑖𝑛
𝑖,𝑘

ℓ𝑡𝑜𝑡𝑎𝑙 ) ← meta-

train update

11: Compute ℓ𝐷 (𝑥𝑡𝑟𝑎𝑖𝑛𝑖,𝑡𝑡𝑟𝑎𝑖𝑛
, F𝑝 , F 𝑡𝑒𝑠𝑡𝑟 )

12: Compute ℓ𝐸𝑝 (𝑥𝑡𝑟𝑎𝑖𝑛𝑖,𝑡𝑡𝑟𝑎𝑖𝑛
, F𝑝 )

13: Compute ℓ𝐸𝑡𝑒𝑠𝑡𝑟
(𝑥𝑡𝑟𝑎𝑖𝑛
𝑖,𝑡𝑡𝑟𝑎𝑖𝑛

, F 𝑡𝑒𝑠𝑡𝑟 )
14: ℓ𝑡𝑜𝑡𝑎𝑙 (𝑥𝑡𝑟𝑎𝑖𝑛𝑖,𝑡𝑡𝑟𝑎𝑖𝑛

, F𝑝 , F 𝑡𝑒𝑠𝑡𝑟 ) = ℓ𝐷 + 𝜆3 · ℓ𝐸𝑝 + 𝜆4 · ℓ𝐸𝑡𝑒𝑠𝑡𝑟

15: 𝑥𝑡𝑒𝑠𝑡
𝑖+1 = 𝐶𝑙𝑖𝑝𝜖 (𝑥𝑡𝑒𝑠𝑡𝑖

− 𝜂 · ∇𝑥𝑡𝑟𝑎𝑖𝑛
𝑖,𝑡𝑡𝑟𝑎𝑖𝑛

ℓ𝑡𝑜𝑡𝑎𝑙 ) ← meta-test

update

16: return 𝑥𝑡𝑒𝑠𝑡𝑡𝑡𝑒𝑠𝑡
as fingerprint 𝑥𝑡

decision boundary. We train VQVAEs with the training set for

CIFAR-10 and GTSRB using Pythea [6] and use the pre-trained

VQVAE of ImageNet from [13].

C.2 Tampering Settings
We construct a benchmark for DNN integrity verification, which

contains all the benign and malicious modifications listed in Sec-

tion 3.1 in the main paper. We set each type of modification hardest

to distinguish from the target model in our evaluation.

Specifically, we stop a modification to a target model as soon

as the tampering goal is achieved to make the modification to the

target model as subtle as possible. The default learning rate is set

to 1.0×10−4 for all model modifications. The batch size is set to 64

for all the three datasets.

For unlearning, online learning, poisoning degradation attacks,

and targeted attacks, a single sample is manipulated to minimize

modifications to a target model: we set the model to unlearn a

single sample randomly selected from its training set for unlearning,

incrementally learn a single sample randomly selected from its

test set for online learning, randomly mislabel a training sample

for poisoning degradation attacks, and randomly select a training

sample and assign the label with the minimal moving distance

from the original label at the penultimate layer for targeted attacks.

With this setting, we expect that the targeted attack makes subtler

modifications to the target model than the poisoning degradation

attack. All layers are fine-tuned for poisoning degradation attacks,
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while only the last FC layer is fine-tuned for targeted attacks. For

poisoning degradation attacks, we also conduct an experiment

to randomly or specifically mislabel all training samples from a

category randomly selected. In model tampering, the single sample

manipulation is combined with the original learning task in multi-

task learning to achieve the goal while preserving the model’s

accuracy. We check whether the manipulation goal is achieved

every 10 steps, and stop the training when the manipulation goal

is achieved.

For fine-tuning and re-training, both the last layer and all layers

are set tunable. Re-training with all layers tunable is equivalent to

training the same network on the same training data with random

initialization. For fine-tuning, different learning rates of 1.0× 10−𝑙𝑟 ,
𝑙𝑟 ∈ {−3,−4,−5} are used to train 1 epoch. For retraining, the

learning rate is initially set to 0.001 and decays by timing 0.1 every

time the validation loss hasn’t descended for the last 5 epochs. The

training is terminated when the learning rate is smaller than 10
−5
.

For pruning, we use the official pruningAPI ofMicrosoft NNI [39]

and set the pruning ratio to 20%. For quantization, we use the dy-

namic quantization API [11] officially provided by Pytorch and

convert a target model from 32-bit float to 8-bit integer.

For knowledge distillation, we use the code of Torchdistill [38]

and set the 𝛼 to 1.0 and temperature to 3.0, and the learning rate is

set and adjusted in the same way as in the retraining.

For transfer learning, we require both models to have the same

labels (otherwise it is easy to differentiate the two models without

using a fingerprinting method). For CIFAR10, we transfer from a

pre-trained CIFAR10 model to STL10 by fine-tuning the last layer

on STL10. STL10 shares the same 10 categories as CIFAR10 but

is acquired from labeled examples of ImageNet. We cannot find

such matching datasets for GTSRB and ImageNet and thus cannot

evaluate transfer learning for these two datasets.

For both backdoor attack [16] and Trojan attack [36], we use the

open-source code [1, 57] with a square trigger placed at the right

bottom corner for all the three datasets. The trigger size is 4 × 4
pixels for CIFAR10 and GTSRB and 8 × 8 pixels for ImageNet. The

injection rate is set to 0.1 for both attacks.

For clean label attack [63], we adopt the settings in PublicCheck

as the default settings during the generation of adversarial samples.

In the phase of backdoor trigger injection, we use the same trigger

size as the backdoor and Trojan attack mentioned above.

For bit-flipping attacks, we use the open-source code [21] and

flip the most important bit.

We also use models of the same and different architectures and

independently train with the same and different datasets as the

target model in our evaluation for the uniqueness requirement. The

details will be described in the following Section C.3.

C.3 Model Settings
Models in the model zoo. The rejected models in the model

zoo of our meta-learning are the models with the following three

benign modifications to the target model for all three datasets: fine-

tuning the last layer and all layers at a learning rate of 10
−5

and

random start (retraining all layers) with the same architecture. Five

independent models are generated for each benignmodification and

included in the model zoo for meta-learning, except for the random

start of ImageNet. Training an ImageNet model from scratch takes

too much time, so we alternatively take a model of DenseNet121

from another independent public model zoo [10].

Test models. The models used in our testing are all independent

of the models in the model zoo of meta-learning. Unless stated

otherwise, 10 models are generated for testing each tampering type.

For the bit-flipping attack, since the bit-to-flip is deterministic, only

one test model is generated. For different architectures, we use

10 different architectures [9, 18, 24, 25, 52] and collect their pre-

trained models from [45] for ImageNet and from [8] for CIFAR10.

Since there is no publicly pre-trained model for GTSRB, we train

10 models, one for each architecture, from scratch.

C.4 Tamper Detection Setting
Tamper detection. The integrity of a model is verified by selecting

a set of fingerprint samples, S𝐹 , to query the model and compare

its returned top-1 labels with the ground truth (i.e., the top-1 labels

returned by the original model to protect). The model is determined

to be untampered only if the returned labels are all matched. In

other words, the model is detected as being tampered with if one

of the querying fingerprint samples has a returned top-1 label that

disagrees with its ground truth.

Fingerprint selection. For MiSentry and PublicCheck, we inde-

pendently generate 100 fingerprint samples and randomly select 𝑁𝑆
fingerprint samples to conduct tamper detection each time. For SSF,

we independently generate 2000 fingerprint samples and select 𝑁𝑆
samples with the maximum coverage of active neurons from 100

randomly sampled fingerprint samples to conduct tamper detection

each time. For each tamper detection, the selected 𝑁𝑆 fingerprint

samples are used to query each model to verify integrity.

Tamper detection rate. To calculate the tamper detection rate,

we repeat the tamper detection process 100 times for each model to

test, each time with an independent set of 𝑁𝑆 fingerprint samples

selected with the method described above. The detection rate is the

ratio of detected models to the total number of tests. For example,

the detection rate for unlearning reported in Table 1 is the number

of detected models divided by 1000 (= 10 test models × 100 detection
times per model).

Appendix D PERCEPTUAL QUALITY
Fig. 8 shows some fingerprint samples generated by MiSentry, SSF,

and PublicCheck on ImageNet, and Fig. 7 shows those on CIFAR10

and GTSRB, accompanied by their respective source samples. These

fingerprint samples exhibit a natural appearance, and the perturba-

tions they introduce to the source samples are almost indiscernible.

The perceptual quality of these samples is comparable to that of

adversarial examples generated by the Projected Gradient Descent

(PGD) method.

Appendix E DETAILED EXPERIMENTAL
RESULT OF ADAPTIVE
TAMPERING ATTACKS

We present the tampering detection rates using a single fingerprint

sample for adaptive fine-tuning last-layer attacks for the three

methods with different numbers of leaked fingerprinting samples
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(a) CIFAR-10

(b) GTSRB

Figure 7: Perceptual quality of fingerprint samples gener-
ated on CIFAR10 and GTSRB dataset. Top row: source images.
Second row: fingerprint images generated by MiSentry from
the source images. Third row: fingerprint images generated
by SSF. Bottom row: fingerprint images generated by Public-
Check.

in Fig.9, and that for adaptive backdoor attacks in Fig.4 in the main

paper.

Appendix F PERFORMANCE COMPARISON
WITH SSF-BO

As a variant of SSF, SSF-BO [34] uses Bayesian optimization (BO)

to generate fingerprint samples. Due to the difficulty of directly

optimizing in high-dimensional input spaces, SSF-BO first maps

the input space into a lower-dimensional latent space using a Vari-

ational Autoencoder (VAE). It then searches within the latent space

for an input that maximizes the difference in predictions between

the original model (held locally by the model owner) and the model

being verified for integrity (deployed in the cloud and potentially

compromised). As a result, fingerprint samples generated by SSF-

BO are tailored to distinguish the target model-tampering type

from the original model.

We have compared the performance of SSF-BO with SSF, Public-

Check, and our MiSentry on MNIST. In our comparison, we use the

code of SSF-BO from [42], with its default settings in the code being

used. In testing its performance for each type of model-tampering,

we use SSF-BO to generate fingerprint samples specifically tailored

for the particular tampering type to avoid any mismatch between

the tampering type of the model to verify integrity and the target

tampering type the fingerprint samples are tailored to, thus en-

suring that the resulting experimental performance represents the

best that SSF-BO can achieve. In our experiments, the 𝐿2 bound for

MNIST is set to 0.8 for both SSF and SSF-BO.

The detection rates of SSF-BO, SSF, PublicCheck, and our MiSen-

try on MNIST using a single fingerprint sample for different model

tampering types are shown in Table 4. We can see that

• SSF-BO outperforms SSF in detecting backdoor attacks and

model pruning.

• SSF-BO can hardly or even not detect subtle modifications

including targeted attacks, fine-tuning, and unlearning.

• MiSentry surpasses SSF-BO in detecting all the tested model

tampering, esp. for subtle modifications.

Table 4: The tamper detection rate (%) with 𝑁𝑠 = 1 for MNIST.

Tampering\Methods SSF SSF-BO PubCheck MiSentry
backdoor(epoch=10) 75.3 90.1 91.6 93.4

backdoor(epoch=1) 51.8 61.2 67.5 83.7

FTLL (1e-5) 0.0 0.0 12.1 39.8

FTAL (1e-5) 0.0 0.0 13.2 41.6

Unlearning 0.0 0.0 19.3 58.2

Different Architectures 56.4 48.9 66.4 86.5

Pruning 54.9 58.4 63.7 83.1

Targeted Attack 1.9 2.3 31.8 72.6

We cannot compare the performance of SSF-BO with other meth-

ods on the three datasets, CIFAR10, GTSRB, and ImageNet, used in

our experiments in the main paper. This is because SSF-BO does not

report its performance on these datasets in its paper [34], and the

released code [42] does not include the code for these datasets either.

Furthermore, implementing SSF-BO on these datasets, particularly

ImageNet, is challenging due to the following reasons:

• Large-scale datasets like ImageNet have to be reduced to a

low-dimensional space for BO to work. Such a large-scale

dimensional reduction would have an adverse effect on the

performance. Determining an optimal low dimension with

the best performance requires considerable effort.

• BO is sensitive to the settings of its hyperparameters and is

unstable. Tuning SSF-BO to achieve the best performance

on a new dataset requires a significant effort and is time-

consuming.

As the experimental results in Table 4 show, PublicCheck out-

performs SSF-BO and is the state-of-the-art existing fingerprinting

method. It is sufficient to focus on comparing with PublicCheck on

the three datasets.

Appendix G DETAILED ABLATION STUDY
RESULTS

The factors that may influence the detection performance of MiS-

entry mainly include the combination of modification types in the

model zoo and the number of each type of model modification used

in the model zoo. To analyze the impact of these two factors on the

effectiveness of our MiSentry, we conduct the following ablation

studies on CIFAR10.
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Figure 8: Perceptual quality of fingerprint samples generated on ImageNet dataset. Top row: source images. Second row:
fingerprint images generated by MiSentry from the source images. Third row: fingerprint images generated by SSF. Bottom
row: fingerprint images generated by PublicCheck.

G.1 Modification Types in Model Zoo
We first conduct an ablation study on the modification types in-

cluded in the model zoo of our MiSentry. We construct four combi-

nations of types of model modification for the model zoo: 𝐶𝑜𝑛𝑓1:

FTLL+FTAL+Retrain
All

,𝐶𝑜𝑛𝑓2: FTLL+FTAL,𝐶𝑜𝑛𝑓3: FTLL, and𝐶𝑜𝑛𝑓4:

FTAL. The results are shown in Tab.5.

Table 5: Ablation study on modification types for construct-
ing model zoo. This table reports the tamper detection rates
using a single fingerprint sample (𝑁𝑆 = 1) generated by MiS-
entry.

Tampering\Model zoo 𝐶𝑜𝑛𝑓1 𝐶𝑜𝑛𝑓2 𝐶𝑜𝑛𝑓3 𝐶𝑜𝑛𝑓4

Degradation
Random

-C 91.3 91.1 88.9 79.4

Degradation
Specific

-C 93.1 92.7 89.3 79.7

Targeted Attack 83.8 84.2 79.3 77.2

Backdoor 86.4 85.9 81.5 78.1

Trojan 91.9 89.7 86.8 79.3

Knowledge Distillation 92.8 88.3 87.3 78.5

Quantization 90.7 91.2 89.4 80.1

Pruning 89.5 87.4 78.3 72.4

Fine-tuningLast-3 73.7 73.8 75.8 48.9

Fine-tuningLast-4 58.1 58.3 61.3 44.5

Fine-tuningLast-5 73.7 73.8 75.8 48.9

Fine-tuning
All

-3 76.5 77.1 64.8 62.9

Fine-tuning
All

-4 64.1 63.8 55.9 56.3

Fine-tuning
All

-5 59.2 59.4 49.2 48.1

From the Tab.5, we can see removing last-layer fine-tunedmodels

from the model zoo caused a significant drop in detection perfor-

mance, averaging 12.2% and up to 24.9% across all tampering types

in Table 1. Removing all-layer fine-tuned models led to a 10% de-

cline for all-layer fine-tuning but minimal change for other types.

Removing models with random initial conditions caused about a

7% decrease in detection rate for random start and different archi-

tectures, with little impact on other types. Keeping only last-layer

fine-tuned models in the model zoo results in a detection rate above

47.2% for all tampering types in Tab.5. These results show that

subtly modified models (i.e., last-layer fine-tuning) are crucial for

detecting all modification types, while other modification types in

the model zoo mainly enhance detection performance for the same

type.

G.2 Number of Models in the Model Zoo per
Type

Regarding the relationship between the generalization ability of

fingerprint samples and the number of minimally modified models

in the model zoo, we conducted an ablation study in which we used

only fine-tuned last layermodels in themodel zoo and incrementally

increased their number 𝑛 from 2 to 8 in steps of 2. From Tab. 6,

we observed a significant increase in detection rate (an average of

30.0% for all tested tampering types) when increasing from 2 to 4.

However, further increases yielded only marginal gains in detection

rates (averages of 2.9% and 0.6% for increases from 4 to 6 and 6 to 8,

respectively). Thus, while the generalization ability of fingerprint

samples improves with an increasing number of representative

models, there is a saturation point beyond which increases yield
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(a) ""#$%#& = 1000 (b) ""#$%#& = 2000 (c) ""#$%#& = 3000

Figure 9: Detection rate when different numbers of fingerprint samples are leaked and exploited for adaptive fine-tuning
last layer attacks on CIFAR10. 𝑁𝑙𝑒𝑎𝑘𝑒𝑑 denoted the number of leaked fingerprint samples. The three rows from top to bottom
represent the results of MiSentry, SSF, and PublicCheck, respectively. The black dot line shows the detection rate when no
leaked fingerprint samples are exploited, while the blue square line shows the detection rate when 𝑁𝑙𝑒𝑎𝑘𝑒𝑑 leaked fingerprint
samples are exploited for an adaptive tampering attack. The red triangle line shows the detection rate of the leaked fingerprint
samples (i.e., on the tampering set).

Table 6: Ablation study on the number of models per modifi-
cation type in the model zoo. This table reports the tamper
detection rates using a single fingerprint sample (𝑁𝑆 = 1)
generated by MiSentry.

Tampering Type Number of Models per Type
2 4 6 8

Degradation
Random

-C 60.1 90.1 91.5 90.4

Degradation
Specific

-C 58.7 91.2 90.8 93.2

Targeted Attack 59.6 82.2 85.3 84.6

Backdoor 61.3 83.9 88.5 87.8

Trojan 62.5 89.5 92.3 92.5

Knowledge Distillation 73.8 93.1 91.9 93.4

Quantization 68.3 91.4 91.8 92.2

Pruning 60.2 88.7 88.9 89.2

Fine-tuningLast-3 28.5 69.2 72.9 75.3

Fine-tuningLast-4 24.7 53.5 62.4 64.3

Fine-tuningLast-5 24.3 39.8 47.5 49.1

Fine-tuning
All

-3 31.1 72.4 77.3 77.9

Fine-tuning
All

-4 25.9 56.8 58.4 62.3

Fine-tuning
All

-5 24.2 48.5 58.7 60.2

diminishing returns. For computational efficiency, we included 5

models for each benign modification in the model zoo in our main

experiment.

Table 7: Tampering detection rate (in %) with and without
input covertness constraint using a single fingerprint sample
generated by MiSentry.

Tampering Type Bounded Unbounded

Unlearning 68.4 79.7 (+0.165×)
Online Learning 74.1 84.2 (+0.136×)
Backdoor 86.4 90.3 (+0.045×)
Targeted Attack 83.8 88.9 (+0.061×)
Fine-tuningLast-3 73.7 79.2 (+0.074×)
Fine-tuningLast-4 58.1 71.8 (+0.236×)
Fine-tuningLast-5 45.9 62.4 (+0.359×)
Fine-tuning

All
-3 76.5 82.6 (+0.079×)

Fine-tuning
All

-4 64.1 77.5 (+0.209×)
Fine-tuning

All
-5 59.2 73.1 (+0.235×)
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Table 8: The effect of the architecture of the target model.
This table reports the tamper detection rates using a single
fingerprint sample (𝑁𝑆 = 1) generated by MiSentry.

Tampering Type Target Model’s Architecture
Resnet-20 VGG11

Degradation
Random

-C 93.1 92.7

Targeted Attack 83.8 79.4

Backdoor 86.4 88.5

Trojan 91.9 93.5

Pruning 89.5 85.4

Fine-tuningLast-3 73.7 68.3

Fine-tuningLast-4 58.1 59.5

Fine-tuningLast-5 45.9 51.8

Fine-tuning
All

-3 76.5 75.4

Fine-tuning
All

-4 64.1 66.7

Fine-tuning
All

-5 59.2 57.3

G.3 Effect of Input Bound on Input Covertness
and Detection Performance

We next conduct an ablation study on the input 𝐿𝑝 norm bound,

which is used to constrain the generated fingerprint sample to

look similar to a normal sample. Without the 𝐿𝑝 norm bound, the

generated fingerprints are noise-like images, which can be easily

distinguished from normal samples. However, these noise-like fin-

gerprints have higher detection sensitivity. The results are shown

in Tab. 7. For the hardest case, i.e. fine-tuning the last layer with a

learning rate of 10
−5
, the tampering detection rate using a single

fingerprint is improved by 0.359×.

G.4 Effect of Entropy Loss on Output
Covertness

Entropy loss ensures that the generated fingerprint samples have

similar output prediction vectors to that of natural samples.Without

entropy loss, the generated fingerprint samples may have abnormal

prediction vectors and could be detected by their confidence scores.

These detected fingerprint samples can be responded with the labels

from the original model to evade integrity verification. We next

conduct an ablation study on entropy loss. In this experiment, low-

confidence samples are detected as potential fingerprint samples.

The detection results on CIFAR-10 are shown in Fig. 10. The AUC

scores are 0.651 and 0.397 for fingerprints generated without and

with the entropy loss, respectively. It confirms that the entropy

loss enhances the covertness of generated fingerprints’ prediction

vectors. Thus the entropy constraint is an essential component

for MiSentry to evade the fingerprint detection based on output

probability distributions.
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Figure 10: ROC curve of fingerprint detection based on low-
confidence predictions.

G.5 Generalizability to Different Model
Archietectures

In addition, to validate the generalizability of MiSentry, we also

conduct another experiment using VGG-11 as the target model

on the CIFAR10 dataset. The results are shown in Tab.8. From

Tab.8, we can observe that our method exhibits similar integrity

verification effects across different model architectures, indicating

the generalizability of MiSentry.


