1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

Towards Stricter Black-box Integrity Verification of Deep Neural Network Models

Appendix A META LEARNING FOR
GENERALIZABILITY

By leveraging meta-learning to enhance generalizability [62], our
representative model selection (see Section 4.4 for details) with the
limited selection of models does not compromise the effectiveness
of generated fingerprint samples in detecting unseen tampering
types.

It is impossible to directly minimize Eq. 3 for each potentially
rejected model since there are too many potential variations in
real-world applications. We leverage meta-learning to generate
generalizable fingerprint samples with a small number of rejected
models. Let Z be the model zoo in meta-learning, and rejected
models in Z be 7,,i =0, -+, |Z| — 1, where | Z| is the cardinality
of Z. We randomly partition rejected models in Z into train models
and test models in each meta-learning iteration, and reduce the gap
of effectiveness between the two sets of models. More specifically,
in (k+1)*" iteration, the fingerprint updated in the k*” iteration, x;.,
is taken as the start point, m rejected models are randomly selected

from Z to as the train model set S frtlll.n, with the remaining rejected
models as the test model set Sfe*;lt. First, the train model set is used

to update xj for T iterations to get le:

xg = X, ©
xgt = Clipe (xf =1 Vit et (< Fp. Stiain)).
wheret =0,1,---,T — 1 and
1
lset (x, Fp, S) = E Z Loral (X, Fp, Fry) @)

Fr; €S

Then, the test model set is used to calculate the gradient over x]{ to
update xj. as follows,

Xjeq1 = Clipe (xg — 17 - ngfset(xg, 7’;7»35@21;)) 8)

Appendix B MISENTRY’S GENERATION
ALGORITHM

The optimization process of MiSentry’s fingerprint generation is
illustrated in Algorithm 1.

Appendix C IMPLEMENTATION DETAILS

In the main paper, we have presented the overall pipeline of MiS-
entry. Here we provide more implementation details of fingerprint
generation, tampering construction, model zoo, and experimental
settings.

C.1 Fingerprint Generation Settings

We use the existing state-of-the-art (SOTA) fingerprinting methods,
SSF [22] and PublicCheck [58], as the baselines to compare within
our evaluation. For SSF, its official open-source code [20] with
default settings is used in our experiments. In SSF, the Ly-norm
is used to bind a fingerprint sample from a normal sample. To
compare with SSF, the Ly-norm is also used in Eq.3 in the main
paper for MiSentry. In our experiments, we set the Ly-norm bound,
€ in Eq.3, as 3.5, 3.5, and 21.5 for CIFAR10, GTSRB, and ImageNet,
respectively, for both SSF and MiSentry. For PublicCheck, we use
VQVAE [55] to generate fingerprint samples located around the

ACM MM, 2024, Melbourne, Australia

Algorithm 1 Fingerprint Generation of MiSentry

Input: Max iteration of meta-train update t;,4in, Max iteration
of meta-test update 75, Initial data xo, Model to reject for
meta-train update 174" Model to reject for meta-test update
F,test, distortion bound €, Target model Fp. learning rate 1

Output: Fingerprint x;

1: procedure FINGERPRINT GENERA-
TION(ttrains trests X0, 77rtraln, ﬁte“, 7‘}7, €1, 0!)
2: xé“t = xp < init outer state
3: for i=1:t;¢s; do # meta-test loop
. train _ ..test
4 X0 =x;
5: for k=1:t74in do # meta-train loop
. train train
6: Compute £p (xi,k Fp, I)
i
7: Compute ¢g, (xl.j(“’”, Fp)
train g-trai
8: Compute £perain (xl.j(am, Frrem)
trai trainy _
9: Crotral (xi,;cam’ Fp, T4 = tp+ M “lg, +A2 'fEirain
10: xlt;:illn = Clipe(xl’i;c“’" -n- int;ain[total) «— meta-

train update

11: Compute £p (xf;t“r’:‘m Fp, FEST)

12: Compute g, (xlt;:‘:;n)

13: Compute f.Eﬁes[(xl”tfr’u"m, Frest)

14: [totul(xit’;frl:ms 7’},, 7’73“) ={p+A3- pr + A4 [E£est

15: xitfi“ = Clipe(xit“t -n- Vxl;;ain_ lioral) < meta-test
update e

16: return xttte:s t[as fingerprint x;

decision boundary. We train VQVAEs with the training set for
CIFAR-10 and GTSRB using Pythea [6] and use the pre-trained
VQVAE of ImageNet from [13].

C.2 Tampering Settings

We construct a benchmark for DNN integrity verification, which
contains all the benign and malicious modifications listed in Sec-
tion 3.1 in the main paper. We set each type of modification hardest
to distinguish from the target model in our evaluation.

Specifically, we stop a modification to a target model as soon
as the tampering goal is achieved to make the modification to the
target model as subtle as possible. The default learning rate is set
to 1.0x10~* for all model modifications. The batch size is set to 64
for all the three datasets.

For unlearning, online learning, poisoning degradation attacks,
and targeted attacks, a single sample is manipulated to minimize
modifications to a target model: we set the model to unlearn a
single sample randomly selected from its training set for unlearning,
incrementally learn a single sample randomly selected from its
test set for online learning, randomly mislabel a training sample
for poisoning degradation attacks, and randomly select a training
sample and assign the label with the minimal moving distance
from the original label at the penultimate layer for targeted attacks.
With this setting, we expect that the targeted attack makes subtler
modifications to the target model than the poisoning degradation
attack. All layers are fine-tuned for poisoning degradation attacks,

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

1276

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

1334

ACM MM, 2024, Melbourne, Australia

while only the last FC layer is fine-tuned for targeted attacks. For
poisoning degradation attacks, we also conduct an experiment
to randomly or specifically mislabel all training samples from a
category randomly selected. In model tampering, the single sample
manipulation is combined with the original learning task in multi-
task learning to achieve the goal while preserving the model’s
accuracy. We check whether the manipulation goal is achieved
every 10 steps, and stop the training when the manipulation goal
is achieved.

For fine-tuning and re-training, both the last layer and all layers
are set tunable. Re-training with all layers tunable is equivalent to
training the same network on the same training data with random
initialization. For fine-tuning, different learning rates of 1.0 X 10~¢ r
Ir € {-3,—4,—5} are used to train 1 epoch. For retraining, the
learning rate is initially set to 0.001 and decays by timing 0.1 every
time the validation loss hasn’t descended for the last 5 epochs. The
training is terminated when the learning rate is smaller than 107,

For pruning, we use the official pruning API of Microsoft NNI [39]
and set the pruning ratio to 20%. For quantization, we use the dy-
namic quantization API [11] officially provided by Pytorch and
convert a target model from 32-bit float to 8-bit integer.

For knowledge distillation, we use the code of Torchdistill [38]
and set the « to 1.0 and temperature to 3.0, and the learning rate is
set and adjusted in the same way as in the retraining.

For transfer learning, we require both models to have the same
labels (otherwise it is easy to differentiate the two models without
using a fingerprinting method). For CIFAR10, we transfer from a
pre-trained CIFAR10 model to STL10 by fine-tuning the last layer
on STL10. STL10 shares the same 10 categories as CIFAR10 but
is acquired from labeled examples of ImageNet. We cannot find
such matching datasets for GTSRB and ImageNet and thus cannot
evaluate transfer learning for these two datasets.

For both backdoor attack [16] and Trojan attack [36], we use the
open-source code [1, 57] with a square trigger placed at the right
bottom corner for all the three datasets. The trigger size is 4 X 4
pixels for CIFAR10 and GTSRB and 8 x 8 pixels for ImageNet. The
injection rate is set to 0.1 for both attacks.

For clean label attack [63], we adopt the settings in PublicCheck
as the default settings during the generation of adversarial samples.
In the phase of backdoor trigger injection, we use the same trigger
size as the backdoor and Trojan attack mentioned above.

For bit-flipping attacks, we use the open-source code [21] and
flip the most important bit.

We also use models of the same and different architectures and
independently train with the same and different datasets as the
target model in our evaluation for the uniqueness requirement. The
details will be described in the following Section C.3.

C.3 Model Settings

Models in the model zoo. The rejected models in the model
zoo of our meta-learning are the models with the following three
benign modifications to the target model for all three datasets: fine-
tuning the last layer and all layers at a learning rate of 107> and
random start (retraining all layers) with the same architecture. Five
independent models are generated for each benign modification and
included in the model zoo for meta-learning, except for the random

Anonymous Authors

start of ImageNet. Training an ImageNet model from scratch takes
too much time, so we alternatively take a model of DenseNet121
from another independent public model zoo [10].

Test models. The models used in our testing are all independent
of the models in the model zoo of meta-learning. Unless stated
otherwise, 10 models are generated for testing each tampering type.
For the bit-flipping attack, since the bit-to-flip is deterministic, only
one test model is generated. For different architectures, we use
10 different architectures [9, 18, 24, 25, 52] and collect their pre-
trained models from [45] for ImageNet and from [8] for CIFAR10.
Since there is no publicly pre-trained model for GTSRB, we train
10 models, one for each architecture, from scratch.

C.4 Tamper Detection Setting

Tamper detection. The integrity of a model is verified by selecting
a set of fingerprint samples, Sf, to query the model and compare
its returned top-1 labels with the ground truth (i.e., the top-1 labels
returned by the original model to protect). The model is determined
to be untampered only if the returned labels are all matched. In
other words, the model is detected as being tampered with if one
of the querying fingerprint samples has a returned top-1 label that
disagrees with its ground truth.

Fingerprint selection. For MiSentry and PublicCheck, we inde-
pendently generate 100 fingerprint samples and randomly select N
fingerprint samples to conduct tamper detection each time. For SSF,
we independently generate 2000 fingerprint samples and select Ng
samples with the maximum coverage of active neurons from 100
randomly sampled fingerprint samples to conduct tamper detection
each time. For each tamper detection, the selected N fingerprint
samples are used to query each model to verify integrity.

Tamper detection rate. To calculate the tamper detection rate,
we repeat the tamper detection process 100 times for each model to
test, each time with an independent set of Ns fingerprint samples
selected with the method described above. The detection rate is the
ratio of detected models to the total number of tests. For example,
the detection rate for unlearning reported in Table 1 is the number
of detected models divided by 1000 (= 10 test models X 100 detection
times per model).

Appendix D PERCEPTUAL QUALITY

Fig. 8 shows some fingerprint samples generated by MiSentry, SSF,
and PublicCheck on ImageNet, and Fig. 7 shows those on CIFAR10
and GTSRB, accompanied by their respective source samples. These
fingerprint samples exhibit a natural appearance, and the perturba-
tions they introduce to the source samples are almost indiscernible.
The perceptual quality of these samples is comparable to that of
adversarial examples generated by the Projected Gradient Descent
(PGD) method.

Appendix E DETAILED EXPERIMENTAL
RESULT OF ADAPTIVE
TAMPERING ATTACKS

We present the tampering detection rates using a single fingerprint

sample for adaptive fine-tuning last-layer attacks for the three
methods with different numbers of leaked fingerprinting samples

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392

1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449

1450

Towards Stricter Black-box Integrity Verification of Deep Neural Network Models

Ol &% 1«1

S AR LN,

(a) CIFAR-10

-
||I|ii||| ||||||||I IIIiiillI |||H!HI|I ||||||||I |||Iiil|| |||II|||I IIIIIIII

Figure 7: Perceptual quality of fingerprint samples gener-
ated on CIFAR10 and GTSRB dataset. Top row: source images.
Second row: fingerprint images generated by MiSentry from
the source images. Third row: fingerprint images generated
by SSF. Bottom row: fingerprint images generated by Public-
Check.

@800

(b) GTSRB

in Fig.9, and that for adaptive backdoor attacks in Fig.4 in the main
paper.

Appendix F PERFORMANCE COMPARISON
WITH SSF-BO

As a variant of SSF, SSF-BO [34] uses Bayesian optimization (BO)
to generate fingerprint samples. Due to the difficulty of directly
optimizing in high-dimensional input spaces, SSF-BO first maps
the input space into a lower-dimensional latent space using a Vari-
ational Autoencoder (VAE). It then searches within the latent space
for an input that maximizes the difference in predictions between
the original model (held locally by the model owner) and the model
being verified for integrity (deployed in the cloud and potentially
compromised). As a result, fingerprint samples generated by SSF-
BO are tailored to distinguish the target model-tampering type
from the original model.

We have compared the performance of SSF-BO with SSF, Public-
Check, and our MiSentry on MNIST. In our comparison, we use the
code of SSF-BO from [42], with its default settings in the code being
used. In testing its performance for each type of model-tampering,
we use SSF-BO to generate fingerprint samples specifically tailored
for the particular tampering type to avoid any mismatch between
the tampering type of the model to verify integrity and the target

ACM MM, 2024, Melbourne, Australia

tampering type the fingerprint samples are tailored to, thus en-
suring that the resulting experimental performance represents the
best that SSF-BO can achieve. In our experiments, the Ly bound for
MNIST is set to 0.8 for both SSF and SSF-BO.

The detection rates of SSF-BO, SSF, PublicCheck, and our MiSen-
try on MNIST using a single fingerprint sample for different model
tampering types are shown in Table 4. We can see that

o SSF-BO outperforms SSF in detecting backdoor attacks and
model pruning.

e SSF-BO can hardly or even not detect subtle modifications
including targeted attacks, fine-tuning, and unlearning.

e MiSentry surpasses SSF-BO in detecting all the tested model
tampering, esp. for subtle modifications.

Table 4: The tamper detection rate (%) with N; = 1 for MNIST.

Tampering\Methods SSF SSF-BO PubCheck MiSentry
backdoor(epoch=10) 753 90.1 91.6 93.4
backdoor(epoch=1) 51.8 61.2 67.5 83.7
FTLL (le-5) 00 0.0 12.1 39.8
FTAL (1e-5) 00 00 13.2 416
Unlearning 0.0 0.0 19.3 58.2
Different Architectures 56.4 48.9 66.4 86.5
Pruning 549 58.4 63.7 83.1
Targeted Attack 19 23 31.8 72.6

We cannot compare the performance of SSF-BO with other meth-
ods on the three datasets, CIFAR10, GTSRB, and ImageNet, used in
our experiments in the main paper. This is because SSF-BO does not
report its performance on these datasets in its paper [34], and the
released code [42] does not include the code for these datasets either.
Furthermore, implementing SSF-BO on these datasets, particularly
ImageNet, is challenging due to the following reasons:

e Large-scale datasets like ImageNet have to be reduced to a
low-dimensional space for BO to work. Such a large-scale
dimensional reduction would have an adverse effect on the
performance. Determining an optimal low dimension with
the best performance requires considerable effort.

e BO is sensitive to the settings of its hyperparameters and is
unstable. Tuning SSF-BO to achieve the best performance
on a new dataset requires a significant effort and is time-
consuming.

As the experimental results in Table 4 show, PublicCheck out-
performs SSF-BO and is the state-of-the-art existing fingerprinting
method. It is sufficient to focus on comparing with PublicCheck on
the three datasets.

Appendix G DETAILED ABLATION STUDY
RESULTS

The factors that may influence the detection performance of MiS-
entry mainly include the combination of modification types in the
model zoo and the number of each type of model modification used
in the model zoo. To analyze the impact of these two factors on the
effectiveness of our MiSentry, we conduct the following ablation
studies on CIFAR10.

1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508

1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566

ACM MM, 2024, Melbourne, Australia

W&" \ 'y,

Figure 8: Perceptual quality of fingerprint samples generate

Anonymous Authors

d on ImageNet dataset. Top row: source images. Second row:

fingerprint images generated by MiSentry from the source images. Third row: fingerprint images generated by SSF. Bottom

row: fingerprint images generated by PublicCheck.

G.1 Modification Types in Model Zoo

We first conduct an ablation study on the modification types in-
cluded in the model zoo of our MiSentry. We construct four combi-
nations of types of model modification for the model zoo: Conf;:

FTLL+FTAL+Retrainay, Con fa: FTLL+FTAL, Conf3: FTLL, and Con f3:

FTAL. The results are shown in Tab.5.

Table 5: Ablation study on modification types for construct-
ing model zoo. This table reports the tamper detection rates
using a single fingerprint sample (N5 = 1) generated by MiS-
entry.

Tampering\Model zoo Conf; Conf, Conf; Confy
Degradationgandom-C 91.3 91.1 88.9 79.4
Degradationgpecific-C 93.1 92.7 89.3 79.7

Targeted Attack 83.8 84.2 79.3 71.2
Backdoor 86.4 85.9 81.5 78.1
Trojan 91.9 89.7 86.8 79.3
Knowledge Distillation ~ 92.8 88.3 87.3 78.5
Quantization 90.7 91.2 89.4 80.1
Pruning 89.5 87.4 78.3 72.4
Fine-tuning ag¢-3 737 738 758 489
Fine-tuning ag¢-4 58.1 583 613 445
Fine-tuningy ag-5 73.7 73.8 75.8 48.9
Fine-tuning -3 765 771 648 629
Fine-tuningay-4 64.1 63.8 55.9 56.3
Fine-tuningay -5 59.2 59.4 49.2 48.1

From the Tab.5, we can see removing last-layer fine-tuned models
from the model zoo caused a significant drop in detection perfor-
mance, averaging 12.2% and up to 24.9% across all tampering types
in Table 1. Removing all-layer fine-tuned models led to a 10% de-
cline for all-layer fine-tuning but minimal change for other types.
Removing models with random initial conditions caused about a
7% decrease in detection rate for random start and different archi-
tectures, with little impact on other types. Keeping only last-layer
fine-tuned models in the model zoo results in a detection rate above
47.2% for all tampering types in Tab.5. These results show that
subtly modified models (i.e., last-layer fine-tuning) are crucial for
detecting all modification types, while other modification types in
the model zoo mainly enhance detection performance for the same

type.

G.2 Number of Models in the Model Zoo per

Type
Regarding the relationship between the generalization ability of
fingerprint samples and the number of minimally modified models
in the model zoo, we conducted an ablation study in which we used
only fine-tuned last layer models in the model zoo and incrementally
increased their number n from 2 to 8 in steps of 2. From Tab. 6,
we observed a significant increase in detection rate (an average of
30.0% for all tested tampering types) when increasing from 2 to 4.
However, further increases yielded only marginal gains in detection
rates (averages of 2.9% and 0.6% for increases from 4 to 6 and 6 to 8,
respectively). Thus, while the generalization ability of fingerprint
samples improves with an increasing number of representative
models, there is a saturation point beyond which increases yield

1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624

1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681

1682

Towards Stricter Black-box Integrity Verification of Deep Neural Network Models

ACM MM, 2024, Melbourne, Australia

~ 601 e ~ 60 o gy BT ~ 601 g O
S —__*,.o---i- ad S ___'_,o---i- ad S —__'__o——'.- 4
2 e ‘.,_—"" o ——e———" — Q ;--o——-"’
£ 40 s - £ 40 .E~-.___N o £ 404 Rt SR -
= Rl S] . ~< -] S -
S /NN - g I - e g e :
b5 "'I, ‘“*u -4~ Tampering 5 5/ \“\L -4-- Tampering g ‘L\‘ -4-- Tampering
b Q 4 ~ . -
5 201 #’ ~ -#- Validation w. Leakage £ 201 H -#- Validation w. Leakage g 201 -#- Validation w. Leakage
['n' --+-- Validation w.o. Leakage A ,:' --+-- Validation w.o. Leakage "' ---- Validation w.o. Leakage
0+ ; \ Temk==s 4 oLla ‘ ‘ — 01+ ‘ ; o 4
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
of training epoch # of training epoch # of training epoch
20 20 20
= === Tampering = ==-- Tampering = === Tampering
S --4#- Validation w. Leakage < —#-- Validation w. Leakage S -#- Validation w. Leakage
e — o o - Q o o
s —--o-- Validation w.o. Leakage ."" = —--o-- Validation w.o. Leakage e = ---- Validation w.o. Leakage e
£ 8 £ ’ s g A
= 10 £ 10 < . = 10 d
2 2 A oy 2 -
o |33 Vg o A
|5 o o w o
ho] ho] ape b5}
a a el a
0l 0 lmmaeZT T e e o4 0Ll ezt
0 0 2 4 6 8 10 0 8 10
of training epoch # of training epoch # of training epoch
<10/ ==-- Tampering . < 104 =-+=- Tampering . _ -+4-- Tampering
s -#- Validation w. Leakage _o-=""""% > -#- Validation w. Leakage _o--®"""" £ 407 _m- Validation w. Leakage _e--""%"""
% ---- Validation w.o. Leakage *E --e-- Validation w.o. Leakage 2 -~ Validation w.o. Leakage
= Y and - = y S o Lad
-2 901 - - RS - L g - -
2 20 “- - - £ 207 1111._ - £ 201 ;‘:;t\ -’
2 bl T o 2 y S T - 2 y s -
g 2 2 S -y~ B ’ RSRRRGEE EEE)
=} N a K S~ao a 'l' ~~a
0L : Rt S : A oL : : ‘\"‘,"““7 S S oLl ; Tdecaoogegee-
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

of training epoch
(@) Nieakea = 1000

of training epoch

(b) Niggkea = 2000

of training epoch

(©) Nigagea = 3000

Figure 9: Detection rate when different numbers of fingerprint samples are leaked and exploited for adaptive fine-tuning
last layer attacks on CIFAR10. Nj. i.q; denoted the number of leaked fingerprint samples. The three rows from top to bottom
represent the results of MiSentry, SSF, and PublicCheck, respectively. The black dot line shows the detection rate when no
leaked fingerprint samples are exploited, while the blue square line shows the detection rate when Ny, 1., leaked fingerprint
samples are exploited for an adaptive tampering attack. The red triangle line shows the detection rate of the leaked fingerprint
samples (i.e., on the tampering set).

generated by MiSentry.

Table 6: Ablation study on the number of models per modifi-
cation type in the model zoo. This table reports the tamper
detection rates using a single fingerprint sample (N5 = 1)

experiment.

Number of Models per Type

diminishing returns. For computational efficiency, we included 5
models for each benign modification in the model zoo in our main

Tampering Type) 4 6 s Table 7: Tampering detection rate (in %) with and without
input covertness constraint using a single fingerprint sample

Degradationgapndgom-C~ 60.1 90.1 91.5 90.4 generated by MiSentry.
Degradationgpecifie-C 58.7 91.2 90.8 93.2
Targeted Attack 59.6 822 853 84.6 Tampering Type Bounded Unbounded
Backdoor 61.3 839 885 87.8 Unlearning 68.4 79.7 (+0.165X)
Trojan 625 895 923 92.5 Online Learning 74.1 84.2 (+0.136><)
Knowledge Distillation 73.8 93.1 91.9 93.4 ' ' ’

. Backdoor 86.4 90.3 (+0.045X)
Quantization 68.3 914 918 92:2 Targeted Attack 83.8 88.9 (+0.061x)
Pruning 60.2 887 88.9 89.2 Fine. tuningy oe-3 737 79.2 (+0.074%)
Fine-tuningg 45;-3 285 69.2 729 75.3 Fine. tuning ast_4 58.1 71.8 (+O.236X)
Fine-tuningj os¢-4 247 535 624 64.3 Fine-tunin gi”t_s 15.9 624 (+0.359x)
Fine-tuningy os-5 243 39.8 475 49.1 Fine-tuning asz 76.5 82.6 (+o'o79><)
Fine-tuning -3 311 724 773 77.9 Fme_tuningAu-4 641 775 (+O‘209><)
Fine-tuningy -4 259 56.8 584 62.3 Fine-tunin AH_S 59-2 73.1 (+0.235X)
Fine-tuning -5 242 485 587 60.2 e-tuningay - 1 (+0.

1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739

1740

1741
1742
1743
1744
1745
1746
1747

1748

1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798

ACM MM, 2024, Melbourne, Australia

Table 8: The effect of the architecture of the target model.
This table reports the tamper detection rates using a single
fingerprint sample (Ns = 1) generated by MiSentry.

Target Model’s Architecture

Tampering Type Resnet-20 VGG11
Degradationg,ndom-C 93.1 92.7
Targeted Attack 83.8 79.4
Backdoor 86.4 88.5
Trojan 91.9 93.5
Pruning 89.5 85.4
Fine-tuningy 4¢¢-3 73.7 68.3
Fine-tuningy ,4-4 58.1 59.5
Fine-tuningy 45-5 459 51.8
Fine-tuning ;-3 76.5 75.4
Fine-tuningay-4 64.1 66.7
Fine-tuningay-5 59.2 57.3

G.3 Effect of Input Bound on Input Covertness
and Detection Performance

We next conduct an ablation study on the input L, norm bound,
which is used to constrain the generated fingerprint sample to
look similar to a normal sample. Without the L, norm bound, the
generated fingerprints are noise-like images, which can be easily
distinguished from normal samples. However, these noise-like fin-
gerprints have higher detection sensitivity. The results are shown
in Tab. 7. For the hardest case, i.e. fine-tuning the last layer with a
learning rate of 107>, the tampering detection rate using a single
fingerprint is improved by 0.359x.

G.4 Effect of Entropy Loss on Output
Covertness
Entropy loss ensures that the generated fingerprint samples have
similar output prediction vectors to that of natural samples. Without
entropy loss, the generated fingerprint samples may have abnormal
prediction vectors and could be detected by their confidence scores.

Anonymous Authors

These detected fingerprint samples can be responded with the labels
from the original model to evade integrity verification. We next
conduct an ablation study on entropy loss. In this experiment, low-
confidence samples are detected as potential fingerprint samples.
The detection results on CIFAR-10 are shown in Fig. 10. The AUC
scores are 0.651 and 0.397 for fingerprints generated without and
with the entropy loss, respectively. It confirms that the entropy
loss enhances the covertness of generated fingerprints’ prediction
vectors. Thus the entropy constraint is an essential component
for MiSentry to evade the fingerprint detection based on output
probability distributions.

1.0 1
2 0.8
=
2067
=]
2
~ 0.4+
o .
[—'5 0.2 plm—— Ra.ndom Guess
—— With Entropy(AUC=0.397)
0.0 —— Without Entropy(AUC=0.651)

00 02 04 06 08 10
False Positive Rate

Figure 10: ROC curve of fingerprint detection based on low-
confidence predictions.

G.5 Generalizability to Different Model
Archietectures

In addition, to validate the generalizability of MiSentry, we also
conduct another experiment using VGG-11 as the target model
on the CIFAR10 dataset. The results are shown in Tab.8. From
Tab.8, we can observe that our method exhibits similar integrity
verification effects across different model architectures, indicating
the generalizability of MiSentry.

1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855

1856

