
Appendix A Retargetability over outcome lotteries

Suppose we are interested in d outcomes. Each outcome could be the visitation of an MDP state, or
a trajectory, or the receipt of a physical item. In the Pac-Man example of section 2, d = 3 states.
The agent can induce each outcome with probability 1, so let eo ∈ R3 be the standard basis vector
with probability 1 on outcome o and 0 elsewhere. Then the agent chooses among outcome lotteries
C :=

�
e , e , e

	
, which we partition into A :=

�
e

	
and B :=

�
e , e

	
.

Definition A.1 (Outcome lotteries). A unit vector x ∈ Rd with non-negative entries is an outcome
lottery.7

Many decisions are made consequentially: based on the consequences of the decision, on what
outcomes are brought about by an act. For example, in a deterministic Atari game, a policy induces a
trajectory. A reward function and discount rate tuple (R, γ) assigns a return to each state trajectory
τ = s0, s1, . . .: G(τ) =

P∞
i=0 γ

iR(si). The relevant outcome lottery is the discounted visit
distribution over future states in an Atari game, and policies are optimal or not depending on which
outcome lottery is induced by the policy.
Definition A.2 (Optimality indicator function). Let X,C ⊊ Rd be finite, and let u ∈ Rd.
IsOptimal

�
X | C,u

�
returns 1 if maxx∈X x⊤u ≥ maxc∈C c⊤u, and 0 otherwise.

We consider decision-making procedures which take in a targeting parameter u. For example, the
column headers of Table 2a show the 6 permutations of the utility function u( ) := 10, u( ) :=
5, u( ) := 0, representable as a vector u ∈ R3.

u can be permuted as follows. The outcome permutation ϕ ∈ Sd inducing an d × d permutation
matrix Pϕ in row representation: (Pϕ)ij = 1 if i = ϕ(j) and 0 otherwise. Table 2a shows that for a
given utility function, 2

3 of its orbit agrees that B is strictly optimal over A.

Orbit-level incentives occur when an inequality holds for most permuted parameter choices u′.
Table 2a demonstrates an application of Turner et al. [2021]’s results: Optimal decision-making
induces orbit-level incentives for choosing Pac-Man outcomes in B over outcomes in A.

Furthermore, Turner et al. [2021] conjectured that “larger” B will imply stronger orbit-level tenden-
cies: If going right leads to 500 times as many options as going left, then right is better than left for at
least 500 times as many reward functions for which the opposite is true. We prove this conjecture
with theorem D.11 in appendix D.

However, orbit-level incentives do not require optimality. One clue is that the same results hold for
anti-optimal agents, since anti-optimality/utility minimization of u is equivalent to maximizing −u.
Table 2b illustrates that the same orbit guarantees hold in this case.
Definition A.3 (Anti-optimality indicator function). Let X,C ⊊ Rd be finite, and let u ∈ Rd.
AntiOpt

�
X | C,u

�
returns 1 if minx∈X x⊤u ≤ minc∈C c⊤u, and 0 otherwise.

Stepping beyond expected utility maximization/minimization, Boltzmann-rational decision-making
selects outcome lotteries proportional to the exponential of their expected utility.
Definition A.4 (Boltzmann rationality [Baker et al., 2007]). For X ⊆ C and temperature T > 0, let

BoltzmannT
�
X | C,u

�
:=

P
x∈X eT

−1x⊤u

P
c∈C eT−1c⊤u

be the probability that some element of X is Boltzmann-rational.

Lastly, orbit-level tendencies occur even under decision-making procedures which partially ignore
expected utility and which “don’t optimize too hard.” Satisficing agents randomly choose an outcome
lottery with expected utility exceeding some threshold. Table 2d demonstrates that satisficing induces
orbit-level tendencies.
Definition A.5 (Satisficing). Let t ∈ R, let X ⊆ C ⊊ Rd be finite. Satisficet

�
X,C | u

�
:=���X∩{c∈C|c⊤u≥t}

���
���{c∈C|c⊤u≥t}

���
is the fraction of X whose value exceeds threshold t. Satisficet

�
X,C | u

�

evaluates to 0 the denominator equals 0.
7Our results on outcome lotteries hold for generic x′ ∈ Rd, but we find it conceptually helpful to consider

the non-negative unit vector case.
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Table 2: Orbit-level incentives across 4 decision-making functions.

Utility function u′ 10,5,0 10,0,5 5,10,0 5,0,10 0,10,5 0,5,10

IsOptimal
��

e , e
	
| C,u′

�
1 1 1 0 1 0

IsOptimal
��

e
	
| C,u′

�
0 0 0 1 0 1

(a) Dark gray columns indicate utility function permutations u′ for which IsOptimal
�
B | C,u′� >

IsOptimal
�
A | C,u′�, while white indicates that the opposite strict inequality holds.

Utility function u′ 10,5,0 10,0,5 5,10,0 5,0,10 0,10,5 0,5,10

AntiOpt
��

e , e
	
| C,u′

�
0 1 0 1 1 1

AntiOpt
��

e
	
| C,u′

�
1 0 1 0 0 0

(b) Utility-minimizing outcome selection probability.

Utility function u′ 10,5,0 10,0,5 5,10,0 5,0,10 0,10,5 0,5,10

Boltzmann1

��
e , e

	
| C,u′

�
1 .993 1 .007 .993 .007

Boltzmann1

��
e

	
| C,u′

�
.000 .007 .000 .993 .007 .993

(c) Boltzmann selection probabilities for T = 1, rounded to three significant digits.

Utility function u′ 10,5,0 10,0,5 5,10,0 5,0,10 0,10,5 0,5,10

Satisfice3
��

e , e
	
| C,u′

�
1 .5 1 .5 .5 .5

Satisfice3
��

e
	
| C,u′

�
0 .5 0 .5 .5 .5

(d) A satisficer uniformly randomly selects an outcome lottery with expected utility greater than or equal to the
threshold t. Here, t = 3. When Satisfice3

��
e , e

	
| C,u′

�
= Satisfice3

��
e

	
| C,u′

�
, the column is

colored medium gray.

For each table, two-thirds of the utility permutations (columns) assign strictly larger values (shaded
dark gray) to an element of B :=

�
e , e

	
than to an element of A :=

�
e

	
. For optimal, anti-

optimal, Boltzmann-rational, and satisficing agents, proposition A.11 proves that these tendencies
hold for all targeting parameter orbits.

A.1 A range of decision-making functions are retargetable

In MDPs, Turner et al. [2021] consider state visitation distributions which record the total discounted
time steps spent in each environment state, given that the agent follows some policy π from an initial
state s. These visitation distributions are one kind of outcome lottery, with d = |S| the number of
MDP states.

In general, we suppose the agent has an objective function u ∈ Rd which maps outcomes to real
numbers. In Turner et al. [2021], u was a state-based reward function (and so the outcomes were
states). However, we need not restrict ourselves to the MDP setting.

To state our key results, we define several technical concepts which we informally used when
reasoning about A :=

�
e

	
and B :=

�
e , e

	
.
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Definition A.6 (Similarity of vector sets). For ϕ ∈ Sd and X ⊆ Rd, ϕ · X :=
�
Pϕx | x ∈ X

	
.

X ′ ⊆ R|S| is similar to X when ∃ϕ : ϕ ·X ′ = X . ϕ is an involution if ϕ = ϕ−1 (it either transposes
states, or fixes them). X contains a copy of X ′ when X ′ is similar to a subset of X via an involution
ϕ.

Definition A.7 (Containment of set copies). Let n be a positive integer, and let A,B ⊆ Rd. We say
that B contains n copies of A when there exist involutions ϕ1, . . . ,ϕn ∈ Sd such that ∀i : ϕi ·A =:
Bi ⊆ B and ∀j ̸= i : ϕi ·Bj = Bj .8

B :=
�
e , e

	
contains two copies of A :=

�
e

	
via ϕ1 := ↔ and ϕ2 := ↔ .

Definition A.8 (Targeting parameter distribution assumptions). Results with Dany hold for any
probability distribution over Rd. Let Dany := ∆(Rd). For a function f : Rd 7→ R, we write f(Dany)

as shorthand for Eu∼Dany

�
f(u)

�
.

The symmetry group on d elements, Sd, acts on the set of probability distributions over Rd.
Definition A.9 (Pushforward distribution of a permutation [Turner et al., 2021]). Let ϕ ∈ Sd. ϕ ·Dany
is the pushforward distribution induced by applying the random vector p(u) := Pϕu to Dany.

Definition A.10 (Orbit of a probability distribution [Turner et al., 2021]). The orbit of Dany under
the symmetric group Sd is Sd · Dany := {ϕ · Dany | ϕ ∈ Sd}.

Because B contains 2 copies of A, there are “at least two times as many ways” for B to be optimal,
than for A to be optimal. Similarly, B is “at least two times as likely” to contain an anti-rational
outcome lottery for generic utility functions. As demonstrated by Table 2, the key idea is that “larger”
sets (a set B containing several copies of set A) are more likely to be chosen under a wide range of
decision-making criteria.
Proposition A.11 (Orbit incentives for different rationalities). Let A,B ⊆ C ⊊ Rd be finite, such
that B contains n copies of A via involutions ϕi such that ϕi · C = C.

1. Rational choice [Turner et al., 2021].

IsOptimal
�
B | C,Dany

�
≥n

most: Dany
IsOptimal

�
A | C,Dany

�
.

2. Uniformly randomly choosing an optimal lottery. For X ⊆ C, let

FracOptimal
�
X | C,u

�
:=

���
�
argmaxc∈C c⊤u

	
∩X

���
���
�
argmaxc∈C c⊤u

	���
.

Then FracOptimal
�
B | C,Dany

�
≥n

most: Dany
FracOptimal

�
A | C,Dany

�
.

3. Anti-rational choice. AntiOpt
�
B | C,Dany

�
≥n

most: Dany
AntiOpt

�
A | C,Dany

�
.

4. Boltzmann rationality.

BoltzmannT
�
B | C,Dany

�
≥n

most: Dany
BoltzmannT

�
A | C,Dany

�
.

5. Uniformly randomly drawing k outcome lotteries and choosing the best. For X ⊆ C,
u ∈ Rd, and k ≥ 1, let

best-of-k(X,C | u) := E
a1,...,ak∼unif(C)

h
FracOptimal

�
X ∩ {a1, . . . ,ak} | {a1, . . . ,ak},u

�i
.

Then best-of-k(B | C,Dany) ≥n
most: Dany

best-of-k(A | C,Dany).

8Technically, definition A.7 implies that A contains n copies of A holds for all n, via n applications of the
identity permutation. For our purposes, this provides greater generality, as all of the relevant results still hold.
Enforcing pairwise disjointness of the Bi would handle these issues, but would narrow our results to not apply
e.g. when the Bi share a constant vector.
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6. Satisficing [Simon, 1956]. Satisficet
�
B | C,Dany

�
≥n

most: Dany
Satisficet

�
A | C,Dany

�
.

7. Quantilizing over outcome lotteries [Taylor, 2016]. Let P be the uniform probability distri-
bution over C. For X ⊆ C, u ∈ Rd, and q ∈ (0, 1], let Qq,P (X | C,u) (definition B.12)
return the probability that an outcome lottery in X is drawn from the top q-quantile of P ,
sorted by expected utility under u. Then Qq,P (B | C,u) ≥n

most: Rd Qq,P (A | C,u).

One retargetable class of decision-making functions are those which only account for the expected
utilities of available choices.

Definition A.12 (EU-determined functions). Let P
�
Rd

�
be the power set of Rd, and let f :Qm

i=1 P
�
Rd

�
× Rd → R. f is an EU-determined function if there exists a family of functions

{gω1,...,ωm} such that

f(X1, . . . , Xm | u) = g|X1|,...,|Xm|
�h

x⊤
1 u
i
x1∈X1

, . . . ,
h
x⊤
mu
i
xm∈Xm

�
, (4)

where [ri] is the multiset of its elements ri.

For example, let X ⊆ C ⊊ Rd be finite, and consider utility function u ∈ Rd. A Boltzmann-
rational agent is more likely to select outcome lotteries with greater expected utility. Formally,

BoltzmannT
�
X | C,u

�
:=
P

x∈X
eT ·x⊤u

P
c∈C eT ·c⊤u

depends only on the expected utility of outcome

lotteries in X , relative to the expected utility of all outcome lotteries in C. Therefore, BoltzmannT
is a function of expected utilities. This is why BoltzmannT satisfies the ≥n

most: Dany
relation.

Theorem A.13 (Orbit tendencies occur for EU-determined decision-making functions). Let
A,B,C ⊆ Rd be such that B contains n copies of A via ϕi such that ϕi · C = C. Let h :Q2

i=1 P
�
Rd

�
× Rd → R be an EU-determined function, and let p(X | u) := h(X,C | u). Suppose

that p returns a probability of selecting an element of X from C. Then p(B | u) ≥n
most: Rd p(A | u).

The key takeaway is that decisions which are determined by expected utility are straightforwardly
retargetable. By changing the targeting parameter hyperparameter, the decision-making procedure
can be flexibly retargeted to choose elements of “larger” sets (in terms of set copies via definition A.7).
Less abstractly, for many agent rationalities—ways of making decisions over outcome lotteries—it is
generally the case that larger sets will more often be chosen over smaller sets.

For example, consider a Pac-Man playing agent choosing which environmental state cycle it should
end up in. Turner et al. [2021] show that for most reward functions, average-reward maximizing
agents will tend to stay alive so that they can reach a wider range of environmental cycles. However,
our results show that average-reward minimizing agents also exhibit this tendency, as do Boltzmann-
rational agents who assign greater probability to higher-reward cycles. Any EU-based cycle selection
method will—for most reward functions—tend to choose cycles which require Pac-Man to stay alive
(at first).

Appendix B Theoretical results

Definition 3.2 (Inequalities which hold for most orbit elements). Suppose Θ is a subset of a set acted
on by Sd, the symmetric group on d elements. Let f : {A,B} × Θ → R and let n ≥ 1. We write
f(B | θ) ≥n

most: Θ f(A | θ) when, for all θ ∈ Θ, the following cardinality inequality holds:
���
�
θ′ ∈ Orbit|Θ (θ) | f(B | θ′) > f(A | θ′)

	��� ≥ n
���
�
θ′ ∈ Orbit|Θ (θ) | f(B | θ′) < f(A | θ′)

	��� .
(2)

Remark. In stating their equivalent of definition 3.2, Turner et al. [2021] define two functions
f1(θ) := f(B | θ) and f2(θ) := f(A | θ) (both having type signature fi : Θ → R). For
compatibility, proofs also use this notation.

Lemma B.1 (Limited transitivity of ≥most). Let f0, f1, f2, f3 : Θ → R, and suppose Θ is a subset
of a set acted on by Sd. Suppose that f1(θ) ≥n

most: Θ f2(θ) and ∀θ ∈ Θ : f0(θ) ≥ f1(θ) and
f2(θ) ≥ f3(θ). Then f0(θ) ≥n

most: Θ f3(θ).
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Proof. Let θ ∈ Θ and let Orbit|Θ,fa>fb (θ) :=
�
θ′ ∈ Orbit|Θ (θ) | fa(θ′) > fb(θ

′)
	

.
��Orbit|Θ,f0>f3 (θ)

�� ≥
��Orbit|Θ,f1>f2 (θ)

�� (5)

≥ n
��Orbit|Θ,f2>f1 (θ)

�� (6)

≥ n
��Orbit|Θ,f3>f0 (θ)

�� . (7)

For all θ′ ∈ Orbit|Θ,f1>f2 (θ),

f0(θ
′) ≥ f1(θ

′) > f2(θ
′) ≥ f3(θ

′)

by assumption, and so
Orbit|Θ,f1>f2 (θ) ⊆ Orbit|Θ,f0>f3 (θ) .

Therefore, eq. (5) follows. By assumption,
��Orbit|Θ,f1>f2 (θ)

�� ≥ n
��Orbit|Θ,f2>f1 (θ)

�� ;

eq. (6) follows. For all θ′ ∈ Orbit|Θ,f2>f1 (θ), our assumptions on f0 and f3 ensure that

f0(θ
′) ≤ f1(θ

′) < f3(θ
′) ≤ f2(θ

′),

so
Orbit|Θ,f3>f0 (θ) ⊆ Orbit|Θ,f2>f1 (θ) .

Then eq. (7) follows. By eq. (7), f0(θ) ≥n
most: Θ f3(θ).

Lemma B.2 (Order inversion for ≥most). Let f1, f2 : Θ → R, and suppose Θ is a subset of a set
acted on by Sd. Suppose that f1(θ) ≥n

most: Θ f2(θ). Then −f2(θ) ≥n
most: Θ −f1(θ).

Proof. By definition A.10, f1(θ) ≥n
most: Θ f2(θ) means that

���
�
θ′ ∈ Orbit|Θ (θ) | f1(θ′) > f2(θ

′)
	��� ≥ n

���
�
θ′ ∈ Orbit|Θ (θ) | f1(θ′) < f2(θ

′)
	��� (8)

���
�
θ′ ∈ Orbit|Θ (θ) | −f2(θ

′) > −f1(θ
′)
	��� ≥ n

���
�
θ′ ∈ Orbit|Θ (θ) | −f2(θ

′) < −f1(θ
′)
	��� . (9)

Then −f2(θ) ≥n
most: Θ −f1(θ).

Remark. Lemma B.3 generalizes Turner et al. [2021]’s lemma B.2.

Lemma B.3 (Orbital fraction which agrees on (weak) inequality). Suppose f1, f2 : Θ → R are such

that f1(θ) ≥n
most: Θ f2(θ). Then for all θ ∈ Θ,

���{θ′∈(Sd·θ)∩Θ|f1(θ′)≥f2(θ
′)}

���
|(Sd·θ)∩Θ| ≥ n

n+ 1
.

Proof. All θ′ ∈ (Sd · θ) ∩Θ such that f1(θ′) = f2(θ
′) satisfy f1(θ

′) ≥ f2(θ
′). Otherwise, consider

the θ′ ∈ (Sd · θ) ∩ Θ such that f1(θ′) ̸= f2(θ
′). By assumption, at least n

n+1 of these θ′ satisfy
f1(θ

′) > f2(θ
′), in which case f1(θ

′) ≥ f2(θ
′). Then the desired inequality follows.

B.1 General results on retargetable functions

Definition B.4 (Functions which are increasing under joint permutation). Suppose that Sd acts on
sets E1, . . . ,Em, and let f :

Qm
i=1 Ei → R. f(X1, . . . , Xm) is increasing under joint permutation

by P ⊆ Sd when ∀ϕ ∈ P : f(X1, . . . , Xm) ≤ f(ϕ ·X1, . . . ,ϕ ·Xm). If equality always holds, then
f(X1, . . . , Xm) is invariant under joint permutation by P .

Lemma B.5 (Expectations of joint-permutation-increasing functions are also joint-permutation-in-
creasing). For E which is a subset of a set acted on by Sd, let f : E × Rd → R be a bounded
function which is measurable on its second argument, and let P ⊆ Sd. Then if f(X | u) is increasing
under joint permutation by P , then f ′(X | Dany) := Eu∼Dany

�
f(X | u)

�
is increasing under joint

permutation by P . If f is invariant under joint permutation by P , then so is f ′.
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Proof. Let distribution Dany have probability measure F , and let ϕ · Dany have probability measure
Fϕ.

f
�
X | Dany

�
:= E

u∼Dany

�
f(X | u)

�
(10)

:=

Z

Rd

f(X | u) dF (u) (11)

≤
Z

Rd

f(ϕ ·X | Pϕu) dF (u) (12)

=

Z

Rd

f(ϕ ·X | u′)
��detPϕ

�� dFϕ(u
′) (13)

=

Z

Rd

f(ϕ ·X | u′) dFϕ(u
′) (14)

=: f ′ �ϕ ·X | ϕ · Dany
�
. (15)

Equation (12) holds by assumption on f : f(X | u) ≤ f(ϕ·X | Pϕu). Furthermore, f(ϕ·X | ·) is still
measurable, and so the inequality holds. Equation (13) follows by the definition of Fϕ (definition 6.3)
and by substituting r′ := Pϕr. Equation (14) follows from the fact that all permutation matrices have
unitary determinant.

Lemma B.6 (Closure of orbit incentives under increasing functions). Suppose that Sd acts on sets
E1, . . . ,Em (with E1 being a poset), and let P ⊆ Sd. Let f1, . . . , fn :

Qm
i=1 Ei → R be increasing

under joint permutation by P on input (X1, . . . , Xm), and suppose the fi are order-preserving with
respect to ⪯E1

. Let g :
Qn

j=1 R → R be monotonically increasing on each argument. Then

f (X1, . . . , Xm) := g
�
f1 (X1, . . . , Xm) , . . . , fn (X1, . . . , Xm)

�
(16)

is increasing under joint permutation by P and order-preserving with respect to set inclusion on its
first argument. Furthermore, if the fi are invariant under joint permutation by P , then so is f .

Proof. Let ϕ ∈ P .

f (X1, . . . , Xm) := g
�
f1 (X1, . . . , Xm) , . . . , fn (X1, . . . , Xm)

�
(17)

≤ g
�
f1 (ϕ ·X1, . . . ,ϕ ·Xm) , . . . , fn (ϕ ·X1, . . . ,ϕ ·Xm)

�
(18)

=: f (ϕ ·X1, . . . ,ϕ ·Xm) . (19)

Equation (18) follows because we assumed that fi (X1, . . . , Xm) ≤ fi (ϕ ·X1, . . . ,ϕ ·Xm), and
because g is monotonically increasing on each argument. If the fi are all invariant, then eq. (18) is an
equality.

Similarly, suppose X ′
1 ⪯E1

X1. The fi are order-preserving on the first argument, and g is monoton-
ically increasing on each argument. Then f

�
X ′

1, . . . , Xm

�
≤ f (X1, . . . , Xm). This shows that f is

order-preserving on its first argument.

Remark. g could take the convex combination of its arguments, or multiply two fi together and add
them to a third f3.
Definition 3.5 (Multiply retargetable function). Let Θ be a subset of a set acted on by Sd, and let
f : {A,B} ×Θ → R.

f is a (Θ, A
n→ B)-retargetable function when, for each θ ∈ Θ, we can choose permutations

ϕ1, . . . ,ϕn ∈ Sd which satisfy the following conditions: Consider any θA ∈ Orbit|Θ,A>B (θ) :=�
θ∗ ∈ Orbit|Θ (θ) | f(A | θ∗) > f(B | θ∗)

	
.

1. Retargetable via n permutations. ∀i = 1, . . . , n : f
�
A | ϕi · θA

�
< f

�
B | ϕi · θA

�
.

2. Parameter permutation is allowed by Θ. ∀i : ϕi · θA ∈ Θ.

3. Permuted parameters are distinct. ∀i ̸= j, θ′ ∈ Orbit|Θ,A>B (θ) : ϕi · θA ̸= ϕj · θ′.
Theorem 3.6 (Multiply retargetable functions have orbit-level tendencies).
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If f is (Θ, A
n→ B)-retargetable, then f(B | θ) ≥n

most: Θ f(A | θ).

Proof. Let θ ∈ Θ, and let ϕi ·Orbit|Θ,A>B (θ) :=
�
ϕi · θA | θA ∈ Orbit|Θ,A>B (θ)

	
.

��Orbit|Θ,B>A (θ)]
�� ≥

������

n[

i=1

ϕi ·Orbit|Θ,A>B (θ)

������
(20)

=

nX

i=1

��ϕi ·Orbit|Θ,A>B (θ)
�� (21)

= n
��Orbit|Θ,A>B (θ)

�� . (22)

By item 1 and item 2, ϕi ·ϕi ·Orbit|Θ,A>B (θ) ⊆ ϕi ·Orbit|Θ,B>A (θ)] for all i. Therefore, eq. (20)
holds. Equation (21) follows by the assumption that parameters are distinct, and so therefore the
cosets ϕi ·Orbit|Θ,A>B (θ) and ϕj ·Orbit|Θ,A>B (θ) are pairwise disjoint for i ̸= j. Equation (22)
follows because each ϕi acts injectively on orbit elements.

Letting fA(θ) := f(A | θ) and fB(θ) := f(B | θ), the shown inequality satisfies definition 3.2. We
conclude that f(B | θ) ≥n

most: Θ f(A | θ).
Definition 3.3 (Simply-retargetable function). Let Θ be a set acted on by Sd, and let f : {A,B} ×
Θ → R. If ∃ϕ ∈ Sd : ∀θA ∈ Θ : f(B | θA) < f(A | θA) =⇒ f(A | ϕ · θA) < f(B | ϕ · θA),
then f is a (Θ, A

simple→ B)-retargetable function.
Proposition 3.4 (Simply-retargetable functions have orbit-level tendencies).

If f is (Θ, A
simple→ B)-retargetable, then f(B | θ) ≥1

most: Θ f(A | θ).

Proof. Given that f is a (Θ, A
simple→ B)-retargetable function (definition 3.3), we want to show that f

is a (Θ, A
1→ B)-retargetable function (definition 3.5 when n = 1). Definition 3.5’s item 1 is true by

assumption. Since Θ is acted on by Sd, Θ is closed under permutation and so definition 3.5’s item 2
holds. When n = 1, there are no i ̸= j, and so definition 3.5’s item 3 is tautologically true.

Then f is a (Θ, A
1→ B)-retargetable function; apply lemma B.7.

B.2 Helper results on retargetable functions

Targeting parameter θ f({ }|θ) f({ }|θ) f({ }|θ) f({ , }|θ)
θ′ := 1e1 + 3e2 + 2e3 1 0 0 0

ϕ1 · θ′ = ϕ2 · θ′′ := 3e1 + 1e2 + 2e3 0 2 2 2
ϕ2 · θ′ := 2e1 + 3e2 + 1e3 0 2 2 2

θ′′ := 2e1 + 1e2 + 3e3 1 0 0 0
ϕ1 · θ′′ := 1e1 + 2e2 + 3e3 0 2 2 2

θ⋆ := 3e1 + 2e2 + 1e3 1 0 0 0

Table 3: We reuse the Pac-Man outcome set introduced in section 2. Let ϕ1 := ↔ ,ϕ2 := ↔ .
We tabularly define a function f which meets all requirements of lemma B.7, except for item 4:
letting j := 2, f(B⋆

2 | ϕ1 · θ′) = 2 > 0 = f(B⋆
2 | θ′). Although f(B | θ) ≥1

most: S3·θ f(A | θ), it is
not true that f(B | θ∗) ≥2

most: S3·θ f(A | θ∗). Therefore, item 4 is generally required.

Lemma B.7 (Quantitative general orbit lemma). Let Θ be a subset of a set acted on by Sd, and let
f : E×Θ → R. Consider A,B ∈ E.

For each θ ∈ Θ, choose involutions ϕ1, . . . ,ϕn ∈ Sd. Let θ∗ ∈ Orbit|Θ (θ).

1. Retargetable under parameter permutation. There exist B⋆
i ∈ E such that if f(B | θ∗) <

f(A | θ∗), then ∀i : f
�
A | θ∗

�
≤ f

�
B⋆

i | ϕi · θ∗
�
.
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2. Θ is closed under certain symmetries. f(B | θ∗) < f(A | θ∗) =⇒ ∀i : ϕi · θ∗ ∈ Θ.

3. f is increasing on certain inputs. ∀i : f(B⋆
i | θ∗) ≤ f(B | θ∗).

4. Increasing under alternate symmetries. For j = 1, . . . , n and i ̸= j, if f(A | θ∗) < f(B |
θ∗), then f

�
B⋆

j | θ∗
�
≤ f

�
B⋆

j | ϕi · θ∗
�

.

If these conditions hold for all θ ∈ Θ, then

f(B | θ) ≥n
most: Θ f(A | θ). (23)

Proof. Let θ and θ∗ be as described in the assumptions, and let i ∈ {1, . . . , n}.

f(A | ϕi · θ∗) = f(A | ϕ−1
i · θ∗) (24)

≤ f(B⋆
i | θ∗) (25)

≤ f(B | θ∗) (26)
< f(A | θ∗) (27)
≤ f(B⋆

i | ϕi · θ∗) (28)
≤ f(B | ϕi · θ∗). (29)

Equation (24) follows because ϕi is an involution. Equation (25) and eq. (28) follow by item 1.
Equation (26) and eq. (29) follow by item 3. Equation (27) holds by assumption on θ∗. Then eq. (29)
shows that for any i, f(A | ϕi · θ∗) < f(B | ϕi · θ∗), satisfying definition 3.5’s item 1.

This result’s item 2 satisfies definition 3.5’s item 2. We now just need to show definition 3.5’s item 3.

Disjointness. Let θ′, θ′′ ∈ Orbit|Θ,A>B (θ) and let i ̸= j. Suppose ϕi · θ′ = ϕj · θ′′. We want to
show that this leads to contradiction.

f(A | θ′′) ≤ f(B⋆
j | ϕj · θ′′) (30)

= f(B⋆
j | ϕ−1

i · θ′) (31)

≤ f(B⋆
j | θ′) (32)

≤ f(B | θ′) (33)

< f(A | θ′) (34)

≤ f(B⋆
i | ϕi · θ′) (35)

= f(B⋆
i | ϕ−1

j · θ′′) (36)

≤ f(B⋆
i | θ′′) (37)

≤ f(B | θ′′) (38)

< f(A | θ′′). (39)

Equation (30) follows by our assumption of item 1. Equation (31) holds because we assumed that
ϕj · θ′′ = ϕi · θ′, and the involution ensures that ϕi = ϕ−1

i . Equation (32) is guaranteed by our
assumption of item 4, given that ϕ−1

i · θ′ = ϕi · θ′ ∈ Orbit|Θ,B>A (θ)] by the first half of this proof.
Equation (33) follows by our assumption of item 3. Equation (34) follows because we assumed that
θ′ ∈ Orbit|Θ,A>B (θ).

Equation (35) through eq. (39) follow by the same reasoning, switching the roles of θ′ and θ′′, and of
i and j. But then we have demonstrated that a quantity is strictly less than itself, a contradiction. So
for all θ′, θ′′ ∈ Orbit|Θ,A>B (θ), when i ̸= j, ϕi · θ′ ̸= ϕj · θ′′.
Therefore, we have shown definition 3.5’s item 3, and so f is a (Θ, A

n→ B)-retargetable function.
Apply theorem 3.6 in order to conclude that eq. (23) holds.

Definition B.8 (Superset-of-copy containment). Let A,B ⊆ Rd. B contains n superset-copies B⋆
i

of A when there exist involutions ϕ1, . . . ,ϕn such that ϕi · A ⊆ B⋆
i ⊆ B, and whenever i ̸= j,

ϕi ·B⋆
j = B⋆

j .
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Lemma B.9 (Looser sufficient conditions for orbit-level incentives). Suppose that Θ is a subset of a
set acted on by Sd and is closed under permutation by Sd. Let A,B ∈ E ⊆ P

�
Rd

�
. Suppose that

B contains n superset-copies B⋆
i ∈ E of A via ϕi. Suppose that f(X | θ) is increasing under joint

permutation by ϕ1, . . . ,ϕn ∈ Sd for all X ∈ E, θ ∈ Θ, and suppose that ∀i : ϕi ·A ∈ E. Suppose
that f is monotonically increasing on its first argument. Then f(B | θ) ≥n

most: Θ f(A | θ).

Proof. We check the conditions of lemma B.7. Let θ ∈ Θ, and let θ∗ ∈ (Sd · θ) ∩ Θ be an orbit
element.

Item 1. Holds since f(A | θ∗) ≤ f(ϕi · A | ϕi · θ∗) ≤ f(B⋆
i | ϕi · θ∗), with the first inequal-

ity by assumption of joint increasing under permutation, and the second following from
monotonicity (as ϕi ·A ⊆ B⋆

i by superset copy definition B.8).

Item 2. We have ∀θ∗ ∈ (Sd · θ∗) ∩ Θ : f(B | θ∗) < f(A | θ∗) =⇒ ∀i = 1, ..., n : ϕi · θ∗ ∈ Θ
since Θ is closed under permutation.

Item 3. Holds because we assumed that f is monotonic on its first argument.

Item 4. Holds because f is increasing under joint permutation on all of its inputs X, θ
′
, and

definition B.8 shows that ϕi ·B⋆
j = B⋆

j when i ̸= j. Combining these two steps of reasoning,

for all θ′ ∈ Θ, it is true that f
�
B⋆

j | θ′
�
≤ f

�
ϕi ·B⋆

j | ϕi · θ′
�
≤ f

�
B⋆

j | ϕi · θ′
�

.

Then apply lemma B.7.

Lemma B.10 (Hiding an argument which is invariant under certain permutations). Let E1, E2, Θ be
subsets of sets which are acted on by Sd. Let A ∈ E1, C ∈ E2. Suppose there exist ϕ1, . . . ,ϕn ∈ Sd

such that ϕi ·C = C. Suppose h : E1 ×E2 ×Θ → R satisfies ∀i : h(A,C | θ) ≤ h(ϕi ·A,ϕi ·C |
ϕi · θ). For any X ∈ E1, let f(X | θ) := h(X,C | θ). Then f(A | θ) is increasing under joint
permutation by ϕi.

Furthermore, if h is invariant under joint permutation by ϕi, then so is f .

Proof.

f(X | θ) := h(X,C | θ) (40)
≤ h(ϕi ·X,ϕi · C | ϕi · θ) (41)
= h(ϕi ·X,C | ϕi · θ) (42)
=: f(ϕi ·X | ϕi · θ). (43)

Equation (41) holds by assumption. Equation (42) follows because we assumed ϕi · C = C. Then f
is increasing under joint permutation by the ϕi.

If h is invariant, then eq. (41) is an equality, and so ∀i : f(X | θ) = f(ϕi ·X | ϕi · θ).

B.2.1 EU-determined functions

Lemma B.11 and lemma B.5 together extend Turner et al. [2021]’s lemma E.17 beyond functions of
maxx∈Xi , to any functions of cardinalities and of expected utilities of set elements.

Definition A.12 (EU-determined functions). Let P
�
Rd

�
be the power set of Rd, and let f :Qm

i=1 P
�
Rd

�
× Rd → R. f is an EU-determined function if there exists a family of functions

{gω1,...,ωm} such that

f(X1, . . . , Xm | u) = g|X1|,...,|Xm|
�h

x⊤
1 u
i
x1∈X1

, . . . ,
h
x⊤
mu
i
xm∈Xm

�
, (4)

where [ri] is the multiset of its elements ri.

Lemma B.11 (EU-determined functions are invariant under joint permutation). Suppose that f :Qm
i=1 P

�
Rd

�
× Rd → R is an EU-determined function. Then for any ϕ ∈ Sd and X1, . . . , Xm,u,

we have f(X1, . . . , Xm | u) = f(ϕ ·X1, . . . ,ϕ ·Xm | ϕ · u).
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Proof.

f(X1, . . . , Xm | u) (44)

= g|X1|,...,|Xm|
�h

x⊤
1 u
i
x1∈X1

, . . . ,
h
x⊤
mu
i
xm∈Xm

�
(45)

= g|ϕ·X1|,...,|ϕ·Xm|
�h

x⊤
1 u
i
x1∈X1

, . . . ,
h
x⊤
mu
i
xm∈Xm

�
(46)

= g|ϕ·X1|,...,|ϕ·Xm|
�h

(Pϕx1)
⊤(Pϕu)

i
x1∈X1

, . . . ,
h
(Pϕxm)⊤(Pϕu)

i
xm∈Xm

�
(47)

= f(ϕ ·X1, . . . ,ϕ ·Xm | ϕ · u). (48)

Equation (46) holds because permutations ϕ act injectively on Rd. Equation (47) follows because
I = P−1

ϕ Pϕ = P⊤
ϕPϕ by the orthogonality of permutation matrices, and x⊤P⊤

ϕ = (Pϕx)
⊤, so

x⊤u = x⊤P⊤
ϕPϕu = (Pϕx)

⊤(Pϕu).

Theorem A.13 (Orbit tendencies occur for EU-determined decision-making functions). Let
A,B,C ⊆ Rd be such that B contains n copies of A via ϕi such that ϕi · C = C. Let h :Q2

i=1 P
�
Rd

�
× Rd → R be an EU-determined function, and let p(X | u) := h(X,C | u). Suppose

that p returns a probability of selecting an element of X from C. Then p(B | u) ≥n
most: Rd p(A | u).

Proof. By assumption, there exists a family of functions
n
gi,|C|

o
such that for all X ⊆ Rd, h(X,C |

u) = g|X|,|C|
��

x⊤u
�
x∈X

,
�
c⊤u

�
c∈C

�
. Therefore, lemma B.11 shows that h(A,C | u) is invariant

under joint permutation by the ϕi. Letting Θ := Rd, apply lemma B.10 to conclude that f(X | u) is
invariant under joint permutation by the ϕi.

Since f returns a probability of selecting an element of X , f obeys the monotonicity probability
axiom: If X ′ ⊆ X , then f(X ′ | u) ≤ f(X | u). Then f(B | u) ≥n

most: Rd f(A | u) by
lemma B.9.

B.3 Particular results on retargetable functions

Definition B.12 (Quantilization, closed form). Let the expected utility q-quantile threshold be

Mq,P (C | u) := inf

�
M ∈ R | P

x∼P

�
x⊤u > M

�
≤ q

�
. (49)

Let C>Mq,P (C|u) :=
�
c ∈ C | c⊤u > Mq,P (C | u)

	
. C=Mq,P (C|u) is defined similarly. Let �L(x)

be the predicate function returning 1 if L(x) is true and 0 otherwise. Then for X ⊆ C,

Qq,P (X | C,u) :=
X

x∈X

P (x)

q


�x∈C>Mq,P (C|u)

+
�x∈C=Mq,P (C|u)

P
�
C=Mq,P (C|u)

�
�
q − P

�
C>Mq,P (C|u)

��

 ,

(50)

where the summand is defined to be 0 if P (x) = 0 and x ∈ C=Mq,P (C|u).
Remark. Unlike Taylor [2016]’s or Carey [2019]’s definitions, definition B.12 is written in closed
form and requires no arbitrary tie-breaking. Instead, in the case of an expected utility tie on the
quantile threshold, eq. (50) allots probability to outcomes proportional to their probability under the
base distribution P .

Thanks to theorem A.13, we straightforwardly prove most items of proposition A.11 by just rewriting
each decision-making function as an EU-determined function. Most of the proof’s length comes
from showing that the functions are measurable on u, which means that the results also apply for
distributions over utility functions Dany ∈ Dany.

Proposition A.11 (Orbit incentives for different rationalities). Let A,B ⊆ C ⊊ Rd be finite, such
that B contains n copies of A via involutions ϕi such that ϕi · C = C.
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1. Rational choice [Turner et al., 2021].

IsOptimal
�
B | C,Dany

�
≥n

most: Dany
IsOptimal

�
A | C,Dany

�
.

2. Uniformly randomly choosing an optimal lottery. For X ⊆ C, let

FracOptimal
�
X | C,u

�
:=

���
�
argmaxc∈C c⊤u

	
∩X

���
���
�
argmaxc∈C c⊤u

	���
.

Then FracOptimal
�
B | C,Dany

�
≥n

most: Dany
FracOptimal

�
A | C,Dany

�
.

3. Anti-rational choice. AntiOpt
�
B | C,Dany

�
≥n

most: Dany
AntiOpt

�
A | C,Dany

�
.

4. Boltzmann rationality.

BoltzmannT
�
B | C,Dany

�
≥n

most: Dany
BoltzmannT

�
A | C,Dany

�
.

5. Uniformly randomly drawing k outcome lotteries and choosing the best. For X ⊆ C,
u ∈ Rd, and k ≥ 1, let

best-of-k(X,C | u) := E
a1,...,ak∼unif(C)

h
FracOptimal

�
X ∩ {a1, . . . ,ak} | {a1, . . . ,ak},u

�i
.

Then best-of-k(B | C,Dany) ≥n
most: Dany

best-of-k(A | C,Dany).

6. Satisficing [Simon, 1956]. Satisficet
�
B | C,Dany

�
≥n

most: Dany
Satisficet

�
A | C,Dany

�
.

7. Quantilizing over outcome lotteries [Taylor, 2016]. Let P be the uniform probability distri-
bution over C. For X ⊆ C, u ∈ Rd, and q ∈ (0, 1], let Qq,P (X | C,u) (definition B.12)
return the probability that an outcome lottery in X is drawn from the top q-quantile of P ,
sorted by expected utility under u. Then Qq,P (B | C,u) ≥n

most: Rd Qq,P (A | C,u).

Proof. Item 1. Consider

h(X,C | u) := �∃x∈X:∀c∈C:x⊤u≥c⊤u (51)

= min


1,

X

x∈X

Y

c∈C

�(x−c)⊤u≥0


 . (52)

Since halfspaces are measurable, each indicator function is measurable on u. The finite sum of the
finite product of measurable functions is also measurable. Since min is continuous (and therefore
measurable), h(X,C | u) is measurable on u.

Furthermore, h is an EU-determined function:

h(X,C | u) = g




VXz }| {h
x⊤u

i
x∈X

,

VCz }| {h
c⊤u

i
c∈C


 (53)

:= �∃vx∈VX :∀vc∈VC :vx≥vc . (54)

Then by lemma B.11, h is invariant to joint permutation by the ϕi. Since ϕi · C = C, lemma B.10
shows that h′(X | u) := h(X,C | u) is also invariant under joint permutation by the ϕi. Since h is a
measurable function of u, so is h′. Then since h′ is bounded, lemma B.5 shows that f(X | Dany) :=

Eu∼Dany

�
h′(X | u)

�
is invariant under joint permutation by ϕi.

Furthermore, if X ′ ⊆ X , f(X ′ | Dany) ≤ f(X | Dany) by the monotonicity of probability. Then by
lemma B.9,

f(B | Dany) := IsOptimal
�
B | C,Dany

�
≥n

most: Dany
IsOptimal

�
A | C,Dany

�
=: f(A | Dany).
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Item 2. Because X,C are finite sets, the denominator of FracOptimal
�
X | C,u

�
is never zero, and

so the function is well-defined. FracOptimal
�
X | C,u

�
is an EU-determined function:

FracOptimal
�
X | C,u

�
= g




VXz }| {h
x⊤u

i
x∈X

,

VCz }| {h
c⊤u

i
c∈C


 (55)

:=

���
�
v ∈ VX | v = maxv′∈VC

v′
����

���
�
argmaxv′∈VC

v′
����

, (56)

with the [·] denoting a multiset which allows and counts duplicates. Then by lemma B.11,
FracOptimal

�
X | C,u

�
is invariant to joint permutation by the ϕi.

We now show that FracOptimal
�
X | C,u

�
is a measurable function of u.

FracOptimal
�
X | C,u

�
:=

���
�
argmaxc′∈C c′⊤u

	
∩X

���
���
�
argmaxc′∈C c′⊤u

	���
(57)

=

P
x∈X �x∈argmaxc′∈C c′⊤uP
c∈C �c∈argmaxc′∈C c′⊤u

(58)

=

P
x∈X

Q
c′∈C �(x−c′)⊤u≥0P

c∈C

Q
c′∈C �(c−c′)⊤u≥0

. (59)

Equation (59) holds because x belongs to the argmax iff ∀c ∈ C : x⊤u ≥ c⊤u. Furthermore,
this condition is met iff u belongs to the intersection of finitely many closed halfspaces; there-
fore,

n
u ∈ Rd |Qc∈C �(x−c)⊤u≥0 = 1

o
is measurable. Then the sums in both the numerator and

denominator are both measurable functions of u, and the denominator cannot vanish. Therefore,
FracOptimal

�
X | C,u

�
is a measurable function of u.

Let g(X | u) := FracOptimal
�
X | C,u

�
. Since ϕi · C = C, lemma B.10 shows that g(X | u) is

also invariant to joint permutation by ϕi. Since g is measurable and bounded [0, 1], apply lemma B.5
to conclude that f(X | Dany) := Eu∼Dany

�
g(X | C,u)

�
is also invariant to joint permutation by ϕi.

Furthermore, if X ′ ⊆ X ⊆ C, then f(X ′ | Dany) ≤ f(X | Dany). So apply lemma B.9
to conclude that FracOptimal

�
B | C,Dany

�
=: f(B | Dany) ≥n

most: Dany
f(A | Dany) :=

FracOptimal
�
A | C,Dany

�
.

Item 3. Apply the reasoning in item 1 with inner function h(X | C,u) := �∃x∈X:∀c∈C:x⊤u≤c⊤u.

Item 4. Let X ⊆ C. BoltzmannT
�
X | C,u

�
is the expectation of an EU function:

BoltzmannT
�
X | C,u

�
= gT




VXz }| {h
x⊤u

i
x∈X

,

VCz }| {h
c⊤u

i
c∈C


 (60)

:=

P
v∈VX

ev/TP
v∈VC

ev/T
. (61)

Therefore, by lemma B.11, BoltzmannT
�
X | C,u

�
is invariant to joint permutation by the ϕi.

Inspecting eq. (61), we see that g is continuous on u (and therefore measurable), and bounded [0, 1]
since X ⊆ C and the exponential function is positive. Therefore, by lemma B.5, the expectation ver-
sion is also invariant to joint permutation for all permutations ϕ ∈ Sd: BoltzmannT

�
X | C,Dany

�
=

BoltzmannT
�
ϕ ·X | ϕ · C,ϕ · Dany

�
.

Since ϕi · C = C, lemma B.10 shows that f(X | Dany) := BoltzmannT
�
X | C,Dany

�
is also

invariant under joint permutation by the ϕi. Furthermore, if X ′ ⊆ X , then f(X ′ | Dany) ≤
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f(X | Dany). Then apply lemma B.9 to conclude that BoltzmannT
�
B | C,Dany

�
=: f(B |

Dany) ≥n
most: Dany

f(A | Dany) := BoltzmannT
�
A | C,Dany

�
.

Item 5. Let involution ϕ ∈ Sd fix C (i.e. ϕ · C = C).

best-of-k(X | C,u) (62)

:= E
a1,...,ak∼unif(C)

h
FracOptimal

�
X ∩ {a1, . . . ,ak} | {a1, . . . ,ak},u

�i
(63)

= E
a1,...,ak∼unif(C)

h
FracOptimal

�
(ϕ ·X) ∩ {ϕ · a1, . . . ,ϕ · ak}|{ϕ · a1, . . . ,ϕ · ak},ϕ · u

�i

(64)

= E
ϕ·a1,...,ϕ·ak∼unif(ϕ·C)

h
FracOptimal

�
(ϕ ·X) ∩ {ϕ · a1, . . . ,ϕ · ak}|{ϕ · a1, . . . ,ϕ · ak},ϕ · u

�i

(65)
=: best-of-k(ϕ ·X | ϕ · C,ϕ · u). (66)

By the proof of item 2,

FracOptimal
�
X ∩ {a1, . . . ,ak} | {a1, . . . ,ak},u

�
=

FracOptimal
�
(ϕ ·X) ∩ {ϕ · a1, . . . ,ϕ · ak} | {ϕ · a1, . . . ,ϕ · ak},ϕ · u

�
;

thus, eq. (64) holds. Since ϕ · C = C and since the distribution is uniform, eq. (65) holds. Therefore,
best-of-k(X | C,u) is invariant to joint permutation by the ϕi, which are involutions fixing C.

We now show that best-of-k(X | C,u) is measurable on u.

best-of-k(X | C,u) (67)

:= E
a1,...,ak∼unif(C)

h
FracOptimal

�
X ∩ {a1, . . . ,ak} | {a1, . . . ,ak},u

�i
(68)

=
1

|C|k
X

(a1,...,ak)∈Ck

FracOptimal
�
X ∩ {a1, . . . ,ak} | {a1, . . . ,ak},u

�
. (69)

Equation (69) holds because FracOptimal
�
X | C,u

�
is measurable on u by item 2, and measurable

functions are closed under finite addition and scalar multiplication. Then best-of-k(X | C,u) is
measurable on u.

Let g(X | u) := best-of-k(X | C,u). Since ϕi · C = C, lemma B.10 shows that g(X | u) is also
invariant to joint permutation by ϕi. Since g is measurable and bounded [0, 1], apply lemma B.5 to
conclude that f(X | Dany) := Eu∼Dany

�
g(X | C,u)

�
is also invariant to joint permutation by ϕi.

Furthermore, if X ′ ⊆ X ⊆ C, then f(X ′ | Dany) ≤ f(X | Dany). So apply lemma B.9 to conclude
that best-of-k(B | C,Dany) =: f(B | Dany) ≥n

most: Dany
f(A | Dany) := best-of-k(A | C,Dany).

Item 6. Satisficet
�
X | C,u

�
is an EU-determined function:

Satisficet
�
X | C,u

�
= gt




VXz }| {h
x⊤u

i
x∈X

,

VCz }| {h
c⊤u

i
c∈C


 (70)

:=

P
v∈VX

�v≥tP
v∈VC

�v≥t
, (71)

with the function evaluating to 0 if the denominator is 0.
Then applying lemma B.11, Satisficet

�
X | C,u

�
is invariant under joint permutation by the ϕi.

We now show that Satisficet
�
X | C,u

�
is measurable on u.

Satisficet
�
X | C,u

�
=





P
x∈X �

x∈{x′∈Rd|x′⊤u≥t}P
c∈C �

c∈{x′∈Rd|x′⊤u≥t}
∃c ∈ C : c⊤u ≥ t,

0 else.
(72)
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Consider the two cases.

∃c ∈ C : c⊤u ≥ t ⇐⇒ u ∈
[

c∈C

n
u′ ∈ Rd | c⊤u ≥ t

o
.

The right-hand set is the union of finitely many halfspaces (which are measurable), and so the
right-hand set is also measurable. Then the casing is a measurable function of u. Clearly the zero
function is measurable. Now we turn to the first case.

In the first case, eq. (72)’s indicator functions test each x, c for membership in a closed halfspace
with respect to u. Halfspaces are measurable sets. Therefore, the indicator function is a measurable
function of u, and so are the finite sums. Since the denominator does not vanish within the case, the
first case as a whole is a measurable function of u. Therefore, Satisficet

�
X | C,u

�
is measurable

on u.

Since Satisficet
�
X | C,u

�
is measurable and bounded [0, 1] (as X ⊆ C), apply lemma B.5 to con-

clude that Satisficet
�
X | C,Dany

�
= Satisficet

�
ϕ ·X | ϕ · C,ϕ · Dany

�
. Next, let f(X | Dany) :=

Satisficet
�
X | C,Dany

�
. Since we just showed that Satisficet

�
X | C,Dany

�
is invariant to joint

permutation by the involutions ϕi and since ϕi · C = C, f(X | Dany) is also invariant to joint
permutation by ϕi.

Furthermore, if X ′ ⊆ X , we have f(X ′ | Dany) ≤ f(X | Dany). Then applying lemma B.9,
Satisficet

�
B | C,u

�
=: f(B | Dany) ≥n

most: Dany
f(A | Dany) := Satisficet

�
A | C,u

�
.

Item 7. Suppose P is uniform over C and consider any of the involutions ϕi.

Mq,P (C | u) := inf

�
M ∈ R | P

x∼P

�
x⊤u > M

�
≤ q

�
(73)

= inf

�
M ∈ R | P

x∼P

�
(Pϕi

x)⊤(Pϕi
u) > M

�
≤ q

�
(74)

= inf

�
M ∈ R | P

x∼ϕi·P

�
x⊤(Pϕiu) > M

�
≤ q

�
(75)

= inf

�
M ∈ R | P

x∼P

�
x⊤(Pϕi

u) > M
�
≤ q

�
(76)

=: Mq,P (ϕi · C | ϕi · u). (77)

Equation (74) follows by the orthogonality of permutation matrices. Equation (76) follows because if
x ∈ supp(P ) = C, then ϕi · x ∈ C = supp(P ), and furthermore P (x) = P (Pϕi

x) by uniformity.

Now we show the invariance of C>Mq,P (C|u) under joint permutation by ϕi:

C>Mq,P (C|u) :=
n
c ∈ C | c⊤u > Mq,P (C | u)

o
(78)

=
n
c ∈ C | (Pϕic)

⊤(Pϕiu) > Mq,P (ϕi · C | ϕi · u)
o

(79)

=
n
c ∈ ϕi · C | c⊤(Pϕiu) > Mq,P (ϕi · C | ϕi · u)

o
(80)

=: C>Mq,P (ϕi·C|ϕi·u). (81)

Equation (79) follows by the orthogonality of permutation matrices and because Mq,P (C | u) =
Mq,P (ϕi · C | ϕi · u) by eq. (77). A similar proof shows that C=Mq,P (C|u) = C=Mq,P (ϕi·C|ϕi·u).

Recall that

Qq,P (X | C,u) :=
X

x∈X

P (x)

q


�x∈C>Mq,P (C|u)

+
�x∈C=Mq,P (C|u)

P
�
C=Mq,P (C|u)

�
�
q − P

�
C>Mq,P (C|u)

��

 .

(82)

Qq,P (X | C,u) = Qq,P (ϕi · X | ϕi · C,ϕi · u), since Q is the sum of products of ϕi-invariant
quantities.
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P (x) is non-negative because P is a probability distribution, and q is assumed positive. The indicator
functions � are non-negative. By the definition of Mq,P , P

�
C>Mq,P (C|u)

�
≤ q. Therefore, eq. (82)

is the sum of non-negative terms. Thus, if X ′ ⊆ X , then Qq,P (X
′ | C,u) ≤ Qq,P (X | C,u).

Let f(X | u) := Qq,P (X | C,u). Since ϕi · C = C and since Qq,P (X | C,u) = Qq,P (ϕi ·X |
ϕi ·C,ϕi · u), lemma B.10 shows that f(X | u) is also jointly invariant to permutation by ϕi. Lastly,
if X ′ ⊆ X , we have f(X ′ | Dany) ≤ f(X | Dany).

Apply lemma B.9 to conclude that Qq,P (B | C,u) =: f(B | u) ≥n
most: Rd f(A | u) := Qq,P (A |

C,u).

Conjecture B.13 (Orbit tendencies occur for more quantilizer base distributions). Proposition A.11’s
item 7 holds for any base distribution P over C such that minb∈B P (b) ≥ maxa∈A P (a). Further-
more, Qq,P (X | C,u) is measurable on u and so ≥n

most: Rd can be generalized to ≥n
most: Dany

.

Appendix C Detailed analyses of MR scenarios

C.1 Action selection

Consider a bandit problem with five arms a1, . . . , a5 partitioned A := {a1} , B := {a2, . . . , a5},
which each action has a definite utility ui. There are T = 100 trials. Suppose the training procedure
train uses the ϵ-greedy strategy to learn value estimates for each arm. At the end of training, train
outputs a greedy policy with respect to its value estimates. Consider any action-value initialization,
and the learning rate is set α := 1. To learn an optimal policy, at worst, the agent just has to try each
action once.
Lemma C.1 (Lower bound on success probability of the train bandit). Let u ∈ R5 assign strictly
maximal utility to ai, and suppose train (described above) runs for T ≥ 5 trials. Then ptrain({ai} |
u) ≥ 1− (1− ϵ

4 )
T .

Proof. Since the trained policy can be stochastic,

ptrain({ai} | u) ≥ P (ai is assigned probability 1 by the learned greedy policy) .

Since ai has strictly maximal utility which is deterministic, and since the learning rate α := 1, if
action ai is ever drawn, it is assigned probability 1 by the learned policy. The probability that ai is
never explored is at most (1− ϵ

4 )
T , because at worst, ai is an “explore” action (and not an “exploit”

action) at every time step, in which case it is ignored with probability 1− ϵ
4 .

Proposition C.2 (The train bandit is 4-retargetable). ptrain is (R5, A
4→ B)-retargetable.

Proof. Let ϕi := a1 ↔ ai for i = 2, . . . , 5 and let Θ := R5. We want to show that whenever u ∈ R5

induces ptrain(A | u) > ptrain(B | u), retargeting u will get train to instead learn to pull a B-action:
ptrain(A | ϕi · u) < ptrain(B | ϕi · u).
Suppose we have such a u. If u is constant, a symmetry argument shows that each action has equal
probability of being selected, in which case ptrain(A | u) = 1

5 < 4
5 = ptrain(B | u)—a contradiction.

Therefore, u is not constant. Similar symmetry arguments show that A’s action a1 has strictly
maximal utility (u1 > maxi=2,...,5 ui).

But for T = 100, lemma C.1 shows that ptrain(A | u) = ptrain({a1} | u) ≈ 1 and ptrain(
�
ai̸=1

	
|

u) ≈ 0 =⇒ ptrain(B | u) =
P

i̸=1 ptrain({ai} | u) ≈ 0. The converse statement holds when
considering ϕi · u instead of u. Therefore, train satisfies definition 3.5’s item 1 (retargetability).
These ϕi · u ∈ Θ := R5 because R5 is closed under permutation by S5, satisfying item 2.

Consider another u′ ∈ R5 such that ptrain(A | u′) > ptrain(B | u′), and consider i ̸= j. By the above
symmetry arguments, u′ must also assign a1 maximal utility. By lemma C.1, ptrain({ai} | ϕi · u) ≈ 1
and ptrain(

�
aj
	
| ϕi · u) ≈ 0 since i ̸= j, and vice versa when considering ϕj · u instead of ϕi · u.

Then since ϕi · u and ϕj · u induce distinct probability distributions over learned actions, they cannot
be the same utility function. This satisfies item 3.
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Figure 3: Map of the first level of Montezuma’s Revenge.

Corollary C.3 (The train bandit has orbit-level tendencies). ptrain(B | u) ≥4
most: R5 ptrain(A | u).

Proof. Combine proposition C.2 and theorem 3.6.

C.2 Observation reward maximization

Let T be a reasonably long rollout length, so that OT -reach is large—many different step-T observations
can be induced.

Proposition C.4 (Final reward maximization has strong orbit-level incentives in MR). Let n :=

⌊ |Oleave|
|Ostay| ⌋. pmax(Oleave | R) ≥n

most: RO pmax(Ostay | R).

Proof. Consider the vector space representation of observations, R|O|. Define A := {eo | o ∈
Ostay}, B := {eo | o ∈ Oleave}, and C := OT -reach = A ∪B the union of Ostay, Oleave.

Since |Oleave| ≥
��Ostay

�� by assumption that T is reasonably large, consider the involution ϕ1 ∈ S|O|
which embeds Ostay into Oleave, while fixing all other observations. If possible, produce another
involution ϕ2 which also embeds Ostay into Oleave, which fixes all other observations, and which
“doesn’t interfere with ϕ1” (i.e. ϕ2 ·(ϕ1 ·A) = ϕ1 ·A). We can produce n := ⌊ |Oleave|

|Ostay| ⌋ such involutions.

Therefore, B contains n copies (definition A.7) of A via involutions ϕ1, . . . ,ϕn. Furthermore,
ϕi · (A∪B) = A∪B, since each ϕi swaps A with B′ ⊆ B, and fixes all b ∈ B \B′ by assumption.
Thus, ϕ · C = C.

By proposition A.11’s item 2, FracOptimal
�
B | C,R

�
≥n

most: RO FracOptimal
�
A | C,R

�
. Since

pmax uniformly randomly chooses a maximal-reward observation to induce, ∀X ⊆ C : pmax(X |
R) = FracOptimal

�
X | C,R

�
. Therefore, pmax(Oleave | R) ≥n

most: RO pmax(Ostay | R).

We want to reason about the probability that decide leaves the initial room by time T in its rollout
trajectories.

pdecide(leave | θ) := P
π∼decide(θ),

τ∼π|s0

(τ has left the first room by step T ) , (83)

pdecide(stay | θ) := P
π∼decide(θ),

τ∼π|s0

(τ has not left the first room by step T ) . (84)
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We want to show that reward maximizers tend to leave the room: pmax(leave | R) ≥n
most: Θ

pmax(stay | R). However, we must be careful: In general, pmax(Oleave | R) ̸= pmax(leave | R)
and pmax(Ostay | R) ̸= pmax(stay | R). For example, suppose that oT ∈ Oleave. By the definition of
Oleave, oT can only be observed if the agent has left the room by time step T , and so the trajectory
τ must have left the first room. The converse argument does not hold: The agent could leave the
first room, re-enter, and then wait until time T . Although one of the doors would have been opened
(fig. 2), the agent can also open the door without leaving the room, and then realize the same step-T
observation. Therefore, this observation doesn’t belong to Oleave.
Lemma C.5 (Room-status inequalities for MR).

pdecide(stay | θ) ≤ pdecide(Ostay | θ), (85)
and pdecide(Oleave | θ) ≤ pdecide(leave | θ). (86)

Proof. For any decide,

pdecide(stay | θ) (87)
= P

π∼decide(θ),
τ∼π|s0

(τ stays through step T ) (88)

=
X

o∈O
P

π∼decide(θ),
τ∼π|s0

(o at step T of τ) P
π∼decide(θ),

τ∼π|s0

�
τ stays | o at step T

�
(89)

=
X

o∈OT -reach

P
π∼decide(θ),

τ∼π|s0

(o at step T ) P
π∼decide(θ),

τ∼π|s0

�
τ stays | o at step T

�
(90)

=
X

o∈Ostay

P
π∼decide(θ),

τ∼π|s0

(o at step T ) P
π∼decide(θ),

τ∼π|s0

�
τ stays | o at step T

�
(91)

≤
X

o∈Ostay

P
π∼decide(θ),

τ∼π|s0

(o at step T ) (92)

= P
π∼decide(θ),

τ∼π|s0

�
oT ∈ Ostay

�
(93)

=: pdecide(Ostay | θ). (94)

Equation (90) holds because the definition of OT -reach ensures that if o ̸∈ OT -reach, then
Pπ∼decide(θ),

τ∼π|s0

�
o | θ

�
= 0. Because o ∈ OT -reach \Ostay implies that τ left and so

P
π∼decide(θ),

τ∼π|s0

�
τ stays | o at step T

�
= 0,

eq. (91) follows. Then we have shown eq. (85).

For eq. (86),

pdecide(Oleave | θ) (95)
:= P

π∼decide(θ),
τ∼π|s0

(oT ∈ Oleave) (96)

=
X

o∈Oleave

P
π∼decide(θ),

τ∼π|s0

(o at step T ) (97)

=
X

o∈Oleave

P
π∼decide(θ),

τ∼π|s0

(o at step T ) P
π∼decide(θ),

τ∼π|s0

�
τ leaves by step T | o at step T

�
(98)

=
X

o∈O
P

π∼decide(θ),
τ∼π|s0

(o at step T ) P
π∼decide(θ),

τ∼π|s0

�
τ leaves by step T | o at step T

�
(99)

= P
π∼decide(θ),

τ∼π|s0

(τ has left the first room by step T ) (100)
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=: pdecide(leave | θ). (101)

Equation (98) follows because, since o ∈ Oleave are only realizable by leaving the first room,
this implies Pπ∼decide(θ),

τ∼π|s0

�
τ leaves by step T | o at step T

�
= 1. Equation (99) follows because

Oleave ⊆ O, and probabilities are non-negative. Then we have shown eq. (86).

Corollary C.6 (Final reward maximizers tend to leave the first room in MR).
pmax(leave | R) ≥n

most: RO pmax(stay | R). (102)

Proof. Using lemma C.5 and proposition C.4, apply lemma B.1 with f0(R) := pmax(leave |
R), f1(R) := pmax(Oleave | R), f2(R) := pmax(Ostay | R), f3(R) := pmax(stay | R) to conclude that
pmax(leave | R) ≥n

most: RO pmax(stay | R).

C.3 Featurized reward maximization

Θ := RO assumes we will specify complicated reward functions over observations, with |O| degrees
of freedom in their specification. Any observation can get any number. However, reward functions
are often specified more compactly. For example, in section 4.3, the (additively) featurized reward
function Rfeat(oT ) := feat(oT )⊤α has four degrees of freedom. Compared to typical reward functions
(which would look like “random noise” to a human), Rfeat more easily trains competent policies
because of the regularities between the reward and the state features.

In this setup, pmax chooses a policy which induces a step-T observation with maximal reward. Reward
depends only on the feature vector of the final observation—more specifically, on the agent’s item
counts. There are more possible item counts available by first leaving the room, than by staying.

We will now conduct a more detailed analysis and conclude that pmax(Oleave | α) ≥3
most: R4 pmax(Ostay |

α). Informally, we can retarget which items the agent prioritizes, and thereby retarget from Ostay to
Oleave.

Consider the featurization function which takes as input an observation o ∈ O:

feat(o) :=




# of keys in inventory shown by o
# of swords in inventory shown by o
# of torches in inventory shown by o
# of amulets in inventory shown by o


 . (103)

Consider Afeat :=
�

feat(o) | o ∈ Ostay
	
, Bfeat :=

�
feat(o) | o ∈ Oleave

	
.

Let ei ∈ R4 be the standard basis vector with a 1 in entry i and 0 elsewhere. When restricted to the
room shown in fig. 2, the agent can either acquire the key in the first room and retain it until step T
(e1), or reach time step T empty-handed (0). We conclude that Afeat = {e1,0}.

For Bfeat, recall that in section 4.2 we assumed the rollout length T to be reasonably large. Then
by leaving the room, some realizable trajectory induces oT displaying an inventory containing
only a sword (e2), or only a torch (e3), or only an amulet (e4), or nothing at all (0). Therefore,
{e2, e3, e4,0} ⊆ Bfeat. Bfeat contains 3 copies of Afeat (definition A.7) via involutions ϕi : 1 ↔ i,
i ̸= 1. Suppose all feature coefficient vectors α ∈ R4 are plausible. Then Θ := R4.

Let us be more specific about what is entailed by featurized reward maximization. The decidemax(α)
procedure takes α as input and then considers the reward function o 7→ feat(o)⊤α. Then, decidemax

uniformly randomly chooses an observation oT ∈ OT -reach which maximizes this featurized reward,
and then uniformly randomly chooses a policy which implements oT .
Lemma C.7 (FracOptimal inequalities). Let X ⊆ Y ′ ⊆ Y ⊊ Rd be finite, and let u ∈ Rd. Then

FracOptimal
�
X | Y,u

�
≤ FracOptimal

�
X | Y ′,u

�
≤ FracOptimal

�
X ∪ (Y \ Y ′) | Y,u

�
.

(104)

Proof. For finite X1 ⊊ Rd, let Best
�
X1 | u

�
:= argmaxx1∈X1

x⊤
1 u. Suppose y′ ∈ Best

�
Y ′ | u

�
,

but y′ ̸∈ Best
�
Y | u

�
. Then for all a ∈ Best

�
Y ′ | u

�
,

a⊤u = y′⊤u < max
y∈Y

y⊤u. (105)
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So a ̸∈ Best
�
Y | u

�
. Then either Best

�
Y ′ | u

�
⊆ Best

�
Y | u

�
, or the two sets are disjoint.

FracOptimal
�
X | Y,u

�
:=

���Best
�
Y | u

�
∩X

���
���Best

�
Y | u

����
(106)

≤

���Best
�
Y ′ | u

�
∩X

���
���Best

�
Y ′ | u

����
=: FracOptimal

�
X | Y ′,u

�
(107)

If Best
�
Y ′ | u

�
⊆ Best

�
Y | u

�
, then since X ⊆ Y ′, we have X ∩ Best

�
Y ′ | u

�
= X ∩

Best
�
Y | u

�
. Then in this case, eq. (106) has equal numerator and larger denominator than eq. (107).

On the other hand, if Best
�
Y ′ | u

�
∩Best

�
Y | u

�
= ∅, then since X ⊆ Y ′, X∩Best

�
Y | u

�
= ∅.

Then eq. (106) equals 0, and eq. (107) is non-negative. Either way, eq. (107)’s inequality holds. To
show the second inequality, we handle the two cases separately.

Subset case. Suppose that Best
�
Y ′ | u

�
⊆ Best

�
Y | u

�
.���Best

�
Y ′ | u

�
∩X

���
���Best

�
Y ′ | u

����
≤

���Best
�
Y ′ | u

�
∩X

���+
���Best

�
Y \ Y ′ | u

����
���Best

�
Y ′ | u

����+
���Best

�
Y \ Y ′ | u

����
(108)

=

���Best
�
Y ′ | u

�
∩X

���+
���Best

�
Y \ Y ′ | u

�
∩ (Y \ Y ′)

���
���Best

�
Y ′ | u

����+
���Best

�
Y \ Y ′ | u

����
(109)

=

���Best
�
Y ′ | u

�
∩X

���+
���Best

�
Y | u

�
∩ (Y \ Y ′)

���
���Best

�
Y ′ | u

����+
���Best

�
Y \ Y ′ | u

����
(110)

=

���Best
�
Y ′ | u

�
∩X

���+
���Best

�
Y | u

�
∩ (Y \ Y ′)

���
���Best

�
Y | u

����
(111)

=

���Best
�
Y | u

�
∩X

���+
���Best

�
Y | u

�
∩ (Y \ Y ′)

���
���Best

�
Y | u

����
(112)

=

���Best
�
Y | u

�
∩ (X ∪ (Y \ Y ′))

���
���Best

�
Y | u

����
(113)

=: FracOptimal
�
X ∪ (Y \ Y ′) | Y,u

�
. (114)

Equation (108) follows because when n ≤ d, k ≥ 0, we have n
d ≤ n+k

d+k . For eq. (110), since
Best

�
Y ′ | u

�
⊆ Best

�
Y | u

�
, we must have

Best
�
Y | u

�
= Best

�
Y \ Y ′ | u

�
∪ Best

�
Y ′ | u

�
.

But then
Best

�
Y | u

�
∩ (Y \ Y ′) =

�
Best

�
Y \ Y ′ | u

�
∩ (Y \ Y ′)

�
∪
�
Best

�
Y ′ | u

�
∩ (Y \ Y ′)

�

(115)

= Best
�
Y \ Y ′ | u

�
∩ (Y \ Y ′). (116)

Then eq. (110) follows. Equation (111) follows since
Best

�
Y | u

�
= Best

�
Y \ Y ′ | u

�
∪ Best

�
Y ′ | u

�
.

Equation (112) follows since X ⊆ Y ′, and so
Best

�
Y ′ | u

�
∩X = Best

�
Y | u

�
∩X.

Equation (113) follows because X ⊆ Y ′ is disjoint of Y \ Y ′. We have shown that
FracOptimal

�
X | Y ′,u

�
≤ FracOptimal

�
X ∪ (Y \ Y ′) | Y,u

�

in this case.
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Disjoint case. Suppose that Best
�
Y ′ | u

�
∩ Best

�
Y | u

�
= ∅.

���Best
�
Y ′ | u

�
∩X

���
���Best

�
Y ′ | u

����
≤ 1 (117)

=

���Best
�
Y \ Y ′ | u

����
���Best

�
Y \ Y ′ | u

����
(118)

=

���Best
�
Y \ Y ′ | u

�
∩ (Y \ Y ′)

���
���Best

�
Y \ Y ′ | u

����
(119)

=

���Best
�
Y \ Y ′ | u

�
∩ (X ∪ (Y \ Y ′))

���
���Best

�
Y \ Y ′ | u

����
(120)

=

���Best
�
Y | u

�
∩ (X ∪ (Y \ Y ′))

���
���Best

�
Y | u

����
(121)

=: FracOptimal
�
X ∪ (Y \ Y ′) | Y,u

�
. (122)

Equation (117) follows because Best
�
Y ′ | u

�
∩ X ⊆ Best

�
Y ′ | u

�
. For eq. (120), note that

we trivially have Best
�
Y ′ | u

�
∩ Best

�
Y \ Y ′ | u

�
= ∅, and also that X ⊆ Y ′. Therefore,

Best
�
Y \ Y ′ | u

�
∩X = ∅, and eq. (120) follows. Finally, the disjointness assumption implies that

max
y′∈Y ′

y′⊤u < max
y∈Y

y⊤u.

Therefore, the optimal elements of Y must come exclusively from Y \ Y ′; i.e. Best
�
Y | u

�
=

Best
�
Y \ Y ′ | u

�
. Then eq. (121) follows, and we have shown that

FracOptimal
�
X | Y ′,u

�
≤ FracOptimal

�
X ∪ (Y \ Y ′) | Y,u

�

in this case.

Conjecture C.8 (Generalizing lemma C.7). Lemma C.7 and Turner et al. [2021]’s Lemma E.26 have
extremely similar functional forms. How can they be unified?

Proposition C.9 (Featurized reward maximizers tend to leave the first room in MR).

pmax(leave | α) ≥3
most: R4 pmax(stay | α). (123)

Proof. We want to show that pmax(Oleave | α) ≥n
most: R4 pmax(Ostay | α). Recall that Afeat =

{e1,0}, B′
feat := {e2, e3, e4} ⊆ Bfeat.

pmax(stay | α) (124)
≤ pmax(Ostay | α) (125)

:= P
π∼decidemax(α),

τ∼π|s0

�
oT ∈ Ostay

�
(126)

= P
π∼decidemax(α),

τ∼π|s0

�
oT ∈ Ostay, feat(oT ) ̸= 0

�
+ P

π∼decidemax(α),
τ∼π|s0

�
oT ∈ Ostay, feat(oT ) = 0

�

(127)

≤ FracOptimal
�
{e1} | Cfeat,α

�
+ P

π∼decidemax(α),
τ∼π|s0

�
oT ∈ Ostay, feat(oT ) = 0

�
(128)

≤ FracOptimal
�
{e1} | {e1, e2, e3, e4} ,α

�
+ P

π∼decidemax(α),
τ∼π|s0

�
oT ∈ Ostay, feat(oT ) = 0

�
(129)
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≤3
most: R4

>0
FracOptimal

�
{e2, e3, e4} | {e1, e2, e3, e4} ,α

�

+ P
π∼decidemax(α),

τ∼π|s0

�
oT ∈ Oleave, feat(oT ) = 0

�
(130)

≤ FracOptimal
�
{e2, e3, e4} ∪ (Cfeat \ {e1, e2, e3, e4}) | Cfeat,α

�
(131)

= FracOptimal
�
Cfeat \ {e1} | Cfeat,α

�
(132)

≤ P
π∼decidemax(α),

τ∼π|s0

(oT ∈ Oleave) (133)

=: pmax(Oleave | α) (134)
≤ pmax(leave | α). (135)

Equation (124) and eq. (135) hold by lemma C.5. If oT ∈ Ostay is realized by pmax and feat(oT ) ̸= 0,
then we must have feat(oT ) = {e1} be optimal and so the e1 inventory configuration is realized.
Therefore, eq. (128) follows. Equation (129) follows by applying the first inequality of lemma C.7
with X := {e1}, Y ′ := {e1, e2, e3, e4}, Y := Cfeat.

By applying proposition A.11’s item 2 with A := Afeat = {e1}, B′ := B′
feat = {e2, e3, e4},

C := A ∪B′, we have

FracOptimal
�
{e1} | {e1, e2, e3, e4} ,α

�
≤3

most: R4
>0

FracOptimal
�
{e2, e3, e4} | {e1, e2, e3, e4} ,α

�
. (136)

Furthermore, observe that

P
π∼decidemax(α),

τ∼π|s0

�
oT ∈ Ostay, feat(oT ) = 0

�
≤ P

π∼decidemax(α),
τ∼π|s0

�
oT ∈ Oleave, feat(oT ) = 0

�
(137)

because either 0 is not optimal (in which case both sides equal 0), or else 0 is optimal, in which
case the right side is strictly greater. This can be seen by considering how decidemax(α) uniformly
randomly chooses an observation in which the agent ends up with an empty inventory. As argued
previously, the vast majority of such observations can only be induced by leaving the first room.

Combining eq. (136) and eq. (137), eq. (130) follows. Equation (131) follows by applying the
second inequality of lemma C.7 with X := {e2, e3, e4}, Y ′ := {e1, e2, e3, e4}, Y := Cfeat. If
feat(oT ) ∈ Bfeat is realized by pmax, then by the definition of Bfeat, oT ∈ Oleave is realized, and so
eq. (133) follows.

Then by applying lemma B.1 with

f0(α) := pmax(leave | α), (138)

f1(α) := FracOptimal
�
{e1} | {e1, e2, e3, e4} ,α

�
, (139)

f2(α) := FracOptimal
�
{e2, e3, e4} | {e1, e2, e3, e4} ,α

�
, (140)

f3(α) := pmax(stay | α), (141)

we conclude that pmax(leave | α) ≥3
most: R4

>0
pmax(stay | α).

Lastly, note that if 0 ∈ Θ and f(A | 0) > f(B | 0), f cannot be even be simply retargetable for
the Θ parameter set. This is because ∀ϕ ∈ Sd, ϕ · 0 = 0. For example, inductive bias ensures that,
absent a reward signal, learned policies tend to stay in the initial room in MR. This is one reason why
section 4.3’s analysis of the policy tendencies of reinforcement learning excludes the all-zero reward
function.

C.4 Reasoning for why DQN can’t explore well

In section 4.3, we wrote:

Mnih et al. [2015]’s DQN isn’t good enough to train policies which leave the first
room of MR, and so DQN (trivially) cannot be retargetable away from the first room
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via the reward function. There isn’t a single featurized reward function for which
DQN visits other rooms, and so we can’t have α such that ϕ · α retargets the agent
to Oleave. DQN isn’t good enough at exploring.

We infer this is true from Nair et al. [2015], which shows that vanilla DQN gets zero score in MR.
Thus, DQN never even gets the first key. Thus, DQN only experiences state-action-state transitions
which didn’t involve acquiring an item, since (as shown in fig. 3) the other items are outside of the
first room, which requires a key to exit. In our analysis, we considered a reward function which is
featurized over item acquisition.

Therefore, for all pre-key-acquisition state-action-state transitions, the featurized reward function
returns exactly the same reward signals as those returned in training during the published experiments
(namely, zero, because DQN can never even get to the key in order to receive a reward signal). That is,
since DQN only experiences state-action-state transitions which didn’t involve acquiring an item, and
the featurized reward functions only reward acquiring an item, it doesn’t matter what reward values
are provided upon item acquisition—DQN’s trained behavior will be the same. Thus, a DQN agent
trained on any featurized reward function will not explore outside of the first room.

Appendix D Lower bounds on MDP power-seeking incentives for optimal
policies

Turner et al. [2021] prove conditions under which at least half of the orbit of every reward function
incentivizes power-seeking behavior. For example, in fig. 4, they prove that avoiding ∅ maximizes
average per-timestep reward for at least half of reward functions. Roughly, there are more self-loop
states (∅, ℓ↙, r↘, r↗) available if the agent goes left or right instead of up towards ∅. We
strengthen this claim, with corollary D.12 showing that for at least three-quarters of the orbit of
every reward function, it is average-optimal to avoid ∅.

Therefore, we answer Turner et al. [2021]’s open question of whether increased number of environ-
mental symmetries quantitatively strengthens the degree to which power-seeking is incentivized. The
answer is yes. In particular, it may be the case that only one in a million state-based reward functions
makes it average-optimal for Pac-Man to die immediately.

�

∅

ℓ�
left

ℓ�

ℓ�

r�
right

r�

r�

Figure 4: A toy MDP for reasoning about power-seeking tendencies. Reproduced from Turner et al.
[2021].

We will briefly restate several definitions needed for our key results, theorem D.11 and corollary D.12.
For explanation, see Turner et al. [2021].

Definition D.1 (Non-dominated linear functionals). Let X ⊊ R|S| be finite. ND (X) :=n
x ∈ X | ∃r ∈ R|S| : x⊤r > maxx′∈X\{x} x′⊤r

o
.

Definition D.2 (Bounded reward function distribution). Dbound is the set of bounded-support proba-
bility distributions Dbound.
Remark. When n = 1, lemma D.3 reduces to the first part of Turner et al. [2021]’s lemma E.24, and
lemma D.5 reduces to the first part of Turner et al. [2021]’s lemma E.28.

Lemma D.3 (Quantitative expectation superiority lemma). Let A,B ⊊ Rd be finite and let g : R → R
be a (total) increasing function. Suppose B contains n copies of ND (A). Then

E
r∼Dbound

"
g

�
max
b∈B

b⊤r

�#
≥n

most: Dbound
E

r∼Dbound

"
g

�
max
a∈A

a⊤r

�#
. (142)
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Proof. Because g : R → R is increasing, it is measurable (as is max).

Let L := infr∈supp(Dbound) maxx∈X x⊤r, U := supr∈supp(Dbound) maxx∈X x⊤r. Both exist because
Dbound has bounded support. Furthermore, since g is monotone increasing, it is bounded [g(L), g(U)]
on [L,U ]. Therefore, g is measurable and bounded on each supp(Dbound), and so the relevant
expectations exist for all Dbound.

For finite X ⊊ Rd, let f(X | u) := g(maxx∈X x⊤u). By lemma B.11, f is invariant under
joint permutation by Sd. Furthermore, f is measurable because g and max are. Therefore, apply
lemma B.5 to conclude that f(X | Dbound) := Eu∼Dbound

�
g(maxx∈X x⊤u)

�
is also invariant under

joint permutation by Sd (with f being bounded when restricted to supp(Dbound)). Lastly, if X ′ ⊆ X ,
f(X ′ | Dbound) ≤ f(X | Dbound) because g is increasing.

E
u∼Dbound

"
g

�
max
a∈A

a⊤u

�#
= E

u∼Dbound


g
 

max
a∈ND(A)

a⊤u

!
 (143)

≤n
most: Dany

E
r∼Dbound

"
g

�
max
b∈B

b⊤r

�#
. (144)

Equation (143) follows by corollary E.11 of [Turner et al., 2021]. Equation (144) follows by applying
lemma B.9 with f as defined above with the ϕ1, . . . ,ϕn guaranteed by the copy assumption.

Definition D.4 (Linear functional optimality probability [Turner et al., 2021]). For finite A,B ⊊ R|S|,
the probability under Dany that A is optimal over B is

pDany (A ≥ B) := Pr∼Dany

�
max
a∈A

a⊤r ≥ max
b∈B

b⊤r

�
.

Lemma D.5 (Quantitative optimality probability superiority lemma). Let A,B,C ⊊ Rd be finite
and let Z satisfy ND (C) ⊆ Z ⊆ C. Suppose that B contains n copies of ND (A) via involutions ϕi.
Furthermore, let Bextra := B\

�
∪n
i=1ϕi · ND (A)

�
; suppose that for all i, ϕi ·

�
Z \Bextra

�
= Z\Bextra.

Then pDany (B ≥ C) ≥n
most: Dany

pDany (A ≥ C).

Proof. For finite X,Y ⊊ Rd, let

g(X,Y | Dany) := pDany (X ≥ Y ) = E
u∼Dany

h
�maxx∈X x⊤u≥maxy∈Y y⊤u

i
.

By the proof of item 1 of proposition A.11, g is the expectation of a u-measurable function. g is
an EU function, and so lemma B.11 shows that it is invariant to joint permutation by ϕi. Letting
fY (X | Dany) := g(X,Y | Dany), lemma B.10 shows that fY (X | Dany) = fY (ϕi ·X | ϕi · Dany)
whenever the ϕi satisfy ϕi · Y = Y .

Furthermore, if X ′ ⊆ X , then fY (X
′ | Dany) ≤ fY (X | Dany).

pDany (A ≥ C) = pDany

�
ND (A) ≥ C

�
(145)

≤ pDany

�
ND (A) ≥ Z \Bextra

�
(146)

≤n
most: Dany

pDany

�
B ≥ Z \Bextra

�
(147)

≤ pDany (B ∪Bextra ≥ Z) (148)

= pDany (B ≥ Z) (149)

= pDany (B ≥ C) . (150)

Equation (145) follows by Turner et al. [2021]’s lemma E.12’s item 2 with X := A, X ′ := ND (A)
(similar reasoning holds for C and Z in eq. (150)). Equation (146) follows by the first inequality
of lemma E.26 of [Turner et al., 2021] with X := A, Y := C, Y ′ := Z \ Bextra. Equation (147)
follows by applying lemma B.9 with the fZ\Bextra defined above. Equation (148) follows by the
second inequality of lemma E.26 of [Turner et al., 2021] with X := A, Y := Z, Y ′ := Z \ Bextra.
Equation (149) follows because Bextra ⊆ B.
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Letting f0(Dany) := pDany (A ≥ C) , f1(Dany) := pDany

�
ND (A) ≥ Z \Bextra

�
, f2(Dany) :=

pDany

�
B ≥ Z \Bextra

�
, f3(Dany) := pDany (B ≥ C), apply lemma B.1 to conclude that

pDany (A ≥ C) ≤n
most: Dany

pDany (B ≥ C) .

Definition D.6 (Rewardless MDP [Turner et al., 2021]). ⟨S,A, T ⟩ is a rewardless MDP with finite
state and action spaces S and A, and stochastic transition function T : S ×A → ∆(S). We treat the
discount rate γ as a variable with domain [0, 1].

Definition D.7 (1-cycle states [Turner et al., 2021]). Let es ∈ R|S| be the standard basis vector
for state s, such that there is a 1 in the entry for state s and 0 elsewhere. State s is a 1-cycle if
∃a ∈ A : T (s, a) = es. State s is a terminal state if ∀a ∈ A : T (s, a) = es.

Definition D.8 (State visit distribution [Sutton and Barto, 1998]). Π := AS , the set of stationary
deterministic policies. The visit distribution induced by following policy π from state s at discount
rate γ ∈ [0, 1) is fπ,s(γ) :=

P∞
t=0 γ

t Est∼π|s [est ]. fπ,s is a visit distribution function; F(s) :=
{fπ,s | π ∈ Π}.

Definition D.9 (Recurrent state distributions [Puterman, 2014]). The recurrent state distributions
which can be induced from state s are RSD (s) :=

�
limγ→1(1− γ)fπ,s(γ) | π ∈ Π

	
. RSDnd (s) is

the set of RSDs which strictly maximize average reward for some reward function.

Definition D.10 (Average-optimal policies [Turner et al., 2021]). The average-optimal policy set for
reward function R is Πavg (R) :=

n
π ∈ Π | ∀s ∈ S : dπ,s ∈ argmaxd∈RSD(s) d

⊤r
o

(the policies
which induce optimal RSDs at all states). For D ⊆ RSD (s), the average optimality probability is
PDany

(D, average) := PR∼Dany

�
∃dπ,s ∈ D : π ∈ Πavg (R)

�
.

Remark. Theorem D.11 generalizes the first claim of Turner et al. [2021]’s theorem 6.13, and
corollary D.12 generalizes the first claim of Turner et al. [2021]’s corollary 6.14.

Theorem D.11 (Quantitatively, average-optimal policies tend to end up in “larger” sets of RSDs).
Let D′, D ⊆ RSD (s). Suppose that D contains n copies of D′ and that the sets D′ ∪ D and
RSDnd (s) \

�
D′ ∪D

�
have pairwise orthogonal vector elements (i.e. pairwise disjoint vector

support). Then PDany

�
D′, average

�
≤n

most: Dany
PDany

(D, average).

Proof. Let Di := ϕi ·D′, where Di ⊆ D by assumption.
Let S :=

�
s′ ∈ S | maxd∈D′∪D d⊤es′ > 0

	
.

Define

ϕ′
i(s

′) :=

(
ϕi(s

′) if s′ ∈ S

s′ else.
(151)

Since ϕi is an involution, ϕ′
i is also an involution. Furthermore, ϕ′

i ·D′ = Di, ϕ′
i ·Di = D′, and

ϕ′
i·Dj = Dj for j ̸= i because we assumed that these equalities hold for ϕi, and D′, Di, Dj ⊆ D′∪D

and so the vectors of these sets have support contained in S.

Let D∗ := D′ ∪n
i=1 Di ∪

�
RSDnd (s) \

�
D′ ∪D

��
. By an argument mirroring that in the proof of

theorem 6.13 in Turner et al. [2021] and using the fact that ϕ′
i ·Dj = Dj for all i ̸= j, ϕ′

i ·D∗ = D∗.
Consider Z :=

�
RSDnd (s) \ (D′ ∪D)

�
∪ D′ ∪ D. First, Z ⊆ RSD (s) by definition. Second,

RSDnd (s) = RSDnd (s) \ (D′ ∪ D) ∪
�
RSDnd (s) ∩D′� ∪

�
RSDnd (s) ∩D

�
⊆ Z. Note that

D∗ = Z \ (D \ ∪n
i=1Di).

PDany

�
D′, average

�
= pDany

�
D′ ≥ RSD (s)

�
(152)

≤n
most: Dany

pDany

�
D ≥ RSD (s)

�
(153)

= PDany
(D, average) . (154)

Since ϕ′
i ·D′ ⊆ D and ND

�
D′� ⊆ D′, ϕ′

i · ND
�
D′� ⊆ D and so D contains n copies of ND

�
D′�

via involutions ϕ′
i. Then eq. (153) holds by applying lemma D.5 with A := D′, Bi := Di for

all i = 1, . . . , n, B := D,C := RSD (s), Z as defined above, and involutions ϕ′
i which satisfy

ϕ′
i ·

�
Z \ (B \ ∪n

i=1Bi)
�
= ϕ′

i ·D∗ = D∗ = Z \ (B \ ∪n
i=1Bi).
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Corollary D.12 (Quantitatively, average-optimal policies tend not to end up in any given 1-cycle).
Let D′ :=

n
es′1 , . . . , es′k

o
, Dr :=

�
es1 , . . . , esn·k

	
⊆ RSD (s) be disjoint, for n ≥ 1, k ≥ 1. Then

PDany

�
D′, average

�
≤n

most: Dany
PDany

�
RSD (s) \D′, average

�
.

Proof. For each i ∈ {1, . . . , n}, let

ϕi := (s′1 s(i−1)·k+1) · · · (s′k s(i−1)·k+k),

Di :=
n
es(i−1)·k+1

, . . . , es(i−1)·k+k

o
,

D := RSD (s) \D′.

Each Di ⊆ Dr ⊆ RSD (s) \D′ by disjointness of D′ and Dr.

D contains n copies of D′ via involutions ϕ1, . . . ,ϕn. D′ ∪ D = RSD (s) and RSDnd (s) \
RSD (s) = ∅ trivially have pairwise orthogonal vector elements.

Apply theorem D.11 to conclude that

PDany

�
D′, average

�
≤n

most: Dany
PDany

�
RSD (s) \D′, average

�
.

Let A := {e1, e2} , B ⊆ R5, C := A ∪B. Conjecture D.13 conjectures that e.g.

pD′ (B ≥ C) ≥
3
2

most: Dany
pD′ (A ≥ C) .

Conjecture D.13 (Fractional quantitative optimality probability superiority lemma). Let A, B,
C ⊊ Rd be finite. If A =

Sm
j=1 Aj and

Sn
i=1 Bi ⊆ B such that for each Aj , B contains n copies

(B1, . . . , Bn) of Aj via involutions ϕji which also fix ϕji ·Aj′ = Aj′ for j′ ̸= j, then

pDany (B ≥ C) ≥
n
m

most: Dany
pDany (A ≥ C) .

We suspect that any proof of the conjecture should generalize lemma B.7 to the fractional set copy
containment case.
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