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ABSTRACT

Can we establish provable guarantees for transformer performance? Providing
such theoretical guarantees is a milestone in developing trustworthy generative
AL In this paper, we take a step toward addressing this question by focusing on
optimal transport, a fundamental problem at the intersection of combinatorial and
continuous optimization. Leveraging the computational power of attention layers,
we prove that a transformer with fixed parameters can effectively solve the optimal
transport problem (in Wasserstein-2 with entropic regularization) for an arbitrary
number of points. Consequently, the transformer can sort lists of arbitrary size
up to an approximation factor. Our results rely on an engineered prompt that
enables the transformer to implement gradient descent with adaptive step sizes
on the dual optimal transport. Combining the convergence analysis of gradient
descent with Sinkhorn dynamics, we establish an explicit approximation bound for
optimal transport with transformers, which improves with increasing depth. Our
findings provide novel insights into the essence of prompt engineering and depth
for transformers.

1 INTRODUCTION

Language models with theoretical guarantees are reliable and, therefore, more practical. Extensive
experiments confirm the striking capabilities of transformers, such as "multi-task learning" (Radford
et al., 2019)), "in-context learning" (Brown, [2020), generalization |Garg et al.[|(2022) to name but a
few. But is it possible to theoretically ensure these capabilities and quantify their limits? Consider
the simple example of sorting. We prompt the GPT-4 model to assess whether it can sort:

prompt: sort(2, 1,4, 3) — output: (1,2, 3,4)

While GPT-4 seems to be capable of sorting, querying to verify sorting is computationally infeasible
for two reasons: (i) the elements in the list can be arbitrary numbers, and (ii) the list can be arbitrarily
large. Thus, an infinite number of queries would be needed to verify that GPT-4 can sort. For
theoretical verification of sorting, we need to study language models at a mechanistic level beyond
black-box querying. Here, we investigate how to develop theoretical guarantees for the more general
problem of optimal transport.

Optimal transport is a fundamental optimization problem at the intersection of combinatorial and
continuous optimization. Sorting is a special case of optimal transport in one dimension (Brockett,
1991). While efficient sorting algorithms are discrete, Brockett (1991)) raised the fundamental
question of how to solve optimal transport with continuous dynamical systems. This question was
motivated by the success of neural networks, which generate continuous state dynamics across their
layers for feature extraction. Brockett| (1991) proposes a continuous-state dynamical system over
the orthogonal group that iteratively solves optimal transport and, hence, can sort and diagonalize
matrices. Building upon this study, we investigate whether the feature dynamics in transformers are
capable of performing optimal transport.

Beyond statistical parametric models, language models are powerful computational machines. Recent
studies show that language models are capable of learning to implement algorithms, including
gradient descent for least squares (Ahn et al.,|2024;|Von Oswald et al., 2023; |Akytrek et al.| 2022),
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and the temporal difference method for reinforcement learning (Wang et al., 2024), and support
vector mechanism (Tarzanagh et al.,[2023). This computational perspective has provided valuable
insights into language models at a mechanistic level, linking them to algorithms with provable
guarantees. Using this approach, we establish theoretical guarantees for solving optimal transport
(in Wasserstein-2) with transformers. Specifically, we prove that transformers can implement
gradient descent (with adaptive step sizes) on the dual optimal transport objective regularized by
entropy. In particular, each layer with two attention heads can simulate an iteration of gradient descent.
Therefore, the induction of multiple attention heads can implement several iterations of gradient
descent. This connection allows us to establish error bound for optimal transport with transformers
that vanishes with depth: Given two sets of n points in R?, a transformer can approximate the optimal
transport map up to

o (deﬁ%) -error for all integer n. €))]

Remarkably, the above bound holds for different choice of n indicating that the transformer can solve
multi-instances of optimal transport at the same time, an assertion for the capability of multi-task
learning. Our results depend on the specific engineering of the prompt.

Recent studies demonstrate that interacting with language models is an art: proper prompting can
significantly enhance their performance. The seminal work of [Kojima et al.| (2022)) shows that adding
phrases such as "let’s think step by step" to the prompt encourages language models to produce
more accurate reasoning. Prompting is becoming an essential skill in modern society, as prompt
engineering positions are now being posted and well-paid by various companies. But what is the
essence of prompt engineering? For the case study of optimal transport, we show that prompt
engineering can significantly enhance the computational capabilities of transformers by providing the
necessary memory and statistics.

2 BACKGROUND

2.1 OPTIMAL TRANSPORT

Consider two sets of points 1, ...,z, € R?and 4, ..., y, € R% and define C € R™*™ such that
Ci; = ||z; — y;|/3. Finding the optimal transport map (in Wasserstein-2 metric) between these two
sets of points casts to the optimization of a linear function over the set of permutation matrices (Cuturi,
2013):

P, :=arg min Tr(PC), subjectto P being a permutation matrix, 2)
PER’” Xn

where Tr(M) denotes the trace of matrix M. Sorting lists is an example of optimal transport.
Specifically, if C;; = (x; — yj)Q, where y; =i fori=1,...,nand z1,...,x, € R, then the linear
transformation of [z1, ..., x,] with P, sorts z1, ..., z,(see Remark 2.28 in (Peyré et al., 2019) for
more details). Yet, the optimal transport problem is more general than sorting.

Optimal transport lies at the intersection of discrete and continuous optimization. There are various
combinatorial algorithms for sorting and optimal transport, but our primary focus here is on continuous
optimization methods, which allow us to understand the mechanism of transformers. In particular,
we review two fundamental methods: (i) constrained continuous optimization and (ii) Sinkhorn
regularization.

While optimal transport involves optimization over the combinatorial set of permutation matrices, it
can be relaxed to optimization over a continuous set. The state-of-the-art method is based on linear
programming, specifically solving the following continuous convex optimization problem:

P =arg min tr(PC), subject to P being a doubly stochastic matrix.
PER”X’!L

Comparing the above problem with the original problem in (2), we notice that the constraint requiring
P to be a permutation matrix has been relaxed to allowing P to be a doubly stochastic matrix. Recall
the solutions to linear programs lie among the extreme points of the constraint set. Since the extreme
points of doubly stochastic matrices are permutation matrices (Conte et al.,|1991]), the above linear

program has the same solution as (2)), i.e., P. = P.
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The above linear program requires the optimization of O(n?) variables. Due to the quadratic growth
with n, solving the linear program becomes computationally challenging for large n. |Cuturi (2013)
proposes a computationally efficient alternative based on regularization with entropy:

P} :=arg B g}l{mX Te(PC) + A Z P;;log(P;;), subject to P is a doubly stochastic matrix (3)

ij

The Lagrangian dual of the above program reduces to the optimization of O(n) variables which
is considerably fewer than O(n?) variables for the original linear program. Introducing the dual
parameters v € R™ and v € R"™, the Lagrangian function is defined as follows:

1 1
L(u,v,C) = Te(PC) + A Piilog(P)—u' (Pl,— =1, ) —v' (PT1, - =1, .
<uv>r<>+§i]jjog<g>u( )= (P
. .. . . —Cijtvjtu; .
It is easy to check that the minimizer of L with respect to P is P;; = e x ~1. This structure
inspired the use of Sinkhorn’s fixed point iteration to find the solution of the dual problem. In
particular, (Sinkhorn| |[1967) proves that there exists a unique doubly stochastic matrix of the form
—Cijtoituj . . . o . .
[Py)ij = e ~ ! thatis the solution of a simple fixed point iteration where u*, v* are unique
up to scaling factors. Leveraging this fundamental theorem, Cuturi (2013)) proposes a fixed-point
iteration that efficiently solves the dual problem. We will later elaborate on the fixed-point iteration
and its convergence.

Apart from Sinkhorn’s fixed point iteration, there are many different methods to solve Lagrangian

—Citu;+vg
dual problem such as first-order optimization methods. Recall the minimizer P;; = P S
Plugging the minimizer into L reduces the problem to the following optimization

. N 1 1
arg min [ L(u,v) := A Ze( Cijuitv;)/A=1 —EZW—EZW

v,u€R™ —
2

It is easy to check that L is convex in v and v as its Hessian is diagonally dominant, hence positive
semi-definite. Thus, standard first-order optimization can optimize L. In particular, one can use
gradient descent (with adaptive stepsizes), such as the following recurrence

uwtD) = 4 — DV, L(u®,v®)
D) 0 DQVUL(u(@,U(@) )
where V,, L denotes the gradient of L with respect to « and Dy, D, € R™"*" are are diagonal matrices

with positive diagonal elements. We will prove that self-attention layers can implement the above
recurrence.

“

2.2  SELF-ATTENTION LAYERS

Attention layers are fundamental building blocks of neural networks, developed over decades of
research. [Hochreiter| (1997) pioneered this development by proposing an attention mechanism for
Recurrent Neural Networks (RNNs) inspired by human cognition. |Graves| (2014)) employs the
attention mechanism to develop a memory system for a parametric version of the Turing machine.
Bahdanaul(2014)) adapts this attention mechanism in neural Turing machines to design a powerful
model for machine translation. While attention was originally introduced for recurrent models,
Vaswani| (2017) introduced non-recurrent attention layers, combined with residual connections (He
et al.,[2016)), thereby significantly enhancing the training of attention weights.

Attention layers rely on on a convex combination. Let Z € R™*<, An attention layer is a function
denoted by atten,, : R™*? — R™>*? with parameters w := [wy,, wy, wy € R¥?] defined as

oWz wgz;)

atten[w](Z) = Amxm 2wy, Aij = S R ©)
j=1¢

where z; and z; are rows of Z. The convex combination of data points imposes a local dependency
that can simulate the focusing mechanism in neural networks.

Tay et al.|(2020) investigates whether attention layers are capable of sorting. Since self-attention
layers cannot directly implement Sinkhorn’s fixed-point iteration, Tay et al.| (2020); |Sander et al.
(2022) propose a novel attention mechanism called "Sinkhorn attention". However, we demonstrate
that standard attention layers can implement gradient descent with adaptive step sizes on L.
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3  PROMPTING AND MODEL

The Engineered Prompt. We propose a particular prompt structure to encode optimal transport in
transformers:
r1 Y1 ||11||2 ol 1 1 1 1 0 00
v2 Y2 flw2f® e 111 1 0 00
Zn=1|: : : o : Cor | e RAEDXEAR9) (6
T Yo |zl lwll® 11 1 1 0 0 0
0 0 0 0 000 —-1/n 0 0 O
The highlighted elements in blue are the original prompts, which are sufficient for optimal transport.

The elements highlighted in red are carefully engineered. We will prove that this particular prompt
engineering allows attention layers to iteratively solve optimal transport.

Transformer. We consider a specific transformer architecture composed of multiple attention
and feedforward layers, all connected via residual connections. Let Z () denote the intermediate
representation of the input Z at layer £ which obeys the following recurrence

Z’r(LO) = Z’ﬂ’
2
Z{HY2) = 70 + 3 atten,, o (Z20)BY, %

j=1
20 = D 1 (200,
where wgf) € RY*? are the weight matrices for the feedforward layers, B](-Z) € RY*? are the

mixing weights for the attention heads, and (a); = max(0,a) represents the ReLU activation
function used in the feedforward layers. The model includes two attention heads and employs the
standard softmax attention mechanism commonly used in practice. This makes our model more
closely aligned with practical transformer architectures, in contrast to previous theoretical studies
focusing on linear attention layers (Ahn et al., 2024} [Wang et al.| [2024).

4 TRANSFORMERS AS ITERATIVE ALGORITHMS

4.1 ADAPTIVE GRADIENT DESCENT WITH TRANSFORMER

We prove that transformers can implement iterations of gradient descent. The proof relies on the
expressive power of attention layers combined with the engineered prompt, which provides the
required memory to store iterates of gradient descent.

Theorem 1. There exists a configuration of parameters such that

128 (1omy a7y = u® — DeV, L(u®,v®)
[Zr(f)](lzn)a(Qd-i-S) =0 — D)V, L(u®),v®)

)
holds for all integer values of n, where u¥) and v'\©) are gradient descent in (@) iterations starting
from ug = vg = 0 with the following adaptive stepsizes

Ve ’
Dyl =
(€) ) ! [ €139
j :j 6(7Ci]‘+ui[ +’Uj[ )//\71 + 1 2 :

Ve

S RN O NN OO Ny :
ie( Cijtu; '+v;7)/A 1+1

[Delii =

Remarkably, the above result holds for an arbitrary n since a transformer can accept inputs of
varying sizes. Indeed, a single transformers with a constant parameters can implement GD with
adaptive stepsizes for optimal transport of arbitrary input size n. We will elaborate on this important
property by establishing convergence rate to Py, thereby proving that a single transformer is capable
of solving optimal transport for all n.

Notably, the above result supports the "iterative inference hypothesis" (Jastrzebski et al.,[2017)), that
links the mechanism of deep neural networks to widely used optimization methods. This hypothesis
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posits that residual connections enable deep networks to implicitly implement gradient descent across
layers to tackle complex tasks. It is based on striking observations on the underlying mechanisms of
Convolutional Neural Networks (CNNs) (Alain, 2016). Previous studies have theoretically proven
this hypothesis for solving least-squares problems (Ahn et al.| 2024} |Von Oswald et al.||2023}; |/Akytirek
et al.| [2022) using transformers. Building on these studies, we demonstrate that transformers can
implement gradient descent for a different objective function to solve optimal transport, advancing
our understanding of the iterative inference mechanism in deep networks

Prompt engineering is essential for the proof. Expanding the input size by adding columns and rows
creates an extended data representation matrix across the layers. Attention layers can utilize a part
of this expanded matrix as memory to store the iterates of gradient descent. Furthermore, the input
dependent part of the prompt supplies the necessary statistics for the attention layers to implement
gradient descent. To elaborate, we will present the proof and explain the essence of attention layers
and prompt engineering.

4.2 PROOF OF THEOREM[II

The proof leverages the computational power of attention layers. We demonstrate that two attention
heads can jointly implement a single step of gradient descent (with adaptive step sizes) on L(u, v).
By induction, multiple attention heads can implement several iterations of gradient descent with
adaptive step sizes. The proof is constructive, explicitly determining the choice of parameters.

Parameters Choice. Define Q(“7) = w,(f’j )(w((f’j ))T. Let d’ = 2d 4+ 9 and e; € R? denote the

. 1 i
i-th standard basis vector [e;]; = ‘= .. We choose parameters such that
0 otherwise
AQUYD = [0gxq 2e1,...,2ea Oy —ezars —ezap1 €2arr O —Aesars Op Oy esgys 0y] € RTXE
AQUD = [2e441,.. 12004 Ouxa —esars O —eaqrs €sars —Aeadrs Ou esars Op 0g] € RYXY
1 i=2d+6andj=2d+7

@) O = 0y

by Tis {0 otherwise Y drxd

(z,z)]ij:{l z’:2d+6andj=2d+87 Bj('Z):VZId/xd“

0 otherwise

®)

(€,9)

,(f’j ) and wg '’ that ensure the above equations hold.

Notably, there are many choices for w

—Cijtuitv;

Notations. Consider the matrix M € R"*" defined as M;; = e p) —1. By definition,
—Cij + u; + v 1 1
L(u,v) = )\Zexp ()\ - 1) - Zui - Zvj,
1) T J

:]\J”

holds for C;; = ||x; — y;||? = 27 + yf —2(x4,y5)-

A Proof Based on Induction. Assuming that the statement holds for ¢, we prove that it holds for

£+ 1. It is easy to check that induction base holds. The choice of wfc and wq(,e’j ) ensure that only the

2d + 7-th and 2d + 8-th columns of ZT(,,Z) change with /. Induction hypothesis concludes

rroy zl* vl 10101 1 u§“ vy) 0
p P Y4 Y4
z2 g2 ll2l® Jwel> 111 1 W) W o
zO=1. : : S : : c | e RADX(2d+9)
Zon yn lzal? el 11 1 1 WP WP 0
0 0 0 0 0 0 0 —l/n ? ? 0
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where elements highlighted in teal indicates the equality that follows from the induction assumption.
Assuming the inequality above holds, we proceed to prove that

: ¢ ¢
z1 oy el fwl® 111 1 uﬁfl) v—ﬁ“) 0
2oy lze? w101 1 1 WY WY g
ZT(LZ): . . . . Coe . c R(M+1)x(2d+9)
Tn Yo lzal® lya? 111 1 WY WY 0
0 0 00 0 —1/n ? ? 0

Indeed, the extended prompt offers sufficient memory to store the vectors u(*) and v(©) obtained
through gradient descent on L(u, v).

Constructing Gradients With Attention Heads. We begin by computing the output of the first
attention head in layer ¢ + 1, step by step. Through straightforward algebra, we obtain the following:

Zz0gen — |0 20/\ 0, —1,/x —|z|?>/x «uP/x 0 -1, 0, 0, 1,/A 0 £ RntDxd
" 0 0 0 0 0 0O 0 0 0 0 0

where 7 = [21,...,2,] € R"™?and 22 = [||21]|%, ..., ||zx||?] € R™. This equation results in the
following:

Z(Z)Q(z,l)(Z(f))T _ [i (—1‘212 + 2y’ —1.(y?) " + U(E)ITTL + 1n(U(Z))T) - lnII On]
" " 0} 0

_ log(Mnxn) On
- 0, 0

where log(M) for an input matrix M is defined as a matrix with [log(M)];; = log(M;;). Similarly,
we define the matrix exp(M) such that [exp(M)];; = eMis. Thus,

exp(ZQUY(Zi)T) = {Ml”r ﬂ ©)
Furthermore, the choice of parameters wf,z’l) obtains
@, @1 _ |0 o 0y 1, 0, 0,
Zn oy = 7[0 . 0 —1/n 0 0
Stitching all equations together yields
0, ... 0, —DyM1,— }17,,) 0, 0,
atten,, e, (Z,(ALZ))Bgé) = . '
o : 0 n—1/n 0 0

Similarly, we can show that

0, 0, 0, —D)(MT1,—11,) o,
attenwu,z)(Z?(f))By) = [ ¢ "
0

0 0 n—1/n 0

Replacing the last two equations into (7)) concludes the induction proof.

5 PROVABLE OPTIMAL TRANSPORT WITH TRANSFORMERS

By linking the intermediate data representation to a well-established algorithm, we gain access to
powerful theoretical tools to prove that transformers can solve optimal transport. In particular, we
utilize convergence analysis for gradient descent as well as Sinkhorn’s recurrence.
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Linking Attention Patterns to the Optimal Transport Map. Recall the optimal transport map
P defined in (3). We will prove that this matrix can be estimated by the attention matrices across
the layers. Consider a block of attention patterns denoted by A) € R"*", defined as

2,1 4 £
e(w,i' )z,g ),w(g[‘l)z; )>

0 _
Aij T e (w0 e @y (10)
Zj:l e k i 7a J
where zy) is the i-th row of Z(). We establish the convergence of A to Py in an appropriate
metric.

Convergence Proof. As discussed, the optimal transport matrix P has the following form (Cuturi,
2013):
Cij
Py = diag(w*)Qdiag(¢*), w*,¢" €R}, QeRY", Qi=e X~
It is easy to verify that replacing w* and ¢* with cw* and ¢*/c leads to the same matrix P for all
¢ € Ry. |Franklin and Lorenz (1989)) introduce a metric that accounts for this particular scaling
invariance. Consider the following metric

w;w
p(w,w') = log (ma.x J,) : (11

(%] ’LUj’LUZ-

1

Remarkably, 1 is a metric that satisfies the triangle inequality (Franklin and Lorenz, |1989). However,
1 is not a norm, as p(w, w’) = 0 only implies that there exists a constant ¢ such that w = cw’. The
next theorem establishes an explicit convergence rate for the attention matrices A®) to the solution of
optimal transport in /.
Theorem 2. There exists a choice of parameters and an integer k < £ such that A%) can be expressed
as:

AW = diag(w®)Qdiag(q™),

where w*)_¢*) ¢ R obey:

. . 36n e \/r
® ¢*), p(w®, w )} < \[\[’
(1 =n)
for (oyr? = Ju® — w3 + ¢V — @By = @7 -1/6@"2+1,6(Q) =

max;jp QxR /(Q;,Qu), as long as £ > 64n> exp(37/A)r.

max {u(q

The above theorem theoretically verifies that transformers can solve optimal transport for an arbitrary
number of points n, with provable worst-case approximation guarantees. According to the theorem,

the attention patterns converge to the optimal transport matrix Py at a rate of O (m), implying

that the transformer performance improves with increasing depth.

An application of the last theorem is the provable sorting capability of transformers, achieved up to
certain approximation factors. As discussed, sorting is a specific case of optimal transport for d = 1
with y; < --- < y,. By solving the optimal transport problem, transformers can effectively sort lists.
Since convergence is guaranteed for regularized transportation, we expect the transformer to sort
with an error that diminishes as A — 0. We will experimentally assess the sorting accuracy with the
transformer in experiments.

The statement of the last theorem proves that it is possible to avoid the rank collapse of attention
layers, which indicate that attention patterns converge to a certain low-rank matrix as depth in-
creases (Geshkovski et al., [2024; [Wu et al.|[2024; Dong et al.,2021). [Dong et al.|(2021]) shows that
attention layers without residual connection suffer from this collapse. |Geshkovski et al.|(2024) proves
even with residual connections attention with symmetric weights may suffer from the rank collapse.
This rank collapse significantly reduces the expressivity of attention layers and poses challenges for
training (Daneshmand et al.,|2020). Consequently, a line of research investigates effective techniques
to avoid the rank collapse issue (Meterez et al., 2023} Daneshmand et al.| 2021; Joudaki et al., [2023).
We argue that the last theorem demonstrates the possibility of avoiding the rank collapse of attention
patterns with a specific prompt engineering and particular parameter choices. Recall that P§ serves
as an approximation of the optimal transport matrix P*, which is a full-rank permutation matrix.
Consequently, we anticipate that the attention patterns will retain a high rank throughout the layers,
as will be demonstrated in the experiments.



Under review as a conference paper at ICLR 2025

6 EXPERIMENTS

While our contribution is primarily theoretical, we connect the theoretical findings to practical
observations through experiments. First, we experimentally validate our findings in Theorems [[|and
[2] proving that transformers are capable of optimal transport. Second, we show that transformers can
learn from data to solve optimal transport, combining the theoretical expressivity with data-driven
learning used in practice. Finally, we show the significance of prompt engineering in practice.

Data specification. We consider optimal transport with d = 1, varying n, which is the focus of our
study. In particular, 21, . .., z, are a random permutation of [L/n,2/n, ..., "/n], and y; = ¢/n in our
experiments. We use a regularization constant of A = 0.005 in the related experiments.

Training protocol. In Sections [6] and [6] we use Adam (?) with a step size of 0.001 and 10*
iterations for training. We reparameterize @)y := w,(f) (wff))T and optimize ()y. Parameters are

initialized randomly from a Gaussian distribution with variance 1/(2d + 9). Notably, we set wgf) =

0, Bj(.z) = (1/20)1, and only optimize w*7) := [w,(f’j)7 w,(f’j), wf,g’j)], as this does not limit the
optimal transport capability (see (8) ). Training is conducted on a single T4 GPU.

Validations. Since the proof of Theorem |l|is constructive, it provides an explicit choice of parame-
ters for transformers. Specifically, we set v = 0.01 and use the weight matrices defined in (§). We
examine the sorting accuracy of the transformer. As previously discussed, sorting is equivalent to
optimal transport for d = 1. Given the attention pattern A(2°°9) we compute the linear transformation
of the input = = [z1, ..., x,] using A(2°%0) to generate an estimate for the sorted . An example of
sorting is:

Input : [0.5,0.75,0.25,0.0] —  Output : [0.018,0.24,0.50,0.73]

We observe that generated output approximates the sorted list [0.0, 0.25, 0.5, 0.75]. Interestingly, the
same transformers can also approximately sorts larger lists:

[0.375,0.5,0.125,0.875,0.75,0.25,0.0,0.625] — [0.02,0.12,0.25,0.37,0.5,0.62,0.75,0.84]
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Figure 1: Convergence of Attention Patterns. The plotted matrices are AWM ABO and A6 defined in
(T0). We observe these matrices converge to P (the rightmost plot). Thmproves this convergence.

Figureillustrates the convergence of the attention matrices A(“) to P7, as established in Theorem
Notably, we observe that the attention patterns maintain high rank across in contrast to the observations
on the rank collapse phenomenon; please refer to remarks in Section 3}

Figure [2] further illustrates that a single network can solve optimal transport on different sample sizes.
In particular, this figure demonstrates that the transformer, with the parameter choices specified in
(8), can find P7 for both n = 4 and n = 8 simultaneously without any changes to the parameters.

Training. So far, we proved and experimentally validate that a transformers is capable of optimal
transportation. Now, we experimentally investigate whether a transformer can learn from data to
solve optimal transport. Recall the hidden representation of transformer at layer £ denoted by Z,. We
optimize parameters w(“7) to solve the following minimization problem

2 ..
E [|/[Z20]1:n,24+9 — sorted(z)]|?] (training loss)

in
w@id) | w(20.9)
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Figure 2: Optimal Transport of Different Sizes. left: n = 8, right: n = 4. The transformer weights remain
exactly the same.

A®) A(10) A(15) A20)

Figure 3: Optimal Transport After Training. Rows: n = 7 and n = 9; Columns: attention patterns A*)
defined in (I0) for ¢ = 5, 10, 15, 20. The last columns shows the optimal transport map, i.e., P* in ) ; Training:
optimizing the [fraining Toss|on random data with n = 7 (see Section [6|for more details).

where sorted(z) € R™ contains sorted x;s and the expectation is taken over random data (details in
Data specification). In order to approximate the expectation, we draw 500 samples uniformly at
random. Figure [3{compares the attention patterns —denoted by A() defined in (TO)— across the
layers where we observe that these patterns are converging to the optimal solution. This observation
validates that transformers iteratively solve optimal transport across their layers (similar to gradient
descent on L). While the the transformer is trained for n = 7, we observe a good approximation for
n=9.

Prompt engineering. We experimentally evaluate the impact of the engineered prompt (6) on
solving optimal transport for d = 1. Specifically, we reduce the number of columns in the prompt by
removing additional ones as

zr 0
Z'=|: | eR™E (12)
Tn Yn O
The last column is designated for the output. Let Z}, represent the output of a transformer with

20 layers. We optimize the weights so that the last column of Z), predicts the sorted values of
TlyeeeyTp:

min E [||[Z5]):3 — sorted(x)||2] (13)

w3 w(20.9)

where details on training data and process are presented in Data specification and Training protocol,
respectively.

Figure ] shows the clear impact of prompt engineering on the performance, where the above prompt
(without engineering) leads to a significantly worse approximate of optimal transport matrix.
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Figure 4: The Significance of Prompt Engineering. Left: attention pattern in the last layer denoted by A (%)
after optimizing the training loss (I3) for inputs without prompt engineering; Middle: attention pattern in the
last layer (A after training with the engineered prompt in (€); Right: optimal transport map associated with
the input. x1,...,z, and y1, ..., Yy, in prompts are fixed.

7 DISCUSSIONS

We proved that transformers with fixed parameters can solve multiple instances of optimal transport
on different number of points, with an explicit accuracy bound. Our analysis shows that transformers
can implement gradient descent on a specific objective function using a specially engineered prompt.
The engineered prompt provides additional memory to implement gradient descent. These findings
open several avenues for future research, including: including: (i) depth-efficient guarantees, (ii) the
analysis of training dynamics, and (iii) studying prompt engineering beyond optimal transport.

(i) Depth Efficient Guarantees. According to Theorem |2} a transformer with O(e~2)-depth can
obtain an O(e)-accurate solution. This is due to the established convergence rate for gradient descent
with adaptive stepsizes. However, O(log(1/¢)) Sinkhorn iterations suffice for achieving e-accuracy.
While there is a considerable gap between the established convergence analysis for gradient descent
and the convergence rate of Sinkhorn’s iteration, our result is sufficient to prove deep transformers
can provably solve optimal transport. We call for bridging this gap through a tighter convergence
analysis.

(ii) Training for Optimal Transport. We proved that transformers are able to provably solve
optimal transportation and experimentally showed (in Section[6) that transformers can learn to solve
optimal transport in R by training over random observations. Building upon this observation, we
suggest a theoretical analysis of the training mechanism for optimal transport. To pursue this line of
research, one can check whether parameters in (8] are local or global minimizers of the
(Ahn et al.,|2024; |Wang et al.||2024) demonstrate that the properties of generative data distributions
can be leveraged to analyze the stationary points of training dynamics. We believe that this technique

can be used to analyze the landscape of for optimal transport.

(iii) Prompt Engineering Beyond Optimal Transport. Prompt engineering is essential for demon-
strating that transformers are capable of solving optimal transport. In Section [6] we experimentally
show that prompt engineering is also important in practice. Despite its widespread use, the underlying
mechanisms of prompt engineering remain understudied. Studying prompt engineering for optimal
transport is a step towards the broader goal of understanding the role of prompt engineering in
general. We conjecture that prompt engineering enhances the computational power of transformers,
enabling them to simulate a wider class of algorithms.
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A PROOF OF LEMMA [T

(i) Convergence Analysis of Gradient Descent Define the concatenated vector of iterates as
(k)
O = |*
k |:’U(k):| )

and consider the following block diagonal matrix:
Dk 0
A = { 0 D;J ’
where Dy, and D), are diagonal matrices at iteration k.

The recurrence relation of the iterates defined in (@) leads to the following inequality:

1051 = 07132 = 110k = 0713+ = 200k — 0%, VL(0)) + | VLB, (14)

where the weighted norm is defined as ||v[|% = v Av.

Bounding the Matrices: Define the ball B(r) = {6# € R™ | ||0|| < r}. Assume that 0, 0* € B(r).
It can be verified that

Yk

— I, =< Ar =l d V2L =< NI, 15
moxp(r/a) 11 S E S Yk and V-°L < nexp(r/\) (15)

_ 1
where Yk = m.
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Smoothness of L: Since L is n exp(r/\)-smooth within B(r), by Theorem 2.1.5 of Nesterov|(2013),
we have

1

VL(6),0 —0*) > ———||VL(9)]]>. 16
(VL0002 S IVLE)| (16)

Substituting the above inequality into (T4) yields

2

Opir — O%2 0 <10k — 0% — [ ———— — VL) | 17
b1 = 0718 <100~ 0 = (s =) IVE ] (1)
Monotonicity of Ay. Let Ay, := || — 6* ||2 _1. For v < m, the above inequality ensures

that Ay, is monotonically decreasing:

2
Api1 S Ap— | —————
e (neXP(T/A)
To maintain 65, € B(r) for all k, choose r such that

[10k]l < A + 11675+ < (A0l -2 + 1167152 < 2 (160 = 67[] + [167]]) =7

70|vu@mzsAk

This ensures that 0, remains within the ball B(r) for all iterations.

Averaging. Since 0, € B(r), we can take the average of overk=1,...,¢:
¢

Z IVL(;)|]? < nexp(r/\) (Z Ay — Ag+1> < (nexp(r/A) +1) Ay < (nexp(r/A) +1)r.
k=1
Gradient Convergence. This leads to the following bound on the minimum gradient norm:
Y
min HVL O)N> < D IVLER)? < $(nexp(r/A) + Dr. (18)
k=1

Closeness to Doubly Stochastic Matrices. By definition,

M®1 11
VLG = | syiiyty 21 19
where 1 denotes the vector of all ones. Substituting the expression for VL(6},) into (I8)) gives
1 1 A)+1
rlgun (”M(k 71”2 + ”(M(k))Tl _ 1”2) < (nexp(ré ) + )’I". (20)
n n

B PROOF OF THEOREM 2]

According to Thm. [I] a transformer can implement gradient descent. Therefore, the proof casts
to analyzing gradient descent (with specific coordinate-wise stepsizes) on the convex L. However,
we cannot directly apply existing convergence results from convex optimization. The existing
convergence results for smooth convex optimization are in terms of function value L when L is not
strongly convex[ﬂ But, the theorem statement aims at the convergence to the optimal transport map.

We take inspiration from convex optimization proof. The proof consists of two key steps: (i) the
convergence of attention patterns to a matrix that is approximately doubly stochastic, and (ii) a
hypothetical simulation of Sinkhorn’s recurrence.

(i) As shown in Thm.[I] the transformer can perform gradient descent with an adaptive step
size on the convex function L. Since L is convex, gradient descent is guaranteed to
converge to a stationary point where the gradient norm becomes zero. Specifically, it
is straightforward to verify that V,L = M1 — 11 and V,L = M "1 — 11, where

—Cijtuitv;
A

M;; = exp ( 1). Therefore, small gradients for u and v imply that M is

close to being doubly stochastic.

'Tt is easy to check that L is not strongly convex since it Hessian has a zero eigenvalue.
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(i) We demonstrate that when the matrix M is approximately doubly stochastic, it is near the
desired solution P5. To establish this, we (hypothetically) run Sinkhorn’s recurrence starting
from M and use its contraction property proven by [Franklin and Lorenz|(1989).

Before elaborating on the details of (i) and (ii), we present two propositions.

Preliminaries. Define the functions row : R} — R’ and col : R}*"™ — R as
- 1 _ 1
S onY Ay oY Ay
We also introduce functions f, g : R®"*" — R™*™ defined as
f(A) = Adiag(col(4)), g(A) = diag(row(A))A.

Indeed, f(A) (resp. g(A)) normalizes the columns (resp. rows) of A by a scaling factor of their
average. We will later use f and g to formulate Sinkhorn’s recurrence, which iteratively normalizes
the rows and columns of a matrix with positive elements. The next proposition proves that an almost
doubly stochastic matrix remains almost doubly stochastic under f and g. To formulate the statement,
we introduce a set containing matrices that almost doubly stochastic matrices:

8= {A€RY™ | AL, — 1, < cand [AT1, — 11, <<}

row(A); col(A);

Proposition 1. Suppose that A € S; then f(A) € Ssc and g(A) € Ss, as long as € < 1/(3n).

Recall the metric d defined in (TT)). The next proposition establishes a particular property of f and g
with respect to d.

Proposition 2. Let A € S. be decomposed as A = diag(w)Qdiag(q), where w, q € R’}
(i) For f(A) = diag(w)Qdiag(q'), d(q,q’') < 4ne holds for € < ﬁ.
(ii) For g(A) = diag(w')Qdiag(q), d(w,w') < 4ne holds for e < .

(i) Convergence Analysis. According to Theorem [I] there is a choice of parameters such that
IO
Al(f) = e%—l,
where 1) and v(¥) are the iterates defined in (#). The following lemma establishes that, as the
number of iterations ¢ increases, A“) meets a neighborhood of doubly stochastic matrices.
Lemma 1. For 'y,;l =(n-+ 2)62T/>‘, there exists a k < { such that

AR €S, where ¢ ;= (2) 3ne’ .

Notably, the matrix A*) has a specific structure that ensures A*) € S, is sufficient to approximate
Py . To prove this statement, we leverage the contraction property of Sinkhorn’s recurrence.

Contractive Sinkhorn’s Process. According to the last lemma, there exists an iteration £ < ¢ such
that A®*) € S.. We then apply Sinkhorn’s recurrence starting from A; = g(A®)) as:

Am+1/2 = f(Am); Am+1 = g(Am+1/2)~

Notably, we utilize the above recurrence solely for the proof; hence, there is no need for a trans-
former to implement this recurrence. According to the definition, A,, can be decomposed as

diag(w,,)Qdiag(qm ), where Q;; = e~“4/2~1 and ¢,,, w,,, € R'}. Sinkhorn|(1967) proves that
there exi*st unique vectors w*, ¢* € R such that P} = diag(w*)Qdiag(q*), where w} = e*/* and
q; = e /A. (Franklin and Lorenz, 1989) establish the linear convergence of (Wi, @m ) to (W*, ¢*):

{u(wm+1,w*> < nﬂ(wmvw*) n= %/2_1 < 1) (21)

/-L(Qm-‘rla q*) S UM(Qm) q*) ’ ¢(A1>1/2 + 1
where ¢(A) = max;;x %. Since A; = diag(w:)Qdiag(q1), we have ¢(A1) = ¢(Q).
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(ii) Approximating the Optimal Solution. Propositions [1| and [2] enable us to demonstrate that
there exists a constant ¢ such that cA; lies within a neighborhood of Py. Proposition|T|combined
with Lemma ensure A; € Ss.. Thus, we can apply Propositionto obtain: u(ge,q1) < 12ne.
Using Proposition[]again, we find that A,/ € Sg.. Consequently, we can invoke Proposition

once more to yield: p(ws,wr) < 36ne. Applying the triangle inequality together with 21| completes
the proof:

36ne > p(wa, w1) > p(wy, w*) — p(we, w*) > (1 —n)d(wi, w”)
12ne > p(qe, q1) > plqr,q") — ulg2,¢*) > (1 —n)plqr, ")
C PROOF OF PROPOSITIONI]

We prove f(A) € Ss. and the proof for g(A) € Ss. follows exactly the same. Since A € S, the
following two inequalities hold

> Ay—1

Using the above two inequalities, we proceed as

>1_¢ (22)

<e = ZAijE%*
i

S

Ass

|nZi]Aij — Ayj| = Ayjill — 7nZtAu (23)
i o
< Aige, (25)

TL—S

We use the above inequality to complete the proof:

| 1 L
ZHSZJAU - < Z” A:JA” 72141'3‘ +|ZAij - %| (26)
J J

J J
SZ‘ﬂ_Ain'G 27
J
<Y A te (28)
J
<e (1 n }jziz) (29)

D PROOF OF PROPOSITION 2]

We prove part (i), and the proof for part (ii) follows exactly the same. The following inequality holds
for A e S,.:

Vi Ay— i <e (30)
i
Using the above inequality, we get:
|45 — ¢;] = ﬁ—%‘ 31
1
— . 1 32

< g (1) (33)

Plugging the above inequality into p concludes the proof:
. /‘

nd; _

q;q; — 1—2ne

= (g, q;) <log(1=hz) < Toae-. (34

15



	Introduction
	Background
	Optimal transport
	Self-attention layers

	Prompting and Model
	Transformers as iterative algorithms
	Adaptive gradient descent with transformer
	Proof of Theorem 1

	Provable optimal transport with Transformers
	Experiments
	Discussions
	Proof of Lemma 1
	Proof of Theorem 2
	Proof of Proposition 1
	Proof of Proposition 2

