
Orthogonal Transformer: An Efficient Vision
Transformer Backbone with Token Orthogonalization

A Proof of Theorem 1

Herein we provide the proof of Theorem 1 in the main text. Four lemmas with their proofs are given
in advance, and the proof of Theorem 1 is in the last.

Lemma A.1 The Householder matrix H = I− 2uuT is symmetric and orthogonal, i.e., H = HT

and H
′

= HT.

Proof A.1 Since H = I− 2uuT, (uuT)T = uuT, and uTu =1, we can conclude that

HT = (I− 2uuT)T = (I− 2uuT) = H. (1)

Therefore, H is symmetric.

HHT = (I− 2uuT)(I− 2uuT)T = (I− 2uuT)(I− 2uuT) = I− 4uuT + 4uuT = I. (2)

Therefore, H is orthogonal.

Lemma A.2 Given any two non-zero vectors x and y with the same 2-norm, there exists a House-
holder transformation H satisfying Hx = y.

Proof A.2 We can construct the Householder matrix with vector u = (x−y)
||x−y||2 . Then,

H = I− 2(x− y)(x− y)T

||x− y||22
, (3)

and

Hx = x− 2(x− y)(x− y)T

||x− y||22
x = y. (4)

Lemma A.3 (QR factorization) A rectangular matrix A ∈ Rn×n can be factored into a product of
an orthogonal matrix Q ∈ Rn×n and an upper triangular matrix R ∈ Rn×n : A = QR, where Q
is the product of n− 1 orthogonal Householder matrices.

Proof A.3 The matrix A can be written as a block form A = [a1,a2, · · · ,an], where ai =
[ai1, ai2, · · · , ain]T. With Lemma A.2, the vector a1 = [a11, a21, · · · , an1]T can be transformed to
[×, 0, 0, · · · , 0]T with a Householder transformation H1. We denote the non-zero value in the vector
as "×" for description convenience. This process can be formulated as:

H1A = H1[a1,a2, · · · ,an] =


× a∗12 · · · a∗1n
0 a∗22 · · · a∗2n
...

...
. . .

...
0 a∗n2 · · · a∗nn

 . (5)
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By repeating the above process to the first column of matrix

a
∗
22 · · · a∗2n
...

. . .
...

a∗n2 · · · a∗nn

 with a Householder

transformation H∗2, the vector [a∗22, a
∗
32, · · · , a∗n2]T can be transformed to [×, 0, 0, · · · , 0]T. There-

fore, we conclude that

H2H1A =

[
1 0
0 H∗2

]
H1A =


× × a∗∗13 · · · a∗∗1n
0 × a∗∗23 · · · a∗∗2n
0 0 a∗∗33 · · · a∗∗3n
...

...
. . .

...
0 0 a∗∗n3 · · · a∗∗nn

 (6)

By repeating the above process for a total of n− 1 times, we can obtain an upper triangular matrix:

Hn−1Hn−2 · · ·H1A =


× × × · · · ×
0 × × · · · ×
0 0 × · · · ×
...

...
...

. . .
...

0 0 0 · · · ×

 = R, (7)

Considering that each Householder transformation Hi is orthogonal and symmetric, we conclude that

A = H1H2 · · ·Hn−1R = QR (8)

Lemma A.4 If a n × n matrix A is not only upper triangular but also orthogonal, then A is a
diagonal matrix.

Proof A.4 The n × n matrix A can be written as a block form A =

[
A1 A2

0 ann

]
, where

A1 ∈ R(n−1)×(n−1),A2 ∈ R(n−1)×1. Since A is orthogonal, we have

AAT =

[
A1 A2

0 ann

] [
AT

1 0T

AT
2 ann

]
=

[
A1A

T
1 + A2A

T
2 annA2

annA
T
2 a2nn

]
= I. (9)

Therefore, ann = ±1, A2 = 0, and A1A
T
1 = I ∈ R(n−1)×(n−1). The matrix block A1 is not only

upper triangular but also orthogonal. By repeating the above process for a tota of n times, we can
conclude that A is diagonal with diagonal entries equal to ±1.

Theorem A.5 Every real orthogonal n × n matrix A is the product of at most n real orthogonal
Householder transformations.

Proof A.5 With Lemma A.3, we can upper triangularize the given real orthogonal matrix A as:
Hn−1Hn−2 · · ·H1A = R. Since R is both upper triangular and orthogonal as a product of or-
thogonal matrices, according to Lemma A.4, R is diagonal with diagonal entries equal to ±1. By
constraining the entry of R to be positive when constructing the QR factorization in Lemma A.3, we
have r11 = r22 = · · · = rn−1,n−1 = 1.

If the last diagonal entry rnn = −1, by setting Hn = In − 2ene
T
n , we can obtain that

HnHn−1 · · ·H1A = HnR = I. (10)

As each Householder matrix Hi is its own inverse (Lemma A.1), we conclude that

A = H1H2 · · ·Hn. (11)

If the last diagonal entry rnn = 1, then R = I. Because

Hn−1Hn−2 · · ·H1A = R, (12)
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Figure I: Convolutional patch embedding in Orthogonal Transformer.

we can conclude that

A = H1H2 · · ·Hn−1. (13)

Thus, every real orthogonal n× n matrix A can be written as the product of at most n Householder
matrices.

B Experimental Settings

ImageNet Image Classification. We follow the same training strategy in DeiT [15]. Specifically,
all our models are trained from scratch for 300 epochs with the input size of 224× 224. We use the
AdamW optimizer with a cosine decay learning rate scheduler and 5 epoch linear warm-up. The
initial learning rate, weight decay, and batch-size are 0.001, 0.05, and 1024, respectively. For Ortho-T,
we use a smaller weight decay of 0.01. We adopt the strong data augmentation and regularization in
[15], except for repeated augmentation [7] that does not improve performance. The augmentation
settings are RandAugment [5] (randm9-mstd0.5-inc1) , Mixup [27] (prob = 0.8), CutMix [26] (prob
= 1.0), Random Erasing [28] (prob = 0.25) and Exponential Moving Average [13] (ema-decay =
0.99996, we do not use it for Ortho-T), increasing stochastic depth [8] (prob = 0.1, 0.2, 0.4, 0.5 for
Ortho-T, Orthon-S, Ortho-B and Ortho-L, respectively). For 384× 384 input resolution, we fine-tune
the models for 30 epochs with learning rate of 1e-5, weight decay of 1e-8 and bach-size of 512.

COCO Object Detection and Instance Segmentation. We adopt Mask-RCNN [6] and Cascaded
Mask R-CNN [1] based on MMDetection [2]. We train the models with two common settings: "1 ×"
(12 training epochs) and "3 × +MS" (36 training epochs with multi-scale training). For the "1 ×"
setting, images are resized to the shorter side of 800 pixels while the longer side is within 1333 pixels.
The AdamW optimizer is used with learning rate of 0.0001, weight decay of 0.05 and batch-size
of 16. The learning rate declines with decay rate of 0.1 at epoch 8 and epoch 11. For "3 × +MS",
multi-scale input is used by resizing the shorter side of images between 480 and 800 pixels. The
learning rate declines at epoch 27 and 33.

ADE20K Semantic Segmentation. We adopt two popular semantic segmentation frameworks:
Semantic FPN [10] and Upernet [21] based on MMSegmentation [4]. We apply Orthogonal Trans-
former pretrained on ImageNet-1K as the backbone network. For Semantic FPN, we follow the same
setting of PVT [18] and train it for 80k iterations. For Upernet, we apply the setting in Swin [12]
to train it for 160k iterations. All the models are trained on the input resolution of 512× 512. The
stochastic depth is the same as those used in ImageNet pre-training.

C Architecture Details

Fig. I and Fig.II show the detailed architectures of the convolutional patch embedding and the
Positional MLP (PMLP) in Orthogonal Transformer.

Convolutional Patch Embedding To perform overlapped patch embedding, we borrow early
convolutions from [22] and apply 5 convolutions with the same setting of [22]. As shown in Fig. I,
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Figure II: Positional MLP (PMLP). (a) is the common MLP in transformer, (b) and (c) are the
presented PMLP without and with transition, respectively. r is the expansion ratio for MLP.

the first two convolutions are with the kernel-size of 3 × 3 and the stride of 2, while the next two
are with the kernel-size of 3× 3 and the stride of 2. BatchNorm and ReLU are utilized after each of
them. The last convolution is with the kernel-size of 1× 1, following by a LayerNorm layer.

Positional MLP (PMLP). Positional MLP is introduced to handle position information and two
variants are developed according to performing transition or not. As shown in Fig. II, depth-wise
convolution (DConv) with kernel-size of 5× 5 is used after GELU in MLP. For PMLP with transition,
we adopt a convolution with kernel-size of 3× 3 and stride of 2 in the residual way and set the stride
of DConv as 2. Spatial resolution is reduced to h

2 ×
w
2 and feature dimension is increased to C ′.

Note that convolutional position embedding (CPE) has been applied in several previous works [3, 11].
Our PMLP differs from them in two manners. On the one hand, the location of DConv is carefully
selected as next to GELU in MLP; on the other hand, PMLP with transition is developed and thereby
transition is performed within transformer blocks. The ablation results in Table 6 in the main text
have shown that transition inside is superior over outside. We inspect the location of DConv in
Appendix D and demonstrate that DConv’s location is crucial for the performance of CPE.

D Ablation Study

In this section, we make extra ablation studies to further demonstrate the crucial roles of the presented
orthogonal self-attention (OSA) mechanism, the endogenous orthogonality construction and the
design of Positional MLP (PMLP).

D.1 Self-Attention Mechanisms

We compare our OSA with several previous efficient self-attention mechanisms, including linear
SA [14], local SA in Swin [12], downsampled SA in PVT [18], dilated SA in GG [24]. For a fair
comparison, we use Ortho-T as backbone and only vary the self-attention mechanism. Table I reports
the results on three vision tasks, i.e., ImageNet image classification, COCO object detection and
instance segmentation with Mask R-CNN (1× setting), and ADE20K semantic segmentation with
Semantic FPN. Obviously, our OSA mechanism shows stronger performance than other efficient SA
mechanisms for all the three tasks. Specifically, global SA mechanisms, including ours, linear SA,
downsampled SA and dilated SA, outperform local SA mechanisms, implying that global modeling
is critical for vision tasks. Our OSA outperforms other global SA mechanism for better capacity of
local correlation learning.
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Table I: Comparisons between different self-attention mechanisms using the Ortho-T backbone.

Method ImageNet-1K COCO ADE20K
#Param (M) FLOPs (G) Acc. (%) APb APm mIoU

Linear [14] 3.9 0.7 73.7 37.5 35.4 40.3
Swin [12] 3.9 0.7 73.1 37.9 35.7 39.9
PVT [18] 4.8 0.7 73.8 38.8 36.2 40.9
GG [24] 4.0 0.7 73.8 38.1 35.7 40.7
Ours 3.9 0.7 74.0 39.4 36.8 41.3

Table II: Comparisons on different backbones. Ours∗ employs a hierarchical structure like Swin.
Backbone Method #Param (M) FLOPs (G) Acc. (%)

ViT-Ti
ViT 5.7 1.3 72.2
Ours 5.7 1.1 70.8 (-1.4)
Ours∗ 5.6 1.3 74.4 (+2.2)

Swin-T Swin 29 4.5 81.3
Ours 28 4.5 81.6 (+0.3)

Ortho-S Swin 24 4.5 82.5
Ours 24 4.5 83.4 (+0.9)

Comparison with linear transformer. Here we give more discussions about linear transformer.
Linear transformer [9, 17, 14] expresses self-attention as linear dot-product of kernel maps and
reduce the complexity from quadratic to linear with respect to token number. Compared with linear
self-attention, our OSA achieves better performance on the three tasks, indicating its stronger capacity
in modeling global-local dependencies.

Contribution Isolation. To better isolate the contribution of OSA, we compare the self-attention
mechanisms on different backbones, including vanilla ViT and vanilla Swin Transformer. The results
are reported in Table II. For the vanilla ViT, directly replacing the standard SA with ours would
reduce the computational cost but decrease the accuracy. Since the major superiority of the proposed
orthogonal self-attention (OSA) over vanilla self-attention is enabling transformer to compute self-
attention in high-resolution space with low computation complexity, adopting a large patch-size like
ViT and computing self-attention in low-resolution space cannot validate the superiority of OSA.
However, when merely using a hierarchical structure like Swin, our method achieves significant
improvements over ViT under a similar cost. Compared with Swin, our method obtains consistent
gains but the gain in the Ortho-S backbone is larger than that in the Swin-T backbone, implying that
our presented structure would help make full use of OSA.

D.2 Orthogonality

Orthogonality is the key aspect of the presented orthogonal self-attention. In this work, we construct
an endogenously orthogonal matrix that is friendly to neural networks with gradient optimizers. Here
we conduct experiments to verify the necessity of orthogonality and the superiority of the endogenous
orthogonality construction. For clarity, we repeat the definition of OSA as:

fOSA(Z) = ATfMSA(fLN (AZ)) + Z. (14)

Apart from constructing A ∈ Rn×n explicitly with Householder matrices, orthogonality can be
achieved by the following regularizer:

Lrev =
1

n2
‖I−ATA‖2. (15)

We compare our method with variants: A is randomly initialized and trained without Lrev; A is
randomly initialized and trained with Lrev; A is orthogonally initialized and trained without Lrev;
A is orthogonally initialized and trained with Lrev. Besides, two variants are added by replacing
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Figure III: Visualizations of orthogonal tokens and the attention maps. We take the last layer in the
second stage as example and each column in the right corresponds to a specific orthogonal group,
respectively. The image’s sub-bands and the feature maps of the orthogonal tokens imply that the OT
can capture different characteristics.

Table III: Orthogonality Analysis.

replace AT with BT Random Init. Ortho. Init. Ortho. Loss presented Ortho. Acc. (%)
√

73.5√ √
73.4√
73.8√ √
73.3√ √
69.3√ √ √
71.5√ √
74.0

AT with a different matrix BT ∈ Rn×n: A and B are randomly initialized without additional
regularization; A is randomly initialized, B is initialized as the pseudo inverse of A and they are
regularized with the reverse regularization.

Table III shows that our method outperforms all the variants, implying the superiority of the endoge-
nous orthogonality construction. Besides, under the same setting without orthogonal regularizer,
the orthogonally initialized variant surpass the random initialized one. This demonstrates that or-
thogonality can provide a good initialization for transformation-based self-attention. The models
with the orthogonal regularizer fail to achieve better performance than those without, implying that
the orthogonal regularizer cannot directly enhance the performance and may need more efforts to
tune good weight parameters (here the total loss is a simple sum of the classification loss and Lrev).
Our orthogonality construction can maintain the orthogonality without extra orthogonal regularizer,
avoiding hard tuning of hyper-parameters for it.

D.3 Linear independency

One of the advantages of orthogonal transformations is that the tokens can be separated into linearly
independent groups. Linear independency would help self-attention explore different properties of
representation. As shown in Fig. III, the learned orthogonal transformation can split feature maps
into groups that capture different characteristics. For example, some may capture low-frequency
information, and some may capture high-frequency textures. The attention scores vary for different
groups, leading to stronger capability of representation via different views.

In Table III, the last variant of replacing AT with BT with Lrev can show the superiority of
linear independency. Such variant remains the properties of reduced resolution, reversibility (the
converged value of Lrev is 1e-4 that is very close to zero), and token connections, but removes linear
independency of orthogonal transformation. As shown in Table III, the performance degradation
implies that linear independency is important for the overall performance.
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Figure IV: MLP.

#Param (M) FLOPs (G) Acc. (%)

CPE [3] 3.85 0.69 71.9
CPE∗ [3] 4.06 0.74 72.6

PMLP-1 3.85 0.67 72.5
PMLP-2 3.85 0.67 72.3
PMLP-3 3.94 0.71 73.2
PMLP-4 3.94 0.71 74.0
PMLP-4∗ 3.94 0.71 73.8
PMLP-5 3.85 0.69 73.3

Table IV: Comparisons between different Convolutional Position Em-
beddings (CPEs). PMLP-n denotes PMLP’s variant that applies the
depth-wise convolution at the n-th location in Fig. IV. PMLP-4∗ is a
variant with an additional GELU layer next to DConv.

Table V: Comparisons between different kernel sizes for the depth-wise convolution in PMLP.
Kernel Size #Param (M) FLOPs (G) Acc. (%)

3× 3 3.86 0.69 73.35
5× 5 3.94 0.71 74.00
7× 7 4.06 0.74 74.05

D.4 Convolutional Position Embedding

We compare with CPE presented in [3] as well as several variants of our CPE with different settings.
Results are reported in Table IV and Table V.

Location of CPE We conduct ablation study based on the Ortho-T backbone to validate the selected
location of our CPE. We compare it with two variants of CPE used in [3]. One is originally used in
[3] where the CPE module is put after the first transformer block in each stage, denoted as CPE in
Table IV; the other is putting the CPE module before every transformer block, denoted as CPE∗ in
Table IV. We also compare among several variants of our CPE by varying the locations of CPE in
MLP. The possible locations are shown in Fig. IV. The adopted one in this work is PMLP-4, where
the depth-wise convolution (DConv) is after GELU in MLP. We also compare with a variant with an
additional GELU next to the inserted DConv, denoted as PMLP-4∗.

Our adopted PMLP-4 surpasses the two variants of CPE [3] by a large margin. It also outperforms
other variants with different DConv locations, including PMLP-1, PMLP-2, PMLP-3, PMLP-5. Its
superiority over PMLP-1, PMLP-2 and PMLP-5 may come from that depth-wise convolution is
performed in the feature space with larger dimension, i.e., rC against C. PMLP-4 achieves better
performance than PMLP-3 and PMLP-4∗, which indicates that adding the non-linear activation GELU
next to DConv may hurt the model performance.

Kernel Size of DConv We conduct ablation experiments to examine the effect of different kernel
sizes for depth-wise convolution in PMLP. As shown in Table V, the kernel size of 5×5 obtains better
performance than that of 3× 3 by +0.65% accuracy, +0.08M model size and +0.02G FLOPs. The
kernel size of 7× 7 achieves similar performance with that of 5× 5 by +0.05% accuracy, +0.12M
model size and +0.03G FLOPs. We set the kernel size of DConv in Orthogonal Transformer as 5× 5
to achieve a better trade-off between the performance and the model size as well as the computational
complexity.

D.5 Window Size for OSA and WSA

We conduct experiments to investigate the relationship between the window size and the performance.
We vary the window size and build several variants on the backbone of Ortho-T. The results are
reported in Table VI.
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Table VI: The effect of different window sizes.
mw for WSA mo for OSA Params (M) FLOPs (G) Acc. (%)

4 8, 4, 2, 1 3.9 0.71 73.6
7 8, 4, 2, 1 3.9 0.71 74.0

14 8, 4, 2, 1 3.9 0.72 74.1
7 8, 4, 2, 1 3.9 0.71 74.0
7 4, 4, 2, 1 3.9 0.73 73.9
7 2, 2, 2, 1 3.9 0.86 74.1

The enlargement of the window size mw for WSA will bring about both performance gain and
complexity increase. mw = 14 can achieve slightly better performance than mw = 7. We choose
mw = 7 following Swin Transformer.

For an input image of pixel-size 224 × 224, we set mo to ensure that the height/width is divisible
by mo in every stage. Hence, the largest window sizes for OSA in the four stages are 8, 4, 2, 1,
respectively. As shown above, when mo varies, the performances are close, but the complexity
increases significantly when mo decreases. We set the values of mo as 8, 4, 2, 1 to achieve low
computation complexity with competitive performance.

E Complexity Analysis

We provide an analysis of computational complexity and a comparison on running speed in the
following.

Computational Complexity. We rewrite the computational complexity of global self-attention
(GSA), window self-attention (WSA), and our orthogonal self-attention (OSA) as:

Ω(GSA) = 4hwC2 + 2(hw)2C, (16)

Ω(WSA) = 4hwC2 + 2m2
whwC, (17)

Ω(OSA) = 4hwC2 +
1

m2
o

2(hw)2C + 2m2
ohwC, (18)

where mw and mo are the window size in window partition of WSA and the orthogonal window
size in OSA, respectively. When m2

o �
√
hw, the last term of Ω(OSA) can be ignored. When

mo =
√
hw

mw
, the second term of Ω(OSA) equals to the second term of Ω(WSA). We design the

models of Orthogonal Transformer with mo =
√
hw

mw
to obtain a similar computational complexity

with those using WSA. For example, as shown in Table 6 in the main text, our model achieves a
similar FLOPs with its variant using WSA.

Compared against dilated SA. OSA has higher complexity than dilated self-attention but the gain
is marginal, which is exactly the third term in Eq. (18), i.e., 2nohwC. It can be ignored when
no �

√
hw (this is usually true for high-resolution vision tasks). Furthermore, OSA can achieve

better performance than dilated self-attention. As shown in Table 6 in the main text, compared
with dilated self-attention, the network with OSA has comparable FLOPs (4.6G vs 4.5G) and
achieves better performance on ImageNet classification, COCO detection and ADE20K segmentation.
Therefore, the marginal gain of complexity for OSA may be acceptable considering the obvious
performance improvements.

Running Speed. Since FLOPs cannot directly reflect the running speed of different models, we
report the throughput on ImageNet image classification in Table V. The throughput is compared on a
single A40 GPU with three input resolutions, including 224× 224, 448× 448 and 896× 896.

Noticeably, for low-resolution inputs, our Orthogonal Transformer models are only faster than a
few methods. This may be attributed to the extra computation costs introduced by the orthogonal
transformation and the DConv in PMLP. The running speed for different operations depends on
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Figure V: Model throughput comparison on different resolutions.

Model Acc. (%) FLOPs (G) 224× 224 448× 448 896× 896

DeiT-Ti [15] 72.2 1.3 3216 507 50
PVTv2-b0 [19] 70.5 0.6 2397 525 79
T2T-7 [25] 71.7 1.1 2314 444 53
Ortho-T 74.0 0.7 2259 531 90

DeiT-S [15] 79.9 4.6 1528 244 24
PVT-S [18] 79.8 3.8 1029 230 37
T2T-14 [25] 80.7 5.2 1120 190 20
CVT-13 [20] 81.6 4.5 1085 174 15
Swin-T [12] 81.3 4.5 919 231 58
CaiT-XS24 [16] 81.8 5.4 584 44 3
Focal-T [23] 82.2 4.9 327 83 21
Ortho-S 83.4 4.5 632 148 26

PVT-L [18] 81.7 9.8 510 113 18
T2T-24 [25] 82.2 13.2 570 92 9
CVT-21 [20] 82.5 7.1 714 116 11
Swin-S [12] 83.0 8.7 565 142 36
CaiT-S24 [16] 82.7 9.4 447 31 2
Focal-S [23] 83.5 9.1 202 52 13
Ortho-B 84.0 8.6 432 102 19

DeiT-B [15] 81.8 17.5 664 110 11
Swin-B [12] 83.3 15.4 415 105 26
CaiT-S48 [16] 83.5 18.6 146 8 0.5
Focal-B [23] 83.8 16.0 153 39 10
Ortho-L 84.2 15.4 277 64 11

bottom implementations in deep learning framework (Pytorch is used in this work), resulting in
speed gaps even under the similar complexity of FLOPs. However, when the resolution increases,
our models become competitive and run faster than more methods, especially for those using global
self-attention, such as DeiT [15], PVT [18], T2T [25], CVT [20] and CaiT [16]. Remarkably, our
models are consistently faster than the previous state-of-the-art Focal Transformer [23] for the three
resolutions. Moreover, our models achieve better accuracy performance and have surpassed those
with faster speed (such as Swin Transformer [12]) by a wide margin.

Above all, the major motivation for the presented orthogonal self-attention that captures global
dependency while preserving local details is to reduce the computation cost of self-attention for high-
resolution vision tasks, such as object detection, instance segmentation, and semantic segmentation.
The strong performance and the speed superiority for high-resolution inputs validate the success of
Orthogonal Transformer on both effectiveness and efficiency.

F Limitations and Broader Impacts

While our proposed Orthogonal Transformer achieves superior performance on various vision tasks,
the orthogonal transformation in orthogonal self-attention and depth-wise convolution in Positional
MLP introduce extra computational cost. Though competitive or better with high-resolution inputs,
the running speed of our models is slower than some of their counterparts with low-resolution inputs.
However, the great performance improvement brought by our efficient global self-attention and novel
architecture design may compensate such a limitation in some degree.

Another limitation of our work may be that we didn’t take experiments to apply our method to
unsupervised learning, video or NLP tasks due to limited efforts and computational resource. We
would like to explore such possibilities in future work.
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This work is a purely academic study and we are not aware of any direct negative social impact in our
work. Possible malicious use of our models is a problem that can be faced by the entire field. Related
discussions are beyond the scope of our research.
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