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ABSTRACT

Grokking is the intriguing phenomenon where a model learns to generalize long
after it has fit the training data. We show both analytically and numerically that
grokking can surprisingly occur in linear networks performing linear tasks in a
simple teacher-student setup with Gaussian inputs. In this setting, the full training
dynamics is derived in terms of the training and generalization data covariance ma-
trix. We present exact predictions on how the grokking time depends on input and
output dimensionality, train sample size, regularization, and network initialization.
We demonstrate that the sharp increase in generalization accuracy may not imply a
transition from "memorization" to "understanding", but can simply be an artifact
of the accuracy measure. We provide empirical verification for our calculations,
along with preliminary results indicating that some predictions also hold for deeper
networks, with non-linear activations.

1 INTRODUCTION

Understanding the underlying correlations in complex datasets is the main challenge of statistical
learning. Assuming that training and generalization data are drawn from a similar distribution,
the discrepancy between training and generalization metrics quantifies how well a model extracts
meaningful features from the training data, and what portion of its reasoning is based on idiosyncrasies
in the training data. Traditionally, one would expect that once a neural network (NN) training
converges to a low loss value, the generalization error should either plateau, for good models, or
deteriorate for models that overfit.

Surprisingly, Power et al. (2022) found that a shallow transformer trained on algorithmic datasets
features drastically different dynamics. The network first overfits the training data, achieving low and
stable training loss with high generalization error for an extended period, then suddenly and rapidly
transitions to a perfect generalization phase.

This counter-intuitive phenomenon, dubbed grokking, has recently garnered much attention and many
underlying mechanisms have been proposed as possible explanations. These include the difficulty of
representation learning (Liu et al., 2022), the scale of parameters at initialization (Liu et al., 2023),
spikes in loss ("slingshots") (Thilak et al., 2022), random walks among optimal solutions (Millidge,
2022), and the simplicity of the generalising solution (Nanda et al., 2023, Appendix E).

In this paper we take a different approach, leveraging the simplest possible models that still display
grokking-linear estimators. Due to their simplicity, this class of models offers analytically tractable
dynamics, allowing a derivation of exact predictions for grokking, and a clear interpretation that is
corroborated empirically. Our main contributions are:

• We solve analytically the gradient-flow training dynamics in a linear teacher-student
(T, S ∈ Rdin×dout) model performing MSE classification. In this setting, the training
and generalization losses Ltr,Lgen, are simply given by ||T − S||2Σ, where the norm is
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defined with respect to the training/generalization Gram matrices, Σtr and Σgen respectively.
These matrices can be modeled with classical Random Matrix Theory (RMT) techniques.

• Grokking in this setting does not imply any “interesting” generalization behavior, but rather
the simple fact that the generalization loss decays slower than the training loss, because the
gradients are set by the latter. The grokking time is mainly determined by a single parameter,
the ratio between input dimension and number of training samples λ = din/Ntr.

• Standard variations are included in the analysis:
– The effect of different weight initializations is to generate an artificial rescaling of the

training and generalization losses, increasing the effective accuracy value required for
saturation and therefore increasing grokking time.

– For small dout, Grokking time increases with output dimension due to effectively
slower dynamics. This happens up to a critical dimension after which the measure of
accuracy becomes insensitive to the value of the loss, reducing the grokking time.

– L2 regularization suppresses grokking in overparameterized networks as expected,
while having a subtle effect on the grokking time in underparameterized settings.

• We further show semi-analytically that our results extend to architectures beyond shallow
linear networks, including one hidden layer, with both linear and some nonlinear activations.

2 RELATED WORK

Grokking Many works have attempted to explain the underlying mechanism responsible for
grokking, since its discovery by Power et al. (2022). Some works suggest "slingshots" (Thilak et al.,
2022) or "oscillations" (Notsawo et al., 2023) underlie grokking, but our explanation applies even
without these dynamics. Other works identify ingredients for grokking (Davies et al., 2023; Nanda
et al., 2023), analyze the trigonometric algorithms networks learn after grokking (Nanda et al., 2023;
Chughtai et al., 2023; Merrill et al., 2023), and show similar dynamics in sparse parity tasks (Merrill
et al., 2023). The addition of regularization has been shown to strongly affect grokking in certain
scenarios (Power et al., 2022; Liu et al., 2023). This connection may be attributed to weight decay
(WD), for instance, improving generalization (Krogh and Hertz, 1991), though this property is not
yet fully understood (Zhang et al., 2018). We incorporate WD in our setup and study its effects on
grokking analytically, showing that it can either suppress or enhance grokking, depending on the
number of network parameters and number of training samples.

Key related works, most closely tied with our own, are Liu et al. (2022; 2023) and Žunkovič and
Ilievski (2022); Gromov (2023). Liu et al. (2022) show perfect generalization on a non-modular
addition task when enough data determines the structured representation. Liu et al. (2023) relate
grokking to memorization dynamics. Žunkovič and Ilievski (2022); Gromov (2023) analyze solvable
models displaying grokking and relate results to latent-space structure formation. Our work employs
a similar setup but derives grokking dynamics from a random matrix theory perspective relating
dataset properties to the empirical covariance matrix.

Linear Estimators in High Dimensions A growing body of work has focused on deriving exact
solutions for linear estimators trained on Gaussian data, particularly in the context of random feature
models. The dynamics are often described in the gradient flow limit, which we employ in this
work. Building on statistical physics methods, Sompolinsky et al. (1988); Advani and Saxe (2017)
provided an analytical characterization of the dynamics of learning in linear neural networks under
gradient descent, both in shallow and in deep networks Saxe et al. (2014). Their mean-field analysis
precisely tracks the evolution of the training and generalization errors, similar to Richards et al.
(2021); Mignacco et al. (2021); Mignacco and Urbani (2022); Paquette et al. (2022). More recently,
Bodin and Macris (2022) further studied the dynamics of generalization under gradient descent for
the Gaussian covariate model, corroborating the presence of epoch-wise descent structures. In the
context of least squares estimation and multiple layers, Loureiro et al. (2022); Goldt et al. (2020)
analyzed the gradient flow dynamics and long-time behavior of the training and generalization errors.

The tools from random matrix theory and statistical mechanics employed in these analyses allow
precise tracking of the generalization curve and transitions thereof, akin to Dobriban and Wager
(2015). Our work adopts a similar theoretical framing to study the interplay between model capacity,
overparameterization, and gradient flow optimization in determining generalization performance.
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3 TRAINING DYNAMICS IN A LINEAR TEACHER-STUDENT SETUP

The majority of our results are derived for a simple student-teacher model Seung et al. (1992),
where the inputs are identical independently distributed (iid) normal variables. We draw Ntr training
samples from a standard Gaussian distribution xi ∼ N (0, Idin×din

), and the teacher model generates
output labels. The student is trained to mimic the predictions of the teacher, which we take as perfect.

The teacher and student models, which we denote by T and S respectively, share the same architecture.
As we show below, Grokking can occur even for the simplest possible network function, which is a
linear Perceptron with no biases, or in other words – a simple linear transformation. The loss function
is the standard MSE loss. Our analyses are done in the regime of large input dimension and large
sample size, i.e., din, Ntr → ∞, where the ratio λ ≡ din/Ntr ∈ R+ kept constant.

Following the construction presented in Liu et al. (2023), we can convert this regression problem into
a classification task by setting a threshold ϵ > 0 and defining a sample to be correctly classified if the
prediction error is less than ϵ. The student model is trained with the full batch Gradient Descent (GD)
optimizer for t steps with a learning rate η, which may also include a weight decay parameter γ. The
training loss function is given by

Ltr =
1

Ntrdout

Ntr∑
i=1

∥(S − T )Txi∥2 =
1

dout
Tr
[
DTΣtrD

]
, D ≡ S − T . (1)

where S, T ∈ Rdin×dout are the student and teacher weight matrices, Σtr ≡ 1
Ntr

∑Ntr

i=1 xix
T
i is

the din × din empirical data covariance, or Gram matrix for the training set, and we define D as
the difference between the student and teacher matrices. The elements of T and S are drawn at
initialization from a normal distribution S0, T ∼ N (0, 1/(2dindout)). We do not include biases in
the student or teacher weight matrices, as they do not affect centrally distributed data.

Similarly, the generalization loss function is defined as its expectation value over the input distribution,
which can be approximated by the empirical average over Ngen randomly sampled points

Lgen = Ex∼N

[
1

dout
∥(S − T )Tx∥2

]
=

1

dout
Tr
[
DTΣgenD

]
=

1

dout
∥D∥2 . (2)

Here Σgen is the covariance of the generalization distribution, which is the identity. Note that in
practice the generalization loss is computed by a sample average over an independent set, which is
not equal to the analytical expectation value. The gradient descent equations at training step t are

∇DLtr =
2

dout
ΣtrD , Dt+1 =

(
I − 2η

dout
Σtr

)
Dt −

ηγ

dout
(Dt + T ) , (3)

where γ ∈ R+ is the weight decay parameter, and I ∈ Rdin×din is the identity.

It is worthwhile to emphasize the difference between Eq. (1) and Eq. (2), since the distinction between
sample average and analytical expectation value is crucial to our analyses. In training, Eq. (1), we
compute the loss over a fixed dataset whose covariance, Σtr, is non-trivial. The generalization loss
is defined as the expectation value over the input distribution, which has a trivial covariance by
assumption, Σgen = I . Even if it is computed in practice by averaging over a finite sample with
a non-trivial covariance, it is independent of the training dynamics and the sample average will
converge to the analytical expectation with the usual

√
N scaling. This is not true for the training loss,

since the training dynamics will guide the network in a direction that minimizes the empirical loss
with respect to the fixed covariance Σtr. This assertion is numerically verified below, as we compare
the generalization loss, practically computed by sample averaging, to the analytical result of Eq. (2).

3.1 WARMUP: THE SIMPLEST MODEL

3.1.1 TRAIN AND GENERALIZATION LOSS

Before analyzing the dynamics of the general linear model, we start with a simpler setting that
captures the most important aspects of the full solution. Concretely, here we set dout = 1, reducing
S, T ∈ Rdin from matrices to vectors, and assume no weight decay γ = 0.
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Figure 1: Grokking as a function of λ. Left: Empirical results for training (dashed) and test (solid) losses, for
λ = 0.1, 0.9, 1.5 against analytical solutions (black). For λ = 0.1 the test and train curves are indistinguishable.
Center: Similar comparison for the accuracy functions. Right: Grokking time as a function of λ, for different
values of the threshold parameter ϵ (red, blue), and shown the analytic solution Eq. (11) (dashed black). Here we
use GD with η = η0 = 0.01, din =103, dout = 1, ϵ =10−3.

Eq. (3) can be solved in the gradient flow limit of continuous time, setting η = η0dt and dt → 0,
resulting in

Ḋ(t) = −2η0ΣtrD(t) → D(t) = e−2η0ΣtrtD0, (4)
where D0 is simply the difference between teacher and student vectors at initialization. It follows
that the empirical losses, calculated over a dataset admit closed-form expressions as

Ltr = DT
0 e

−4η0ΣtrtΣtrD0, Lgen = DT
0 e

−4η0ΣtrtD0. (5)

These expressions for the losses are exact. To proceed, we need to know the Gram matrix of the
training dataset, which is the empirical covariance of a random sample of Gaussian variables. It
is known that eigenvectors of Σtr are uniformly distributed on the unit sphere in Rdout and its
eigenvalues, νi, follow the Marchenko-Pastur (MP) distribution (Marčenko and Pastur, 1967),

pMP(ν)dν =

(
1− 1

λ

)+

δ0 +

√
(λ+ − ν)(ν − λ−)

2πλν
Iν∈[λ−,λ+]dν, (6)

where δν is the Dirac mass at ν ∈ R, we define x+ = max{x, 0} for x ∈ R, and λ± = (1±
√
λ)2.

Since the directions of both D and the eigenvectors of Σtr are uniformly distributed, we make the
approximation that the projection of D on all eigenvectors is the same, which transforms Eq. (5) to
the simple form

Ltr ≈
1

din

∑
i

e−4η0νitνi , Lgen ≈ 1

din

∑
i

e−4η0νit . (7)

It is seen that these sums are the empirical average over the function e−4η0νtν, if ν follows the MP
distribution. This can be well approximated by their respective expectation values,

Ltr(η0, λ, t) ≈ Eν∼MP(λ)

[
νe−4η0νt

]
, Lgen(η0, λ, t) ≈ Eν∼MP(λ)

[
e−4η0νt

]
. (8)

The evolution of these loss functions is dictated by the MP distribution, which exhibits distinct
behaviors for λ < 1 and λ > 1. For λ < 1, the first term in Eq. (6) vanishes, the distribution has no
null eigenvalues and so Ltr,Lgen both are driven to 0 at t → ∞, implying that perfect generalization
is always obtained eventually. On the other hand, for λ > 1, Eq. (6) develops several zero eigenvalues,
corresponding to flat directions in the training Gram matrix. In this case, while Ltr is driven to 0, since
νe−4η0νt|ν=0 = 0, the generalization loss Lgen does not vanish, as e−4η0νt|ν=0 = 1 contributes a
nonzero constant 1 − 1/λ to the loss, preventing perfect generalization. When dout = 1, the two
regimes correspond to underparameterization (λ < 1) and overparameterization (λ > 1).

In Fig. 1 we show that these analytical predictions are in excellent agreement with numerical
experiments, with no fitting parameters, in both regimes.

We also note that the expectation value of Ltr in Eq. (8) admits a closed form solution, Ltr =
e−4η0(λ+1)t

0F̃1

(
2; 16η20t

2λ
)
, where 0F̃1 (a; z) = 0F1(a; z)Γ(a) is the regularized confluent hyper-

geometric function. We could not find a closed form expression for Lgen, but approximate expressions
for the expectation value can be derived for the late time behavior, cf. Appendix B.
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3.1.2 TRAIN AND GENERALIZATION ACCURACY

Next, we describe the evolution of the training and generalization accuracy functions. As described
above, in the construction of Liu et al. (2023) the accuracy A is defined as the (empirical) fraction
of points whose prediction error is smaller than ϵ, A = 1

N

∑N
i=1 Θ(ϵ − (DT (t)xi)

2), where Θ

is the Heaviside step function. We define z = DTx ∈ R, which is normally distributed with
standard deviation DTΣD = L, where Σ is the covariance of x (that is, Σtr for training and I for
generalization). Then, in the limit of large sample sizes, the empirical averages converge to

A −−−−→
N→∞

2Pr
(
|z| ≤

√
ϵ
)
= Erf

(√
ϵ

2L

)
, (9)

where A,L stand for train and generalization measures. This result implies that the increase in
accuracy in the late stages of training can be simply mapped to the decrease of the loss below ϵ.
Writing the accuracy as an explicit function of the loss allows an exact calculation of the grokking
time, and of whether grokking occurs at all.

3.1.3 GROKKING TIME

In this framework, grokking is simply the phenomenon in which Ltr drops below ϵ before Lgen does.
To understand exactly when these events happen, in Appendix B we derive approximate results in the
long time limit, η0t ≫

√
λ, showing that

Ltr ≃
exp

[
−4η0

(
1−

√
λ
)2

t

]
16
√
πλ3/4(η0t)3/2

, Lgen ≃ Ltr ×
(
1−

√
λ
)−2

. (10)

We define grokking time as the time difference between the training and generalization accuracies
reaching Erf(

√
2) ≈ 95%, obtained when each loss satisfies L(t∗) = ϵ/4. In terms of the loss

functions, we show in Appendix B that solving for the difference between t∗gen − t∗tr, and expanding
the result in the limit of ϵ ≪ 1, one obtains an analytic expression for the grokking time difference

∆tgrok = t∗gen − t∗tr ≃ −
log
(
1−

√
λ
)

2η0

(
1−

√
λ
)2 . (11)

Eq. (11) indicates that the maximal grokking time difference occurs near λ ≃ 1, where the grokking
time diverges quadratically as ∆tgrok(λ → 1) ∼ 1

η0(λ−1)2 log
(

4
(1−λ)2

)
. On the other hand, it

vanishes for λ ≃ 0, which means Ntr ≫ din and Σtr approaches the identity, as expected. These
predictions are verified in Fig. 1(right).

Effects of Initialization and Label Noise: We briefly comment on the effect of choosing a different
initialization for the student weights compared to the teacher weights, which is discussed in Liu et al.
(2023), as well as adding training label noise. In the first setup, rescaling the student weights S → αS

leads to a trivial rescaling of both the training and generalization loss functions as L → 1+α2

2 L,
which is tantamount to choosing a different threshold parameter ϵ → 2ϵ

1+α2 , leaving the results
unchanged. In the case of training label noise y → y+ δ , where δ ∼ N (0, σ2

δ ), the student dynamics
don’t change, but the training loss function would receive a constant contribution, proportional to
the noise variance σ2

δ , as detailed in Appendix C. It is then possible to tune σ2
δ and the threshold

parameter ϵ, such that the noise can induce grokking precisely when test accuracy saturates. This
effect could be wrongly interpreted as "self-correction" (Liu et al., 2022).

3.2 INTERPRETATION AND INTUITION

We conclude this section by summarizing and interpreting the analytical results for the simple 1-layer
linear network with a scalar output and MSE loss. In this setting, the loss, which is an empirical
average over a finite sample, is given by the norm of D = S − T , as measured by the metric defined
by the covariance of the sample, L = DTΣD. While the generalization covariance is the identity by
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Figure 2: Effects of the output dimension dout > 1 on grokking. Left: Empirical results for training (dashed)
and generalization (solid) losses, for dout = 1, 50, 700 (blue, red, violet) against analytical solutions (black),
for λ = 0.9. Center: Similar comparison for the accuracy functions. Right: The grokking time as a function
of dout, for different values of λ. Different solid curves are numerical solutions for the expressions given in
Section 3.3.1. Training is done using GD with η = η0 = 0.01, din =103, ϵ =10−3.

construction, the train covariance only approaches the identity in the limit Ntr ≫ din, and otherwise
follows the Marchenko-Pastur distribution.

The training gradients point to a direction that minimizes the training loss, which is ∥D∥Σtr
, and in

the long time limit, it vanishes exponentially. This must imply that the generalization loss, ∥D∥I ,
which is the norm of the same vector but calculated with respect to a different metric, also vanishes
exponentially but somewhat slower. Since in this setting the accuracy is a function of the loss,
grokking is identified as the difference between the times that the training and generalization losses
fall below the fixed threshold ϵ/4. We note that the fact that the accuracy is an explicit function of
the loss is a useful peculiarity of this model. In more general settings it is not the case, though it is
generally expected that low loss would imply high accuracy.

However, it is noteworthy that nothing particularly interesting is happening at this threshold, and the
loss dynamics are oblivious to its existence. In other words, grokking in this setting, as reported previ-
ously by Liu et al. (2023), is an artifact of the definition of accuracy and does not represent a transition
from “memorization” to “understanding”, or any other qualitative increase in any generalization
abilities of the network.

Our analysis can be easily extended to include other effects in more complicated scenarios, which we
detail below. In all these generalizations the qualitative interpretation remains valid.

3.3 VARIANTS

3.3.1 THE EFFECT OF dout

We first extend our analysis to the case dout > 1. The algebra in this case is similar to what was
shown in Section 3.1. We provide the full derivation in Appendix D and report the main results here.
The loss evolution follows the same functional form as Eq. (8), with the replacement η0 → η0/dout,
and a correction to Eq. (9):

Ldout ̸=1(η0, λ, t) =
1

dout
Ldout=1

(
η0
dout

, λ, t

)
, A = 1−

Γ
(
dout

2 , dout

2L ϵ
)

Γ
(
dout

2

) , (12)

Here, Γ(a, z) =
∫∞
a

e−ttz−1dt is the incomplete gamma function, and Γ(z) =
∫∞
0

e−ttz−1dt is the
gamma function. These relation hold for Agen/tr and Lgen/tr separately.

We note that the expression for A stems from the fact that ∥z∥2 = ∥DTx∥2 now follows a χ2

distribution and not a normal distribution. It is seen that A is still an explicit function of L, albeit
somewhat more complicated.

The effects of dout > 1 can be read from Eq. (12), and are twofold. Firstly, the accuracy rapidly
approaches 1 as the output dimension dout increases, for any value of L and ϵ. This implies that in the
limit of dout → ∞, both training and generalization accuracies must be close to 100% shortly after
initialization and no grokking occurs. Secondly, the learning rate η0 becomes effectively smaller as
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Figure 3: Effects of weight decay (γ) on grokking. Left: Empirical results for training (dashed) and
generalization (solid) losses, for γ = 10−5, 10−3, 10−2 (blue, red, violet) against analytical solutions (black),
for λ = 0.9. Center: Similar comparison for the accuracy functions. Right: The grokking time as a function
of γ, for different values of λ. Different solid curves are numerical solutions for the expressions given in
Section 3.3.1, while the shaded gray region corresponds to training/generalization saturation, without perfect
generalization. Training is done using GD with η = η0 = 0.01, din =103, dout = 1, ϵ =10−3

dout grows, implying that the overall time scale of convergence for both training and generalization
accuracies increases, leading to a higher grokking time. These two competing effects, along with the
monotonicity of the loss functions, give rise to a non-monotonic dependence of the grokking time on
dout, which attains a maximum at a specific value dmax

out , as can be seen in Fig. 2.

3.3.2 THE EFFECT OF WEIGHT DECAY

We consider first the case of nonzero WD in the simpler case of dout = 1. Incorporating weight
decay amounts to adding a regularization term at each gradient descent timestep, modifying Eq. (3) to

Dt+1 = Dt − 2η
(
Σtr +

γ

2
I
)
Dt − ηγT, (13)

where γ ∈ R+ is the weight decay parameter. The calculations are straightforward and detailed in
Appendix E, the result being that Eq. (8) should be modified to read

L =
1

2
Eν∼MP(λ)

e−4η0(ν+ 1
2γ)t +

(
e−2η0(ν+ 1

2γ)tν + 1
2γ

ν + 1
2γ

)2
 q

 , (14)

where q = ν for the training loss q = 1 for generalization. Compared to Eq. (8), it is seen that the
main effect of WD is a shift in the effective spectrum ν → ν + 1

2γ, as can be expected from the
second term in Eq. (13). Since γ only affects the gradient but not the accuracy, the expression in
Eq. (9) of A as a function of L, remains unchanged.

It is instructive to analyze Eq. (14) separately for the under and overparameterized regimes. When
λ < 1, the MP distribution has no null eigenvalues, and the losses begin by decaying exponentially.
We can study the grokking behavior by examining the late time limit, i.e. t → ∞, in which the
exponential terms decay, and approximating for small γ ≪ 1, we obtain the asymptotic expressions

Ltr ≃
γ2

4(1− λ)
, Lgen ≃ γ2

4(1− λ)3
, ∆tgrok ≃ log(1+

√
λ)

2η0(1−
√
λ)

2 . (15)

This result means that the generalization loss has a higher asymptotic value than the training loss.
Thus, there is a value of ϵ below which perfect generalization cannot be obtained. For ϵ above this
threshold, WD has no effect, and below it, the grokking time decreases as given by Eq. (15).

In the overparameterized regime, where λ > 1, the MP distribution necessarily contains vanishing
eigenvalues, which, as shown in Fig. 1, cause the generalization loss to plateau. Introducing weight
decay changes this picture somewhat, causing the null eigenvalues to be shifted by a factor of γ/2
and ensuring that better generalization performance is reached. Still, the late time behavior is the
same as Eq. (15), following the same arguments as discussed above. We note that in this case, the
relevant timescale of the generalization loss is determined by 1/γ, leading to suppressing grokking,
as observed by Liu et al. (2023), though their regime lies in the gray region of Fig. 3.

The grokking time behaviors for various values of γ are clearly demonstrated in Fig. 3. In addition,
Fig. 7 in the appendix shows the combined effects of λ, γ and dout.
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4 GENERALIZATIONS

4.1 2-LAYER NETWORKS

Our analysis can be generalized to multi-layer models. Here, we consider the addition of a single
hidden layer, where the teacher network function is f(x) = TT

1 σ
(
TT
0 x
)
, where T0 ∈ Rdin×dh ,

T1 ∈ Rdh×dout , σ is an entry-wise activation function and dh is the width of the hidden layer.
Similarly, the student network is defined by two matrices S0(t), S1(t). The empirical training loss
reads

Ltr =
1

Ntrdout

Ntr∑
i=1

[
ST
1 σ
(
(S0)

Txi

)
− TT

1 σ
(
TT
0 xi

) ]2
. (16)

In this setup the weights are drawn at initialization from normal distributions S0(t = 0), T0 ∼
N (0, 1/(2dindh)) and S1(t = 0), T1 ∼ N (0, 1/(2doutdh)).

As a solvable model, we consider first the case of linear activation, σ(z) = z, i.e., a two-layer linear
network. In this case, we can define T = T0T1 ∈ Rdin×dout as we did in the previous sections, since
the teacher weights are not updated dynamically. Similar to Eqs. (1) and (2), under the definition
D(t) = S0(t)S1(t)− T , we show in Appendix F that the gradient flow equations for the system are

∂tD = − 2η0

dout
2h(t)ΣtrD(t) , ∂th = −8η0(T +D(t))TΣtrD(t). (17)

Here, h(t) = 1
2

(
∥S0(t)∥2 + ∥St(t)∥2

)
. Although Eq. (17) describes a set of coupled equations, we

note that the solution for h(t) can be simplified when considering the limit of small η0 ≪ 1, as we
may ignore the time evolution and consider the trace (or kernel) as fixed to its initialization value,
which is h ≃ 1/2 for dh ≫ dout. In this case, the solutions for L are a simple modification of
the one given in the previous sections, with the replacement η0 → η0/(2dout

2). Subsequently, the
training/generalization performance metrics are

L2−layer (η0, λ, t) = ∥D0∥2L1−layer

(
η0

2dout
2 , λ, t

)
, (18)

and Atr/gen is a function of Ltr/gen, respectively, as given in Eq. (12). We note that this setup is
generically overparameterized for large dh, regardless of dout and for any λ. In this sense, all of the
results previously derived for λ < 1 should hold, and grokking occurs as discussed in the previous
sections. We experimentally verify that Eq. (18) correctly predicts the performance metrics and their
dynamics in Fig. 4 (left column).

4.2 NON-LINEAR ACTIVATIONS

The final extension of our work is to consider the network in Section 4.1, but choose nonlinear
activation functions for the hidden layer. In the limit of large dh ≫ 1, we expect the network to begin
to linearize, eventually converging to the Neural Tangent Kernel (NTK) regime (Lee et al., 2019). In
this regime, the results in Section 4.1 should hold, up to a redefinition of the kernel which depends on
the nonlinearity.

In Fig. 4 (right column), we show that the dynamics of a 2-layer MLP (1000-200-5) with tanh
activations is well approximated by Eqs. (17) and (18), empirically verifying that our predictions
hold beyond the linear regimes, in some cases.

5 DISCUSSION

We have shown that grokking, at least in the sense of late generalization, can occur in simple linear
teacher-student settings and provided explicit analytical solutions for the training and generalization
loss and accuracy dynamics during training. The predictions, which strictly apply in the gradient-flow
limit and for large sample sizes, were corroborated against numerical experiments and provided an
excellent description of the dynamics

8
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Figure 4: 2-Layer network and nonlinearities. Left: Empirical results for training (dashed) and generalization
(solid) losses/accuracies (top/bottom), for a two-layer MLP (1000-dh-5) with linear activations and dh = 50, 200
(blue, red), against analytical solutions (black). Right: Similar results for an identical network with tanh
activations. In both cases, training is done using full batch gradient descent with η = η0 = 0.01, din =
1000, dout = 5, ϵ = 10−4.

A main point of this work is that grokking in these cases is an artifact of the accuracy metric and
does not represent “understanding” in any meaningful way. Moreover, this scenario does not capture
some of the observed phenomenology of grokking, which sometimes features non-monotonic loss
evolution and special weight structures as observed in Gromov (2023); Liu et al. (2022), both of
which are not present in our setup. Therefore, the proposed mechanism is clearly not a general theory
of grokking: the closed-form solutions for the dynamics clearly pertain only to this specific setup, and
depend on the spectral properties of the covariance. We thus do not expect that they will generalize
“as is” in other contexts.

However, parts of the proposed mechanism may be useful in understanding certain aspects of grokking
even in realistic scenarios. The core property of the proposed underlying mechanism of grokking is
the fact that under GD dynamics, the accuracy is simply a function of the loss (cf. Eq. (9) and its
generalization Eq. (12)), and importantly – a rapidly changing function, with a threshold that depends
on the data covariance (in our case, this is the condition xTΣx < ϵ). In this sense, late generalization
is an artifact of the metric and does not represent any dynamical property or special weight structure.
We suspect that this core property, as well as some properties of the analytical predictions, may be
observed in more realistic scenarios. In Appendix G we present preliminary results regarding this
conjecture, in the context of the classic modular addition task discussed in Gromov (2023). It is
shown that the proposed picture is consistent with the numerical experiments.

The application of the proposed mechanism to modeling grokking in realistic settings will be studied
in future research. In addition, it would be interesting to study how universal are our results when
taking into account finite learning rates, realistic data covariance structures, different choices of
optimizers or losses, and other effects.
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A EXPERIMENTAL DETAILS

In all of our experiments, we employ a teacher-student model with shared architecture for both teacher
and student. The training data consists of a fixed number of training samples quoted in the main text
for each experiment, drawn from a normal distribution N (0, I). All experiments are done on MLPs
using MSE loss with the default definitions employed by PyTorch. The exact details of each MLP
depend on the setup and are quoted in the main text. We train with full batch gradient descent, in all
instances. We depart from the default weight initialization of PyTorch, using w ∼ N (0, 1/(2dl−1dl)
for each layer, where dl−1 is in the input dimension coming from the previous layer and dl is the
output dimension of the current layer.

B DERIVATION OF THE GROKKING TIME DIFFERENCE

Here, we provide the full derivation for the grokking time difference presented in Eq. (11). Our
starting point is the exact solution for the training loss in dout = 1 case for λ < 1, given by

Ltr = e−4η0(λ+1)t
0F̃1

(
2; 16η20t

2λ
)
, (19)

where 0F̃1 (a; z) = 0F1(a; z)Γ(a) is the regularized confluent hypergeometric function. We also
note the relation

dLgen

dt
= −4η0Ltr, (20)

which we will use to relate training and generalization loss functions. Since we are interested in the
late time behavior, where grokking occurs, we expand the training loss for η0t ≫

√
λ, which is given

at leading order by

Ltr ≃
e−4η0(1−

√
λ)

2
t

16
√
πλ3/4(η0t)3/2

. (21)

Plugging in the result of Eq. (21) into Eq. (20) and integrating over time, we find the expression for
the generalization loss at late times is given by

Lgen ≃
√
η0te

−4η0(1−
√
λ)

2
t

2
√
πη0tλ3/4

−

(
1−

√
λ
)
Γ

(
1
2 , 4η0t

(
1−

√
λ
)2)

√
πλ3/4

, (22)

where Γ(a, z) =
∫∞
z

dte−tta−1 is the incomplete gamma function. Expanding the result further for
late times, we arrive at the result quoted in Eq. (10). In Fig. 5, we show the approximate late-time
solutions against the exact solutions. The approximations hold quite well even at somewhat early
times, and become increasingly more accurate for later epochs.

With the loss functions at hand, we turn to the grokking time itself. As described in the main text, we
define the grokking time as the time difference between the training and generalization accuracies
reaching Erf(

√
2) ≈ 95%, obtained when each loss satisfies L(t∗) = ϵ/4. Solving this equation

for each loss separately, in the late time limit, gives the following expressions for the training and
generalization times

t∗tr ≃
3

8η0

(
1−

√
λ
)2W

2 22/3 3

√
λ3/2

π + 1
πλ3/2 − 6λ

π + 15
√
λ

π − 6
πλ + 15

π
√
λ
− 20

π

3ϵ2/3

 , (23)

t∗gen ≃ 3

8η
(
1−

√
λ
)2W

25/3 3

√
1

πλ3/2 + 1
π
√
λ
− 2

πλ

3ϵ2/3

 , (24)

where W(z) is the Lambert W function, which solves the equation WeW = z, also known as
the product-log function. As the argument of both training and generalization times are large, we
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Figure 5: Exact training and generalization losses against approximate solutions at late times. In pink/light
blue, we show the solutions of Eq. (8). In dashed red is Eq. (21), in dashed blue, we show Eq. (22), while
dotted-dashed blue is the solution given in the main text, Eq. (10). Clearly, the asymptotic behavior matches
the exact solutions. Here, η0 = 0.01, λ = 0.9, dout = 1.

can expand the Lambert function to leading order in z as W(z) ≃ log(z). Taking the difference
∆tgrok = t∗gen − t∗tr and expanding to leading order in ϵ ≪ 1, we obtain the final expression

∆tgrok = t∗gen − t∗tr ≃
log
(

1
1−

√
λ

)
2η0

(
1−

√
λ
)2 +

3

8η
(
1−

√
λ
)2 log

1 +

log

((
1−

√
λ
)4/3)

log

(
2(2−2

√
λ)

2/3

3 3
√
π
√
λϵ2/3

)
 ,

(25)

where the second term goes to zero as ϵ → 0, quoted in the main text as Eq. (11).

C DERIVATION FOR TRAINING LABEL NOISE

Here, we consider the addition of training label noise for the simplest setup, in which dout = 1 so
S, T are vectors, and in the absence of WD. In this case, the noise addition is a scalar label noise
variable δi ∼ N (0, σ2

δ ). Training with label noise in the linear single-layer model gives the average
training loss

Ltr =
1

Ntr

Ntr∑
i=1

∥(S − T )xi + δi∥2 ≃ Tr(DDTΣtr) + σ2
δ , (26)

while the generalization loss (w/o noise) is unchanged

Lgen =
1

Ngen

Ngen∑
i=1

∥(S − T )xi∥2 ≃ Tr(DDT ) (27)

. Since the label noise contribution does not multiply any of the weights, the gradient of the training
loss with respect to D is the one given in Eq. (3), so the training dynamics in the gradient flow limit
remain unchanged

D(t) = e−4η0ΣtrD0. (28)

This implies that the training loss is bounded from below by σ2
δ , while the generalization loss can be

driven to 0, indicating that even imperfect training in this model leads to perfect generalization.

In Fig. 6, we show the loss and accuracy evolutions for different values of σ2
δ . Clearly, for high

noise variance, the training accuracy saturation is a poor metric for performance, while test loss and
accuracy show perfect generalization for any noise level.
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Figure 6: Training and generalization losses (left) and accuracies (right) for different noise label variance.
In shades of pink, we show the solutions for Eq. (8) and Eq. (9). In light blue, we show the generalization
loss/accuracy evolution which does not change as a function of label noise. Here, η0 = 0.01, λ = 0.9, dout =
1., ϵ = 0.01.

D DERIVATION FOR dout > 1

Here, we provide additional details on the derivation of Eq. (12). The starting point is the training
and generalization loss functions, given by

Ltr =
1

dout
Tr
[
DTΣtrD

]
, Lgen =

1

dout
Tr
[
DTΣgenD

]
=

1

dout
∥D∥2 . (29)

where S, T ∈ Rdin×dout are the student and teacher weight matrices, Σtr ≡ 1
Ntr

∑Ntr

i=1 xix
T
i is the

empirical data covariance, or Gram matrix for the training set, and we define D ≡ S − T , the
difference between the student and teacher matrices. T and S are drawn at initialization from normal
distributions S0, T ∼ N (0, 1/(2dindout)). We do not include biases in the student or teacher weight
matrices, as they have no effect on centrally distributed data. The gradient descent equations in this
instance are simply

Dt+1 =

(
I − 2η

dout
Σtr

)
Dt, (30)

where the only difference between the dout = 1 case and the equation above is the rescaled learning
rate η → η/dout and the dimensions of Dt. Since the MP distribution is identical for each column of
Dt, the results sum up and are identical to the dout = 1 case for the losses, apart from a factor of
1/dout and the learning rate rescaling, leading to Eq. (12).

E LOSS CALCULATIONS FOR DYNAMICS INCLUDING WEIGHT DECAY

Here, we provide the derivation for Eq. (14). We begin with the definitions of the loss function in the
dout = 1 case

Ltr = D(t)TΣtrD(t), (31)
where D(t) = S(t) − T is the difference between the student and the teacher vectors, Σtr =
1

Ntr

∑Ntr

i=1 xix
T
i is the training covariance matrix, and γ ≥ 0 is the weight decay parameter. Using

the gradient descent equation in the gradient flow limit, ∂D
∂t = −η∇DL, we obtain from Eq. (3) that

∂D

∂t
= −2η

(
Σtr +

1

2
γI

)
D − ηγT. (32)

Multiplying by the integration factor e2η(Σtr+
1
2γI)t and taking the integral, we arrive at

D(t) +
1

2
γ

(
Σtr +

1

2
γI

)−1

T = e−2η(Σtr+
1
2γI)t

[
D(0) +

1

2
γ

(
Σtr +

1

2
γI

)−1

T

]
. (33)

We note that now the limiting value of D(t → ∞) is not zero, but rather D∞ =

− 1
2γ
(
Σtr +

1
2γI

)−1
T . Next, we wish to calculate Ltr = D(t)TΣtrD(t) and L̃gen =
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Figure 7: Grokking time phase diagrams. Left: A contour plot of the grokking time difference as a
function of γ, dout. Shades of red indicate shorter grokking time, while blue tones indicate longer
grokking time. White regions indicate no grokking, as generalization accuracy does not converge to
95%. Center and Right: Similar phase diagrams for the grokking time difference as a function of
γ, λ and dout, λ, respectively. The results of all three plots are obtained by numerically finding the
grokking time, using the definition A(t∗) = 0.95 and the analytic formulas quoted in the main text.
The fixed parameters for these plots are η0 = 0.01, ϵ =10−3.

D(t)TΣgenD(t), where we emphasize that in both cases D(t) is given by Eq. (33) and depends on
Σtr. As described in the main text, it is a good approximation to set Σgen to be the identity matrix.
For convenience, we will write both cases by Ltr/gen = D(t)TQD(t), where Q = Σtr for the train
and Q = I (the identity matrix) for the generalization.

We continue by diagonalizing Σtr; we write M = PTΣtrP , where M is a diagonal matrix whose
eigenvalues follow the MP distribution. Hence, we obtain

Ltr/gen = D̄(t)T Q̄D̄(t), (34)

where Q̄ = M, I for the train, generalization correspondingly, and D̄(t) is given by

D̄(t) = e−2η(M+ 1
2γI)t

[
D̄(0) +

1

2
γ

(
M +

1

2
γI

)−1

T̄

]
− 1

2
γ

(
M +

1

2
γI

)−1

T̄ , (35)

where D̄(t) = PTD(t), T̄ = PTT . We notice now that the expression in Eq. (34) involves terms in
the form of: V T f(M)W where V,W are some vectors, and f(M) is some function of the diagonal
MP matrix. If V,W are random vectors in a large dimension, we can approximate that

V T f(M)W =

{
0 V ̸= W,

|V |2
∫
f(u)p(u)du V = W,

(36)

where |V | is the norm of V , and p(u) is the probability density function of the MP distribution.
For example, in our case we will get that DT (0)f(M)T = −|T |2

∫
f(u)p(u)du (since D(0) =

S(0) − T ). All that is left now is to calculate the expression in Eq. (34) explicitly, using the
approximation of Eq. (36). Doing this, at last we arrive into

Ltr/gen = din

∫ |S(0)|2e−4η(u+ 1
2γ)t + |T |2

(
e−2η(u+ 1

2γ)tu+ 1
2γ

u+ 1
2γ

)2
 qtr/genp(u)du, (37)

where qtr = u and qgen = 1. By also setting the student initialization and teacher vector norms to
|S(0)|, |T | ≃ 1/

√
2din (as done in the main text), we finally get

Ltr/gen =
1

2

∫ e−4η(u+ 1
2γ)t +

(
e−2η(u+ 1

2γ)tu+ 1
2γ

u+ 1
2γ

)2
 qtr/genp(u)du. (38)

F DERIVATION FOR THE 2-LAYER NETWORK

Here, we provide supplementary details on the derivation of Eq. (16). We consider the addition of a
single hidden linear layer, where the teacher network function is f(x) = (T (1))T (T (0))Tx, where
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T (0) ∈ Rdin×dh , T (1) ∈ Rdh×dout and dh is the width of the hidden layer. Similarly, the student
network is defined by two matrices S(0), S(1). The empirical training loss over a sample set {xi}Ni=1
reads

Ltr =
1

Ntrdout

Ntr∑
i=1

(
(S(1))T (S(0))Txi − (T (1)))T (T (0)))Txi

)2
. (39)

In this setup the weights are drawn at initialization from normal distributions S
(0)
0 , T (0) ∼

N (0, 1/(2dindh)) , S(1)
0 , T (1) ∼ N (0, 1/(2doutdh)). Next, we define T = T (0)T (1) ∈ Rdin×dout

and derive the gradient flow equations for the system

Ṡ
(0)
t = − 2η0

dout
Σtr

(
S
(0)
t S

(1)
t − T

)
(S

(1)
t )T , Ṡ

(1)
t = − 2η0

dout
(S

(0)
t )TΣtr

(
S
(0)
t S

(1)
t − T

)
. (40)

defining Dt = S
(0)
t S

(1)
t − T , and noting that Ḋt = S

(0)
t Ṡ

(1)
t + Ṡ

(0)
t S

(1)
t , we arrive at the equations

quoted in the main text

Ḋt = −2η0
h

d2out
ΣtrD, ḣt = −8η0(T +D)TΣtrD. (41)

Here, h = Tr[H]/2 = ∥S(0)∥2/2 + ∥S(1)∥2/2, where H = ∇T
θ ∇θLtr is the Hessian matrix and

θ ≡ {S(0), S(1)}. Although Eq. (17) describes a set of coupled equations, we note that the solution
for ht can be simplified when considering

the limit of small η0 ≪ 1, as we may ignore the time evolution and consider the trace (or kernel) as
fixed to its initialization value, which is h0 ≃ 1/2 for dh ≫ dout. In that case the loss solutions are a
simple modification to the ones given in the previous sections, with the replacement η0 → η0/(2d

2
out).

Subsequently, the training/generalization performance metrics are

L2−layer
tr/gen = ∥D0∥2L1−layer

tr/gen

(
η0

2d2out
, λ, t

)
, Atr/gen = 1−

Γ
(

dout

2 , doutϵ
2Ltr/gen

)
Γ
(
dout

2

) . (42)

G PRELIMINARY EVALUATION OF PREDICTION CONSISTENCY FOR
REAL-WORLD SCENARIOS

Here, we begin to explore to what extent can our predictions for the linear models carry over to
real-world settings. As an example, we consider the classical modular arithmetic task, discussed
in Power et al. (2022), and later in Gromov (2023).

We borrow the notations and construction from Gromov (2023), using the same architecture and
definition of the problem. In this setting, grokking takes place and learned features can be understood
analytically. We consider a two-layer MLP network without biases, given by

h
(1)
k (x) =

√
1

din

din∑
j=1

W
(1)
kj xj , z

(1)
i (x) = ϕ(h

(1)
i (x)) , h(2)

q (x) =
1

dh

dh∑
k=1

W
(2)
qk z

(1)
k (x) , (43)

where dh is the width of the hidden layer, din is the input dimension, and ϕ is an activation function,
which we take to be the preactivation squared ϕ(h) = h2. At initialization the weights are sampled
from the standard normal distribution W (1),W (2) ∼ N (0, 1). In Eq. (43), we have chosen to follow
the mean-field parametrization Mei et al. (2018)1.

Given this architecture, we then set up the task of modular arithmetic as a classification problem. The
network is tasked with learning

f(n,m) = (n+m) mod p (44)

where m,n, p are integers. To this end, we fix p and consider additive over Zp. Each input integer is
encoded as a one-hot vector. The output integer is also encoded as a one-hot vector. For the task of

1In the limit of infinite width, the meanfield parametrization allows for feature learning.
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Figure 8: Grokking dependence on λ for a modular addition task compared against the Teacher-Student task
given in the main text. Top row: In the left panel, we show the accuracy as a function of training loss for the
Teacher-Student task, while in the right panel, we show the same metric for the modular addition task. Different
shades indicate a different λ value for the Teacher-Student task, or different α values for modular arithmetic.
Blue indicates the smallest number of training samples, leading to longer grokking time, while yellow curves
correspond to more training samples, therefore shorter grokking time differences. Here, we take p = 48 and
width dh = 400. Bottom panel: Grokking time difference as a function of λ = 2/(αp) for modular addition.
The dashed line shows a (λ− λ∗)−2 dependence.

learning bivariate functions over Zp the input dimension is din = 2p, the output dimension is p, the
total number of points in the dataset is p2, while the model in Eq. (43) has 3dhp parameters. Finally,
we split the dataset D into train Dtrain and test Dtest subsets, and furnish this setup with the MSE
loss function.

It was observed in Gromov (2023) that grokking in this setup depends on multiple factors, including
the training sample fraction α = |Dtr|/|D| = Ntr/Ngen = Ntr/p

2. In our parameterization, we can
study the behavior of the grokking time ∆tgrok, defined in Eq. (11) as a function of λ = din/Ntr =
2p/(αp2) = 2/(αp), by changing the number of training samples, keeping the parameter p fixed,
and note whether there is any hint of the grokking time being a function of the loss alone.

In the top row of Fig. 8, we compare the behavior of the accuracies as a function of training loss with
different training set sizes for the vanilla linear teacher-student model with dout = 1, and for the
modular addition task with p = 482. We use the natural parameterization for the training set size in
both cases, i.e., λ in the teacher-student model, and α, the fraction of training samples, for modular
addition3. We further show on the bottom row of Fig. 8, the grokking time difference as a function
of λ. We find that there is some indication that the grokking time difference in modular addition
depends on λ as ∼ (λ− c)−2, which is reminiscent of the linear model. Additionally, comparing the
accuracy/training loss curves, one finds that as grokking begins, the linear and the modular losses and
accuracies follow similar trends, indicating that perhaps the linear model predictions can be extended
to become universal, under the right reparameterization of the problem.

2In order to expedite convergence we used a learning rate of η = 500. This is in principle "large", but
does not affect the standard grokking behavior observed in Gromov (2023), where the learning rate was set to
η = 100.

3Here, α ranges between 0.5 and 0.9, since below α = 0.5, the network cannot generalize.
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