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ABSTRACT

Generative adversarial networks (GANs) have emerged as a powerful unsuper-
vised method to model the statistical patterns of real-world data sets, such as
natural images. These networks are trained to map random inputs in their la-
tent space to new samples representative of the learned data. However, the struc-
ture of the latent space is hard to intuit due to its high dimensionality and the
non-linearity of the generator, which limits the usefulness of the models. Un-
derstanding the latent space requires a way to identify input codes for existing
real-world images (inversion), and a way to identify directions with known im-
age transformations (interpretability). Here, we use a geometric framework to
address both issues simultaneously. We develop an architecture-agnostic method
to compute the Riemannian metric of the image manifold created by GANs. The
eigen-decomposition of the metric isolates axes that account for different levels of
image variability. An empirical analysis of several pretrained GANs shows that
image variation around each position is concentrated along surprisingly few major
axes (the space is highly anisotropic) and the directions that create this large vari-
ation are similar at different positions in the space (the space is homogeneous).
We show that many of the top eigenvectors correspond to interpretable transforms
in the image space, with a substantial part of eigenspace corresponding to minor
transforms which could be compressed out. This geometric understanding unifies
previousresults-of- GAN-inverston-and-interpretationkey previous results related
to GAN interpretability. We show that the use of this metric allows for more ef-
ficient optimization in the latent space (e.g. GAN inversion) and facilitates unsu-
pervised discovery of interpretable axes. Our results show-illustrate that defining
the geometry of the GAN image manifold can serve as a general framework for
understanding GANs.

1 BACKGROUND

Generative adversarial networks (GANS) learn patterns that characterize complex datasets, and sub-
sequently generate new samples representative of that set. In recent years, there has been tremendous
success in training GANs to generate high-resolution and photorealistic images (Karras et al., 2017;
Brock et al, [2018; [Donahue & Simonyan| 2019; [Karras et al.| 2020). Well-trained GANs show
smooth transitions between image outputs when interpolating in their latent input space, which
makes them useful in applications such as high-level image editing (changing attributes of faces),
object segmentation, and image generation for art and neuroscience (Zhu et al.| |2016; [Shen et al.,
2020; Pividori et al.,2019; Elgammal et al., 2017; [Ponce et al.,[2019). However, there is no system-
atic approach for understanding the latent space of any given GAN or its relationship to the manifold
of natural images.

Because a generator provides a smooth map onto image space, one relevant conceptual model for
GAN latent space is a Riemannian manifold. To define the structure of this manifold, we have to
ask questions such as: are images homogeneously distributed on a sphere? (Whitel 2016) What
is the structure of its tangent space — do all directions induce the same amount of variance in
image transformation? Here we develop a method to compute the metric of this manifold and
investigate its geometry directly, and then use this knowledge to navigate the space and improve
several applications.
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To define a Riemannian geometry, we need to have a smooth map and a notion of distance on it, de-
fined by the metric tensor. For image applications, the relevant notion of distance is in image space
rather than code space. Thus, we can pull back the distance function on the image space onto the
latent space. Differentiating this distance function on latent space, we will get a differential geomet-
ric structure (Riemannian metric) on the image manifold. Further, by computing the Riemannian
metric at different points (i.e. around different latent codes), we can estimate the anisotropy and
homogeneity of this manifold.

The paper is organized as follows: first, we review the previous work using tools from Riemannian
geometry to analyze generative models in section[2} Using this geometric framework, we introduce
an efficient way to compute the metric tensor H on the image manifold in section [3] and empiri-
cally investigate the properties of H in various GANSs in section [f] We explain the properties of
this metric in terms of network architecture and training in section [5] We show that this under-
standing provides a unifiec-unifying principle behind previous methods for GAN-nversion-and-for
interpretable axes discovery in the latent space. Finally, we demonstrate other apphcatlons that this
geometric information could facilitate, e.g. gradient-free searching in the GAN image manifold in
section ??.

2 RELATED WORK

Geometry of Deep Generative Model Concepts in Riemannian geometry have been recently ap-
plied to illuminate the structure of latent space of generative models (i.e. GANs and variational
autoencoders, VAEs). Shao et al.|(2018) designed algorithms to compute the geodesic path, parallel
transport of vectors and geodesic shooting in the latent space; they used finite difference together
with a pretrained encoder to circumvent the Jacobian computation of the generator. While promis-
ing, this method did not provide information of the metric directly and could not be applied to GANs
without encoders. [Arvanitidis et al.| (2017) focused on the geometry of VAEs, deriving a formula
for the metric tensor in order to solve the geodesic in the latent space; this worked well with shallow
convolutional VAEs and low-resolution images (28 x 28 pixels). |Chen et al.| (2018)) computed the
geodesic through minimization, applying their method on shallow VAEs trained on MNIST images
and a low-dimensional robotics dataset. In the above, the featured methods could only be applied to
neural networks without ReLLU activation. Here, we apply the geometric analysis to modern large-
scale GANs (e.g. BigGAN, StyleGAN2) and we show it is compatible with any activation function.
Finally, all previous works assumed a L2 distance in image space, and here we extend this approach
to any differentiable distance metric.

3 METHODS

Formulation A generative network, denoted by G, is a mapping from latent code z to image
I,G:R" - T = REXWX3 s . Borrowing the language of Riemannian geometry, G(z)
parameterizes a submanifold in the image space with z € R". Note for applications in image
domain, we care about distance in the image space. Thus, given a distance function in image space
D :IxZ — Ry,(I1,I3) — L, we can define the distance between two codes as the distance
between the images they generate, i.e. pullback the distance function to latent space through G.
d:R" x R" — R+,d(z1, ZQ) = D(G(Zl), G(Zg))

The Hessian matrix (second order partial derivative) of the squared distance function d* can be
seen as the metric tensor of the image manifold (Palais, |1957). The intuition behind this is as fol-
lows—Censider—: _consider the squared distance to a fixed reference vector zg as a function of z,
f20(2) = d?(2z0, 2). Obviously, z = zq is a local minimum of f,,(z), thus f,(2) can be locally
approximated by a positive semi-definite quadratic form H(zg) as in Eq This matrix induces an
inner product and defines a vector norm, ||[v||% = vT H(zo)v. This squared vector norm approx-
imates the squared image distance, d?(2q, 20 + 0z) ~ [|02||% = 6L H(2¢)dz. Thus, this matrix
encodes the local distance information on the image manifold up to second order approximation.
This is the intuition behind Riemannian metric. In this article, the terms ’metric tensor” and “Hes-
sian matrix” are used interchangeably. We will call a7 (v) = v Hv /v v the approximate speed
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of image change along v as measured by metric H.
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Numerical Method As defined above, the metric tensor H can be directly computed by doubly
differentiating the squared distance function d?. in-this-paperHere we use a CNN-based distance
metric called Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018)as-ou—d2;
which is-easily differentiable—TFhus-we-ean-, both because it is doubly differentiable and because
it has been demonstrated to approximate perceptual similarity judgements. We compute the Hes-
sian by building a computational graph towards the gradient g-=-8zd2-g(2z) = 9,d*|._., and then
computing the gradient towards each element in ¢g(z). This method computes H column by col-
umn, thus-therefore its time complexity is proportional to dimension-of-latent-spaee-the latent-space
dimensionality n and backpropagation-timethe backpropagation time through this graph.

For situations when computing the Hessian through brute-feree-column-by-column backpropagation
is too slow (e.g. FC6GAN, StyleGAN2), we developed an additional-approximation method to
compute the major elgen d1mens10ns of the Hess1an more efﬁ01ently The ratlonale is ;we-are

h - etfthat these top
QW%
moreover, the top eigen-pairs form the best low-rank approximation to the Hessian. As we will later
discover, the spectra of these matrices have a fast decay, thus these Hessian matrices require far

less than n eigenvectors to approximate, cf. Sec[d] Specifically—we-useforward-orreverse-mode
differentiation—to-define Hesstan-veetor-As a matrix, the Hessian is a linear operator, which could

be deﬁned as lon as one can compute the He551an vector product (HVP)epefaffeHs—Eqﬁ—Theﬂ—we

MWWWWMWWWLMt
with v, HVP can be rewritten as the gradient to v”g, or the directional derivative to the gradient
v70:g (Eq). The first form 9 (v”g) is easy to compute in reverse-mode auto-differentiation,
and the directional derivative is easy to compute in forward-mode auto-differentiation (or finite
differencing as in Eq%). Then, Lanczos iterations are applied to the HVP operator defined in these
two ways to solve the largest eigen pairs, which can reconstruct an approximate Hessian matrix.

The iterative algorithm using the two HVP definitions are termed Backward Iteration and Forward
Iteration respectively. For details and efficiency comparison, see Appendix @

HVP vy Ho=0:(v7g(x) = v 0:9(2) = (g(z + v) ~g(z ~ w)) 2w @

Note a similar computational method has been employed to understand the optimization landscape of
deep neural networks recently (Ghorbani et al., 2019)), although it has not been applied te-understand
towards the geometry of latent space of GANs before.

Connection to Jacobian This formulation and computation of the Riemannian metric can be gen-
eralized to any representational space beyond that of images. Consider a mapping ¢(z) : R* — RM,
which could be the feature map of a middle layer in the GAN, or a CNN processing the gen-
erated image. We can pull back the squared L2 distance and metric from R, dﬁ)(zl, Z9) =
1l¢(21) — ¢(22)||3, and define a manifold. The metric tensor H, of this manifold can be de-
rived as Hessian of di Note, there is a simple relationship between the Hessian of d2 H and the
Jacobian of ¢, Jy (Eq. ). Through this we know the eigen spectrum of the He551an matrix Hy is
the square of the singular Value spectrum of the Jacobian Jy, and the eigenvectors of H is the same
as the right singular vectors of J4. This allows us to examine the geometry of the representation
through out the GAN, and analyze how the geometry in the image space builds up.

Hy(z0) = a ) 2||¢(Zo) 3(2) 131z = Js(20)" Js(20) 3)
v Hy(20)v = [[Jo(20)0[*, Jy(20) = 0:20(2)] 2 )
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In this work, we use LPIPS, which defines image distance based on the squared L2 distance of
the first few layers of a pretrained CNN. If we concatenate the activations and denote this repre-
sentational map by (1) : Z — R¥", then the metric tensor of the image manifold can be derived
from the Jacobian of the generator compositing representation map ¢, H(z) = J. ;FocjgooGa Jooq =
0-.¢(G(z)). This connection is crucial for understanding how geometry depends on the network
architecture.

4 EMPIRICAL OBSERVATIONS

Using the above method, we analyzed the geometry of the latent space of the following GANs:
DCGAN (Radford et al.; 2015)), DeePSiM/FC6GAN (Dosovitskiy & Broxl [2016), BigGAN (Brock
et al., 2018), BigBiGAN (Donahue & Simonyan, |[2019), Progressive Growing of GANs (PGGAN)
(Karras et al., 2017), StyleGAN 1 and 2 (Karras et al., 2019; [2020) —(medels-—speeifieities- model
specifications reviewed in Sec. »These GANs are progressively deeper and more complex,
and some employ a style-based architecture instead of a more conventional DCGAN architecture
(e.g. StyleGAN|1,2). This diverse set of models allowed us to test the broad applicability of this new
approach. In the following sections, “top” and “’bottom” eigenvectors refer to the eigenvectors with
large and small eigenvalues.

Top Eigenvectors Capture Significant Image Changes. In differential
geometry, a metric tensor H captures an infinitesimal notion of distance. To determine whether this
quantity represents ceptu antngful-evident image changes, we randomly picked a latent
code zj, computed the metric tensor H(2y) and its eigendecomposition H(z9) = >_, \jv;v; .
Then we explored linearly in the latent spaceﬂalong the eigenvectors G(zp + p;v;). We found
that images changed much faster when moving along top than along bottom eigenvectors, both per
visual inspection and LPIPS (Fig[I). More intriguingly, eigenvectors at different ranks encoded
qualitatively different types of changes; for example, in BigGAN noise space, the top eigenvectors
encoded head direction, proximity and size; while lower eigenvectors encoded background changes,
shading or much more subtle pixel-wise changes. Moreover, PGGAN and StyleGANSs trained on
the face dataset (FFHQ) have top eigenvectors that represent similar interpretable transforms of
faces, such as head direction, sex or age (Fig. [J). These observations raised the possibility that

top eigenvectors also captured perceptually relevant changes: we tested this directly with positive
results (see Sec. [6)).

Spectrum Structure of GANs. To explore how eigenvalues were distributed, for each GAN, we
randomly sampled 100-1000 z in the latent space, used backpropagation to compute H (z) and then
performed the eigendecomposition. In Fig. 2} we plotted the mean and 90% confidence interval of
the spectra and found that they spanned 5-10 orders of magnitude, with fast decays; each spectrum
was dominated by a few eigenvectors with large eigenvalues. In other words, only a small fraction of
dimensions were responsible for major image changes (Table[2), while most dimensions introduced
nuanced changes (e.g. shading, background) — GAN latent spaces were highly anisotropic.

We found this anisotropy in every GAN we tested, which raises the question of why it had not been
reported previously. One possibility is that the statistical properties of high dimensionality create
an illusion of isotropy. When traveling along a random direction v in latent space, the approximate
rate of image change ag(v) = vIHv/vTv is a weighted average of all eigenvalues as in Eq.
E} In Sec we show analytically that the variance of a(v) across random directions will be
2/(n+2) times smaller than the variance among eigenvalues. For example, in BigGAN latent space
(256 dimensions), the eigenvalues span over six orders of magnitude, while the a(v) for random
directions has a standard deviation less than one order of magnitude (Figs. [2][6). Further, the center
of this distribution was closer to the top of the spectrum, and thus provided a reasonable rate of
change, while masking the existence of eigendimensions of extremely large and small eigenvalues.

Global Metric Structure Because the metric H(z) describes local geometry, the next question is
how it varies at different positions in the latent space. We computed the metric H(z) at randomly

"For some spaces, we used spherical linear exploration, where we restrict ourselves to a spherical manifold
of certain norm. We project v; onto tangent space of zo and then-exponential-map-travel on the big circle from
Zo along v;.
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Figure 1: Images change at different rates along top vs bottom eigenvectors. Each panel (A-D)
shows perturbations around a randomly chosen reference image (center column); each row shows
perturbations introduced by moving along each of five eigenvectors; each contiguous column is
separated by the same distance in latent space. Eigenvectors are shown in descending order of their
eigenvalues. Line plots under each montage show the LPIPS image distance to the reference image
as a function of positively and negatively perturbed distance along each eigenvector (x-axis). The
rate of image change differed across eigenvectors; top vs bottom eigenvectors encoded changes such
as object class, head drrectlon pose color shadrng or other subtle detarls (e.g. fur Varratrons in panel
A, bottom).
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Figure 2: Spectra of GANSs, shown as a function of individual model (A) and types of architecture
(B, C). DCGAN-type (green-blue), Z and W space for StyleGAN (SG1, 2) (red, orange). Lines
and shaded areas show the averaged spectra and the 5-95% percentile of each eigenvalue among
samples (for quantification, see Table. D. Histogram of approximate speed of image change a.(v)
for eigenvectors and random directions, visualizing the illusion of isotropy”.

selected z and examined their similarity using a statistic adopted from [Kornblith et al.| (2019). In
this statistic, we applied the eigenvectors U; = [ug, ...u,| from a metric tensor H; at position z; to
the metric tensor H; at z;, as u) Hju;. These values formed a vector A;;, representing the effects
of metric H; on eigenvectors of H;. Then we computed the Pearson correlation coefficient between
A;; and the target eigenvalues, A;, as corr(A;, A;;). This correlation measured the similarity of
the action of metric tensors on eigenframes around different positions. As the spectrum usually

spanned several orders of magnitude, we computed the correlation on the log scale CHY9 where
the eigenvalues distribute more uniformly.

Aij = diag(U H(z)U;) Q)

Cll = corr(Aij, A;), C’glog = corr(log(A;;),1log(A;)) (6)
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Using this correlation statistic, we computed the consistency of the metric tensor across hundreds
of positions within each GAN latent space. As shown in Fig. 3[C, the average correlation between

eigenvalues and vHv values of two points Cg 9 was 0.934 in BigGAN. For DCGAN-type architec-
ture, mean correlations on the log scale ranged from 0.92-0.99; for StyleGAN-1,2, 0.64-0.73 in the
Z space, and 0.87-0.89 in the W space (Fig. BD, TabM)). Overall, this shows that the local directions
that induce image changes of different orders of magnitude are highly consistent at different points
in the latent space. Because of this, the notion of a ’global” Hessian makes sense, and we estimated
it for each latent space by averaging the Hessian matrices at different locations.

Implication of the Null Space As the spectra have a large portion of small eigenvalues and the
metric tensors are correlated in space, the bottom eigenvectors create a global subspace, in which
latent traversal will result in small or even imperceptible changes in the image. This is supported
by our perceptual study, as over half of the subjects cannot see any change in image when latent

vector move in bottom eigenspace. (Sec. [0). This perceptually “null” space has implications about
exploration in the GAN space and interpretable axes discovery. As G(z + v) ~ G(z), if one axis
u_encodes an interpretable transform G(z) — G(z + u), then shifting this vector by a vector in
the null space v will still result in an interpretable axis G(z) — G(z + v + u) ~ G(z + u). Thus,
each interpretable axis have a family of “equivalent” axis which encode similar transforms, differin

from each other by a vector in ’null” space. However, adding component v in the null space will
decrease the rate of image change along that axis. In this sense, the vectors using a smallest step size
to achieve that transform should be the “purest” axis of the family. Further, cosine angle between
two interpretable axis may not represent the similarity of the transforms they encodes. A large angle
can be found between two axes of the same family but different image traversal speed. We compared

the axes from previous works in and observed that projecting out a large part of their axes will
not affect the semantics encoded in it (Fig. [3).
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Figure 3: Globalization of metric structure: A. Coneceptual-schematie-behind-Schematic of the
geometric picture. In the latent space (green area), the metric eigenvectors at each point (blue and
violet) form a local frame, which map to transformations in image space (blue area); the length
and saturation of image-space vectors represent the eigenvalue (i.e. amplification factor) of G. We
show the directions with large amplification factors are relatively aligned at different positions. B.
Distributions of log(A;;) and log(A;), showing the action of metric are correlated at 3 different

points. C. Histogram of correlation CZ-H 19 petween all pairs among 1000 points in BigGAN space.
D. Comparison of correlation values on linear and log scales for different GAN models. DCGAN-
type (blue), Z and W space for StyleGAN1,2 (red and orange).

5 MECHANISM
Above, we showed an intriguingly consistent geometric structure across multiple GANs. Next, we
sought to understand how this structure emerged through network architecture and training.

To link the metric tensor to the generator architecture, it is helpful to highlight the relationship be-
tween the metric tensor and Jacobian matrix H(z) = goGonG (Eq. . As latent space gets
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warped and mapped onto image space, directions in latent spaces are scaled differently by the Ja-
cobian of the map; specifically, directions that undergo the most amplification will become the top
eigenvectors (Fig. [@A). As the Jacobian of the generator is a composition of Jacobians of each layer
di;, the scaling effect on the image manifold is a product of the scaling effects of each interme-
diate layer. We can analyze the scaling effect of different layers 1); by applying a set of vectors
onto the metric tensors of these layers Hy,. In BigGAN, when we apply the eigenvectors of the
first few layers onto the metric of other layers, the top eigenvectors are still strongly amplified by
subsequent layers, thus forming the top eigendimensions of the manifold. Of note, this is not true
for a weight-shuffled control BigGAN: in that case, the top eigendimension of the first few layers
was not particularly amplified on the image manifold, and vice versa (Fig. 4] B). This shows that
+the amplification effect of layers beceme-becomes more aligned through training, with the top
eigenspace shared across layers. Further, as the amplification effects are not lined up across layers
of weight shuffled networks, these networks should exhibit a more isotropic geometry on their image
manifold. Indeed, we find their spectra to be flatter and the largest eigenvalue smaller (Fig. [7).
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Figure 4: Anisotropy is induced and maintained throughout the GAN architecture. A. As latent
space gets warped and mapped into image space, directions in latent spaces are scaled differently by
the Jacobian of the map. B. Amplification of eigenvectors of the metric tensor of the first conv layer
(GenBlock00) in all major layers in BigGAN. C. Same, but for weight-shuffled BigGAN.

6 APPLICATIONAPPLICATIONS

By defining the geometry of the latent space via the metric tensor, we gain an understanding of which
directions in this space are more informative than others. This understanding leads to improvements
in three applications: 1) gradient descent-based optimizers, 2) accelerating gradient-free search, 3)
finding human-interpretable axes in the latent space.

Improving Gradient-Based GAN Inversion. For applications like GAN-assisted drawing and
photo editing (Zhu et al.,[2016} [Shen et al.}[2020), one crucial step is to find a latent code correspond-
ing to a given natural image (termed GAN inversion). For this problem, one basic approach is to
minimize the distance between a generated image and the target image z* = arg min, D(G(z), I).
Although second-order information (Hessian) is valuable in optimization, they are seldom used as
they are expensive to compute and update. However, because we find that local Hessian information
is highly correlated at different points in latent space, we can pre-compute it once for each latent
space and use the average Hessian information to boost first-order optimization. As an example,
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ADAM is a first-order optimization algorithm that adapts the learning rate of each parameter sepa-
rately according to the moments of gradients on that parameter (Kingma & Bal[2014)). It can be seen
as a quasi-second order optimizer that approximates a diagonal Hessian matrix based on first-order
information. However, if the true Hessian is far from diagonal, i.e. the space is anisotropic and the
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To test whether the metric can help overcome this problem, we used the eigenvectors of the average
Hessian to rotate the latent space; this orthogonal change of variables should make the Hessian
more diagonal and thus accelerate ADAM. This method can be seen as a preconditioning step which
could be inserted into any pipeline involving ADAM. We tested this modification on the state-of-the-
art algorithm for inverting BigGAN, i.e. BasinCMA 2020), which interleaves ADAM
and CMAES steps. We used our Hessian eigenbasis in the ADAM steps, and found that we could
consistently lower the fitted distance to the target when inverting ImageNet and BigGAN-generated
images (Zhang et al | 01 )—(Fig. [5). Fhus-this-Similarly, eigenbasis preconditioning consistentl
CelebA using ADAM method. In short, the understanding of homogeneity and anisotropy of the
latent space can improve gradient-based optimization.

Improving Gradient-Free Search in Image Space In some domains, it is important to optimize
objectives in the absence of a gradient, for example, in black-box attacks against image recogni-
tion systems via adversanal images, or When searchlng for act1v1ty maximizing stimuli for neurons

in primate visual cortex(Ponee et at; 2Xiao-& Kretman; 2020), or when optimizing perceptual
evaluation in the user 1Ponce et al. Lm Xiao & Krelmanl, m Chiu et al.,[2020). These applica-

tions usually involve a low-dimensional parameter space (such as GANs) and an efficient gradient-




Under review as a conference paper at ICLR 2021

free search algorithm, such as covariance matrix adaptation evolution strategy or CMAES. CMAES
explores the latent space using a Gaussian distribution and adapts the shape of the Gaussian (co-
variance matrix) according to the search history and local landscape. However, online learning of a
covariance matrix in high-dimensional space is computationally costly, and inaccurate knowledge of
it can be detrimental to optimization. Here we applied the prior geometric knowledge of the space
to build the covariance matrix instead of learning it from scratch. For example, as illustrated by
natural gradient descent [1998), one simple heuristic for optimizing on the image manifold
is to move in smaller steps along dimensions that change the image faster and vice versa. We used
this heuristic to improve CMAES (a combined approach we refer to as CMAES-Hessian). With
our method, the search can be limited to the most informative directions, which should increase
sampling efficiency, and as the space is anisotropic, our method further tunes the exploration step
size in a way that is inversely proportional to the rate of image change. To test this approach, we
applied the novel CMAES-Hessian algorithm to the problem of searching for activation maximizing
stimuli for units in AlexNet (Nguyen et all, [2016) in the latent space of two GANs (FC6GAN and
BigGAN). We found that the dimensionality of the search space could be reduced from 4096 to 500
for FC6GAN GAN-without impairing maximal activation values. Further, we found that CMAES-
Hessian consistently led to higher activation values compared to the classic CMAES algorithm in
BigGAN space (Fig. [3).

Interpretable Axes DiscoveryforImage Manipulation When users wish to manipulate GAN-
based images via their latent code, it would-be-is useful to reduce the number of variables needed
to effectuate this given manipulation. Our method provides a systematic way to compute the most
informative axes (top eigenspace) in the latent space to use as variables, and the resulting eigen-
values can serve to compute appropriate step sizes along each corresponding axes. We applied this
method to FC6GAN, BigGAN, BigBiGAN, StyleGANI1,2, PGGAN, and plotted the changes corre-
sponding to the top eigenvectors (Fig. [T). These eigenvectors

corresponded-to-semantic-meaningful
appeared to capture interpretable transformations like

fﬁlﬁs—fﬁfmdﬁeﬁﬁ—hke—ze@fﬁiﬁg—iﬁ—dﬁd—ﬁﬁf
zooming, head direction and object location—Mereover—eigenvectors—usually—correspended—to-a
stmitar position.

To test if this was apparent to people other than the authors, we conducted a study using Amazon’s
Mechanical Turk. We tested the perceptual properties of the axes identified by the metric tensor,
including the top 10 eigenvectors, random vectors orthogonal to the top 15d eigenspace, and bottom
10 eigenvectors. Images were generated using four different GANs (PGGAN, BigGAN noise space,
StyleGAN2-Cat and -Face), and were presented to 185 participants. In each trial, five randomly
sampled reference images were perturbed along a given axis, and participants were asked if they
could a) perceive a change, b) indicate an estimate of its magnitude [0%-100%] c) describe a
common change in their own words and how many of the five images shared this change, ¢) indicate
how similar were the 5 image changes (consistency, score of 1-9, 9 most similar) and finally, d) state
how difficult it was to describe this change (difficulty score, scale of 1-9, 9 most difficult).

Only 48.5% of the subjects reported to see any change happen for bottom eigenvectors, the fraction
was 93.5% and 89.8% for top and orthogonal directions respectively. Further, when subjects
observed some change, they reported that the image transformations induced by top eigenvectors
were larger (70.3% = 0.6%) than those of orthogonal directions (66.8% £ 0.9%, P = 7.0 x 10"*,
2 _sample T-est) and_ than those of bottom eigenvectors (61.5% £ 1.6%. P = 2.1 x 10717).
eigenspace than in_ the orthogonal and bottom eigenspaces. Further, subjects reported the

10 eigenvectors had a higher mean perceptual consistency score (6.72 £ 0.06),n = 929
responses) than the orthogonal (6.42 £ 0.09. P = 5.8 x 10°%,n = 448) and bottom eigenvectors

6.124+0.14, P = 1.3 x 107°. n = 242), Participants reported that the top eigenvectors were
easier to interpret (4.91 =+ 0.08) than the bottom eigenvectors (5.69 £ 0.14, P = 3.8 x 109, albeit

comparably to the orthogonal eigenvectors 4.82 & 0.11, P = 0.5). Thus, overall we conclude that
the Hessian eigenvectors not only capture informative axes of image transformations, but that these
were also perceptually relevant, corresponding to similar semantic changes when applied to different
reference vectors (Fig. rso-the-eigenveetors-we-discovered-were— axes interpretable not just in
local sense, but in a glo 1 sense. %&w&emﬂekeempﬂte—ﬂwefage—mefﬂﬁeﬂsef—eﬂee—fe%eaeh
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7 DISCUSSION AND FUTURE DIRECTIONS

In this work, we developed an efficient and architecture-agnostic way to compute the geometry of
the manifold learnt by generative networks. This method discovers axes accounting for the largest
variation in image transformation, which frequently represent semantically interpretable changes.
Subsequently, this geometric method can facilitate image manipulation, increase explainability, and
accelerate optimization on the manifold (with or without gradients).

There have been multiple efforts directed at identifyin interpretable
axes in latent space usin unsupervised methods, includin
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between the metric_tensor of the_image manifold and_the Jacobian matrices of intermediate
layers unifies these previous results. As we have showed, the top right singular vectors of the
weights (i.e. Jacobian) of the first few layers (as used in |Shen & Zhou|(2020)). correspond
to_the top eigenvectors of the metric tensor of the image manifold, and these usually relate to
interpretable transforms (as will be shown in Secl6). Similarly, the top principal components
(PCs) of intermediate layer activations [Harkonen et al.| (2020) roughly correspond to the top left
singular vectors of the Jacobian, thus also to the interpretable top eigenvectors of the metric on the
image manifold (although note that these PCs measure the global amplification of the map, not the
local amplifications measured by our metric tensor). Regarding (Voynov & Babenko, 2020), we
empirically compared their interpretable axes and our eigenvectors, and found that in some of the
GANs, the discovered axes have a significantly larger alignment with our top eigenspace and they
are highly concentrated on individual top axes than expected from random mixing. We refer the

Although we have answered how the anisotropy comes into being mechanistically, there remains
the question of why it should exist at all. Anisotropy may result from gradient training: theoretical
findings on deep-linear networks for classification show that gradient descent aligns the weights
of layers, resulting in a highly anisotropic Jacobian (Ji & Telgarsky, [2018). Whether that analysis
transfers to the setting of generative networks remains to be investigated.

Alternatively, assuming that a well-trained GAN faithfully represents the data distribution, this
anisotropy may reveal the intrinsic dimensionality of the data manifold. Statistical dependencies
of variation in real-world images (e.g. uniform changes in skin color, head direction) imply that the
images reside in a statistical manifold of much lower dimension. Further, among transformations
that happen on this manifold, there will be some dimensions that transform images a lot and some
that do not (e.g. skin color versus facial expression). In that sense, our method may be equivalent to
performing a type of nonlinear PCA of the image space through the generator map. In fact, we have
found that GANS trained on similar datasets (e.g. PGGAN, StyleGAN1,2 trained on the human face
dataset [CelebA,FFHQ]) have top eigenvectors that represent the same set of transforms (e.g. head
direction, gender, age; Fig. [0). This supports the "PCA” hypothesis, as these transformations may
account for much of the pixelwise variability in face space; the GANs are able to learn to represent
these transformations as linear directions, which our method can then identify.

This further raises the intriguing possibility that if the dataset is actually distributed on a lower
dimensional space, one could learn generators with smaller latent spaces; or alternatively, it may be
easier to learn generators with large latent spaces and reduce them after intensive training. These
are questions worth exploring.
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A APPENDIX

A.1 CONNECTION TO INFORMATION GEOMETRY

It is useful to compare our work to the “information geometry”’(Amari, 2016) on the space of distri-
butions. In this formulation, KL divergence is a pseudo-metric function on the space of distributions,
and its Hessian matrix towards parameters of distribution is the Fisher information matrix. In infor-
mation geometry, this Fisher information matrix could be considered as the metric on the manifold
of distributions; this metric information can be further used to assist optimization on the manifold of
distributions, termed natural gradient descent.(Amari, |1998) In our formulation, the squared image
difference function D? is analogous to this KL-divergence; the image G(z) as parameterized by
latent code z is analogous to the distribution py parameterized by 6. The metric tensor we com-
puted is comparable to the Fisher information matrix in their setting. Thus our way of using metric
information to assist optimization on manifold is analogous to natural gradient descent.

12
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Table 1: Computational Cost for Three Methods: Computation time is measured on a GTX 1060
GPU. Note that the iterative method are-has a variable in—runtime due-to—different-speed-which

depends on the number of eonvergeneeeigenpairs you require. In this table, we all use one half of
the full dimension as the eigenpaired required, which is the largest we can require using ARPACK

implementation of Lanczos. Thus these numbers should be seen as an upper limit of time for
Backward and Forward Iteration method. A shallower or narrower network will result in faster

computation time. For StyleGAN2 which has configurable depth and width, we use the config-f.

Dimension  Full BackProp Backward Iter Forward Iter

Time Time Time
DCGAN 120 12.5 13.4 6.9
FC6 GAN 4096 282.4 101.2 90.2
BigGAN 256 69.4 70.6 67
BigBiGAN 120 15.3 15.2 13.3
PGGAN 512 95.4 95.7 61.2
StyleGAN 512 112.8 110.5 64.5
StyleGAN2* 512 221 217 149

A.2 METHODS FOR COMPUTING THE HESSIAN

One direct way to compute the Hessian towards a given objective (e.g. squared distance d? in
our case), is to compute g, (z) = 9,d?|.—=,, create a computational graph from code z to the
gradient g, (z), and back propagate from gradient vector g, (z) element by element. In this way
the computational time is linear to time of a single backward pass times the hidden space dimension
n.

Given a large hidden space or a deep network (e.g. 4096d in FC6GAN, or 512d in StyleGAN?2), this
method can be very slow. However, as the eigenspace of small eigenvalues represent directions that
do not change images much, the exact eigenvector does not matter. An efficient way is to use the
Hessian vector product (HVP) operator and iterative eigenvalue algorithms to find the eigenvectors
corresponding to eigenvalues of high amplitudes. In Power Iteration or Lancsoz Iterations, the
Hessian vector product is used to find the largest amplitude eigen pairs. However, to find the smallest
amplitude eigen pairs, Inverse Hessian vector product operator is required, it is much more expensive
to compute such operator, but practically, there is little practical use for those dimensions. Thus
we can define an arbitrary basis in the “null” space complementing to the eigenspace with higher
amplitude eigenvalues.

There are two ways of constructing a Hessian vector product operator: one way requires the
computational graph from z to the gradient g(z), and computes the HVP by back-prop, i.e.
HYV Pyyckwara; the other way is to use the first-order gradient and finite difference to compute HVP
i.e. HV Pyorpara. As it doesn’t require backpropagation, a single operation of HV Prorard 18
much faster than HV Pygcrward but it is less accurate and takes more iterations to converge. We
use the ARPACK(Lehoucq et al.l [1998) implementation of the Lancosz algorithm as the iterative
eigenvalue solver,

HVPback:ward O az (ng(z)) (7)

g(z + ev) — g(z — ev) ®)

HVP U
forward + U 26”17”

We denote the direct method Full BackProp (BP), the iterative method using HV Pygckwarg and
HYV Py rward Backward Iteration and Forward Iteration respectively. Empirically, we computed the

Hessian at the same z using these three methods in different GANs and compared their temporal
cost in Table[A2]

Note, our method can be employed to compute the singular values and right singular vectors of the
Jacobian from latent space towards any intermediate layer representation. To obtain the left singular
vector, we need to push forward the right singular vectors through the Jacobian, which is feasible
through forward-mode autodiff or finite difference.
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A.3 SPECIFICATION OF GAN LATENT SPACE

The pretrained GANSs used in the paper are from the following sources.

DCGAN model is obtained from torch hub |https://pytorch.org/hub/
facebookresearch_pytorch-gan-zoo_dcgan/.  It’s trained on 64 by 64 pixel
fashion dataset. It has a 120d latent space, using Gaussian as latent space distribution.

Progressive Growing GAN (PGGAN) is obtained from torch hub https://pytorch.org/
hub/facebookresearch_pytorch-gan-zoo_pgan/ and we use the 256 pixel version.
It’s trained on celebrity faces dataset (CelebA). It has a 512d latent space, using Gaussian as latent
space distribution.

DeePSim, FC6GAN model is customly rewritten and translated into pytorch, with weights
obtained from official page https://lmb.informatik.uni-freiburg.de/people/
dosovits/code.html of |Dosovitskiy & Brox| (2016). The architecture is designed to mir-
ror that of AlexNet, and the FC6GAN model is trained to invert AlexNet’s mapping from image to
FC6 layer. Thus it has 4096 d latent space. This model is highly expressive, but not particularly
photorealistic.

BigGAN model is obtained through huggingface’s translation of DeepMind’s Tensorflow imple-
mentation https://github.com/huggingface/pytorch-pretrained-BigGAN, we
use biggan-deep-256 version. It’s trained on ImageNet dataset in a class conditional way. It has a
128d latent space called noise space, and a 128d embedding space for the 1000 classes called class
space. The 2 vectors are concatenated and sent into the network. The distribution used to sample in
noise space is truncated normal. Here we analyze the metric tensor computed in the concatenated
256d space (BigGAN) or in the 128d noise space or class space separately (BigGAN-noise, class).

BigBiGAN model is obtained via a translation of DeepMind’s Tensorflow implementation https:
//tfhub.dev/deepmind/bigbigan-resnet50/1, we use bigbigan-resnet50 version. It’s
trained on ImageNet dataset in unconditioned fashion. It has a 120d latent space, using Gaussian as
latent distribution. Note, the latent vector is split into six 20d trunks and sent into different parts of
the model, which explains why the spectrum of BigBiGAN has the staircase form (in Fig. [2).

StyleGAN model is obtained via a translation of NVIDIA’s Tensorflow implementation https://
github.com/rosinality/style-based-gan—-pytorch. We use the 256 pixel output.
It has a 512d latent space called Z space, where the latent distribution is Gaussian distribution.
This Z distribution gets warped into another 512d latent space called W space, by a multi-layer
perceptron. The latent vector W is sent into a style-based generative network, in which the latent
vector modulates the feature maps in the conv layers, instead of just serves as a spatial input as in
DCGAN,FC6GAN,PGGAN. We analyzed the geometry of Z space and W space separately, and
find that the metric in W space is significantly flatter and more homeogeneous!

StyleGAN2 models are obtained via a translation of NVIDIA’s Tensorflow implementation
https://github.com/rosinality/stylegan2-pytorch. It’s similar to Style-
GAN: it has a similar structure of the 512d Z and W space, and the style-based generative
network. The various pre-trained models are fetched from https://pythonawesome.com/
a-collection-of-pre-trained-stylegan—-2-models—-to-download. More
specifically StyleGAN2-Face256 and 512 are both trained on FFHQ dataset, while Face256
generate lower resolution images and use narrower conv layers. StyleGAN2-Cat is trianed on
LSUN cat dataset at 512 resolution.

WaveGAN model is obtained from the repository https://github.com/
mostafaelaraby/wavegan-pytorch/. _ Its architecture resembles that of DCGAN,

but applied in 1 dimension wave form generation problem. We customly trained it on the wave
forms from clips of piano performance. It has a 100d latent space, using Gaussian as latent space

A.4 QUANTIFICATION OF POWER DISTRIBUTION IN SPECTRA

We quantified the anisotropy of the space, i.e. the low rankness of the metric tensor in Table [2]
To do this, we computed the number of eigenvalues needed such that their sum will account for a
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Table 2: Quantification of Spectra anisotropy (Models marked with { are audio wave form
enerating GANS.)

dimen | dim.99 dim.999 dim.9999 dim.99999

FCo6 4096 297 502 661 848
DCGAN-fashion 120 17 35 65 97

BigGAN 256 10 53 149 224
BigGAN_noise 128 29 88 120 127
BigGAN_class 128 8 38 98 123
BigBiGAN 120 21 41 62 73

PGGAN-face 512 57 167 325 450
StyleGAN-face_Z 512 12 27 52 84

StyleGAN2-face512.Z 512 7 17 41 78

StyleGAN2-face256 Z 512 13 28 63 103
StyleGAN2-cat Z 512 8 14 31 62

StyleGAN-face W 512 124 355 480 507
StyleGAN2-face512.W 512 153 345 471 506
StyleGAN2-face256 W 512 157 350 473 506
StyleGAN2-cat_ W 512 23 57 126 269
WaveGANMSEf 100 | 17 38 iz} 94
WaveGANSTFT 1000 | 20 9 19 42

fraction of 0.99, 0.999, 0.9999, 0.99999 of the sum of all eigenvalues. This can be thought of as the
fraction of dimensions one needs to achieve a low rank approximation of the Jacobian with 0.01,
0.001, 0.0001, 0.00001 residue in terms of the Frobenius norm.

A.5  GEOMETRIC STRUCTURE IS ROBUST TO THE IMAGE DISTANCE METRIC

Our work used the LPIPS distance metric to compute the Riemannian metric tensor. To determine
how much of the results depended on this choice of metric, we computed the metric tensor at the
same hidden vector using different image distance functions, specifically a) structural similarity
index measure (SSIM) and b) Mean Squared Error (MSE) in pixel space, which do not depend
on CNN. We computed the Hessian at 100 random sampled vectors in BigGAN, Progressive
Growing GAN (Face), StyleGAN2 (Face 256), using MSE, SSIM and LPIPS, and then compared
the Hessian spectrum and eigenvectors. We found that the entry-wise correlation across the Hessian
matrices (d” elements) ranged from [0.94-0.99]. The correlation of eigenvalue spectra ranged from
[0.987-0.995]._ Measuring Hessian similarity using the statistics we derived C™!°7 and CT/'
resulted in correlations concentrated at 0.99. Thus, we found that the Hessian matrix and its spectra
were highly correlated across image distance metrics, and that the Hessian matrices had a similar
effect on the eigenvectors of each other.

One major difference across Hessians from different Image Distance Metric was evident in the
scale of the eigenvalues. We regressed the log Hessian spectra induced by SSIM or MSE onto the
log Hessian spectrum induced by LPIPS, and found the intercepts of the regression were usuall

not zeros (Tab. [S)). This result showed different image distance metrics exhibit different “unit” or
intrinsic scale, although they all factored out the same structure in the GAN.

This result is contextualized by Section [ As equation[3showed, the Riemannian metric or Hessian
of the GAN manifold is the inner product matrix of the Jacobian of the representational map. The
effect of image difference metric on the Riemannian metric is to add a few more terms to the top of
the chain of Jacobians. The Jacobian terms from the layers of GAN seem to have a larger effect than
the final terms coming from the image dissimilarity metric.

Note that this doesn’t mean that the choice of sample space distance function is irrelevant. Going
beyond image generation, when applying our method to an audio generating GAN, the WaveGAN,
we found that the choice of distance function in the space of sound waves will substantially affect
the Hessian obtained. We used the MSE of wave forms and MSE of spectrograms (denoted by
STET) to compute metric tensor of that sound wave manifold. We found the element-wise Hessian
correlation between these is around 0.53, while the other Hessian similarity metric are also lower
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Table 3: Similarity of Hessian Computed with Different Sample Dissimilarity Metric d We
experimented with BigGAN, PGGAN and StyleGAN2 (FFHQ 256 resolution), we compared the
Hessian computed by LPIPS and that by MSE or SSIM at 100 hidden vectors. The statistics we
showed are: element-wise Hessian correlation (H corr), eigen spectra correlation (eigval corr), the

Hessian consistency measure O/ and C'7!%9. The linear regression between the log spectra of
LPIPS the and that of the alternative (SSIM or MSE) yields the slope (reg slope) and intercept (reg
intercept). The mean and standard deviation (in parenthesis) of the the 100 statistics are shown. In
the final row, WaveGANT is an audio generating GAN. We measured the similarity of the Hessian
using MSE of wave forms (MSE) and the MSE of spectrogram (noted by STFT) as dissimilarity
metric. Hessian computed using these two measures are less similar to each other.

SSIM 097000.020)  0993(0.009)  0997(0.007)  0.999(0.000) 1.056(0.012) -0.234(0.I¢

than the counterparts for BigGAN, PGGAN and StyleGAN2 (5). We think the MSE of spectrograms
are better and more perceptual distance measure of sound wave than MSE of wave forms, and this
difference are reflected in their geometry property i.e. anisotropy and homogeneity (Tab. .
Thus, when and how the sample space distance metric will affect the geometry of generative model
still requires more development to be answered,

A.6 RANDOM MIXING OF SPECTRA

Here we give a simple derivation of why a highly ill-conditioned Hessian matrix may appear normal,
under the probe of random vectors. Given a symmetric matrix H, and its eigen decomposition
UAUT, we computed its effect on an isotropic random vector v, a(v) = vI Hv/v v, and v ~
N (0, I). This random variable represents the effect of the symmetric matrix on random directions.

Note that a change of variable using the orthogonal matrix w = U v will not change the distribution
w ~ N(0, ). Through this the random variable « could be rewritten as

v Ho |ulv]2
a(v) = => AN~ v~ N(0,1) 9)
vl Z 0|3
=> Awi/ > wi, wi ~ N(0,1)i=1,2..d (10)
1
— mz,\iwf :Zci,\i (11)
ci = wi/ wa (12)

As each element in w is distributed as i.i.d. unit normal, wf is distributed as i.i.d. chi-square

distribution of parameter 1. w? ~ x*(1) ~ I'(3, 3). Thus the normalized weights ¢; = w?/ >, w?

conform to a Dirichlet distribution ¢ ~ Dirichl et(%7 %, %) Through moment formula of Dirichlet

distribution, it is straightforward to compute the mean and variance of a(w) = ¢\

1
Elo] =ATE[c] = =) N 13
[o] =AT B[] = Z (13)
Var[a] =ATCovlc]\ = 2 Z P #(Z Ai)? (14)
n(n+2) - " n?(n+2) -
1 1 n+ 2

Var[\] = ;Af - ﬁ(zi: Ai)? = 5 Varla] (15)
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As we can see, the variance of the effect on random directions scales 1/n relative to the variance
of original eigenvalue distribution. This is why the distribution is much tighter than the whole
eigenvalue distribution.

This phenomenon may explain why the perceptual path length regularization as used in Karras
et al.| (2020) doesn’t really result in a flat spectrum. This regularization is to minimize E,, ||a(v) —
b||*, which is to minimize the variance of the distribution of a(v) with v sampled from normal
distribution, as in Fig. [f] The global minimizer for this regularization is indeed a mapping with flat
spectrum. However, through our derivation, we can see even for highly anisotropic spectrum, this
variance will not be very large. Thus we should expect a limited effect of this regularization.
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Figure 6: Spectral Histogram compared to Apparent Anistropy in Different GAN models
(FC6GAN, DCGAN, BigGAN, BigBiGAN, PGGAN, StyleGAN, StyleGAN2) The apparent speed
of image change «(v) has much smaller variability than the variability in the whole spectra. Eq.
can predict the mean and std of the apparent variability.

A.7 METHOD TO QUANTIFY METRIC SIMILARITY

We developed our own statistic to quantify the similarity of metric tensor between different points.
Here we discuss the benefits and caveats of it.

Angles between eigenvectors per se are not used, because eigenvectors are likely to rotate into each
other when computing eigendecomposition in the presence of close-by eigenvalues (Van der Sluis
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& Van der Vorst, [1987). However, the statistics should be invariant to this eigenvector mixing,
and take the eigenvalues into account. We applied the eigenvectors Uy = [uq, ... of one matrix
H; to the other Hy and examined the length of these vectors as measured by the other matrix
as the metric tensor, v, (u1;) = w; Hyw;. Recall that oy, (u1;) = ui ;Hiuy; = Ay and
o, (ugl) = u%jiHQuQJ = Ag;. If the eigenvectors fall in the eigenspace of the same eigenvalue
in Hs, then a(uq ;) will equal the eigenvalue, and thus our statistic is invariant to rotation within
the eigenspace. If the eigenvectors are totally uncorrelated, the resulting o(uy ;) will distribute in a
tight distribution. As we compute the correlation between the eigenvalue Ao ; = oy, (u2 ;) and the
agr, (w1 4), we summarize the similarity of action of Hy on eigenvectors Uy and Us.

However, this method assumes an anisotropy of spectra in both metric tensors. For example, if both
tensors are identity matrices H; = Hy = I, then this correlation will give NaN, as there is no
variation in the spectra to be correlated. Similarly,if metric has has a spectrum closer to flat, then
it will generally have a smaller correlation with others. In that sense, spectral anisotropy also plays
a part in our statistics for metric similarity or homogeneity of the manifold. In all the GAN space
we examined, there is a strong anisotropy in the metric spectra, thus this correlation works fine. But
there is caveat for comparing this correlation between two GANs when there is also difference in
the anisotropy in their spectra, as a smaller anisotropy can also results in a smaller metric similarity.

Finally, we are aware that several measures of distance in the space of symmetric positive definite
matrices (SPSD) have been proposed (Yuan et al., 2020). Thus, there are different ways to compute
an average metric tensor using these distance function. Here we picked the simplest one: averaging
the metric tensors element by element.

Table 4: Quantification of Manifold Homogeneity by metric conisistency ij on log scale and

linear scale. Same data generating Fig. D. Models marked with | are audio wave form generatin
GANsS.

Log scale Linear Scale

mean std mean std
FC6GAN 0.984 0.002 0.600 0.119
DCGAN 0920 0.028 0.756 0.192
BigGAN 0934 0.024 0.658 0.186
BigBiGAN 0.986 0.007 0.645 0.180
PGGAN 0.928 0.014 0.861 0.123
StyleGAN-Face_Z 0.638 0.069 0.376 0.160

StyleGAN2-Face512.Z | 0.616 0.052 0.769 0.181
StyleGAN2-Face256_.Z | 0.732  0.037 0.802 0.130
StyleGAN2-Cat256_Z 0.700  0.040 0.689 0.151
StyleGAN-Face_'W 0.878 0.037 0.780 0.190
StyleGAN2-Face512.W | 0.891 0.048 0.838 0.127
StyleGAN2-Face256_ W | 0.869 0.052 0.756 0.159
StyleGAN2-Cat256_ W | 0.895 0.118 0.539 0.216

WaveGAN MSE 0906 0022 0776 0139

A.8 GEOMETRIC STRUCTURE OF WEIGHT-SHUFFLED GANS

Here we show the geometric analysis for the shuffled controls for all our GANs. Specifically, we
shuffled the elements of each layer weight tensor to keep the overall weight distribution unchanged.
To show how learning affected the geometry of the image manifold, we computed the spectra and
the associated metric consistency statistic for weight-shuffled GAN

In Fig. [/} we showed that the shuffled controls exhibited a flatter spectrum and a smaller top eigen-
value. There, the correlation of metric tensors in shuffled GANs shows an unclear result. In some

2We were unable to obtain a sensible spectra for either shuffled or randomly initialized BigBiGAN possibly
due to its architecture; but we show the comparison for all other models.
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GAN:S, there remains strong correlations in the metrics across locations, while in some, the correla-
tion is close to zero. We think the reason is that our statistic for homogeneity (i.e. a correlation of
action of metric tensors C’Z-H 19y somewhat entangles homogeneity with the anisotropy of the space.
That is, when the space has a totally flat spectrum (the map is isometric), then the correlation co-
efficient of action will be zero, although the metric tensor will be the same everywhere. Thus the
change of anisotropy and the change of homogeneity may interfere with each other, thus shuffling
can result in a mixed result. We are working to develop new statistics that will measure the similarity
of the Hessian, invariant of anisotropy.
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Figure 7: Comparing Spectra of Original and Weight Shuffled GANs: Most Shuffled GAN
shows a slower spectral decay and a smaller maximum eigenvalue.

A.9  DETAILED COMPARISON TO PREVIOUS UNSUPERVISED WAYS TO DISCOVER
INTERPRETABLE AXES

Here we compare the axes discovered by our method with those from a previous
approach. _ Specifically. we_applied our method to the same pre-trained GANs used in
Voynov & Babenko| (2020), comparing the axes they discovered versus our Hessian structure.
Although this method follows a much more different approach compared to ours and those of
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Table 5: Hessian preconditioning improves GAN inversion The mean and standard error of fittin
score (minimum LPIPS distance to target using 4 random initial vectors) are noted in the table,
which is the same data generatin

Hessian None
GAN TargetImage Mean SEM =~ Mean SEM

(Hirkdnen et all 2020} [Shen & Zhoul 2020), we thought it would be interesting to determine if the
interpretable axes discovered in their approach had a relationship with the Hessian structure defined
above. If so, this could serve as independent confirmation of the effectiveness of both types of
approaches.

In_their_work, for each generative network G, two additional models were_ simultaneously
trained to discover interpretable axes: a “deformator” M and a "latent shift predictor’ P. The
“deformator” M learned to propose vectors {v;} to alter the image, which were used to create
images pairs (G(z), G(z +v;)) using random reference vectors z; the “latent shift predictor”
P _took in the images pairs and learned to classify the direction in which the latent code shifted
0 = P(G(2), Gz + vi)). The axes learned by the deformator M were subsequently annotated
and a subset was selected by humans.

Using their code, we compared these annotated axes with the Hessian structure we computed on
their GANs (PGGANS12, BigGAN noise and StyleGAN Face). In PGGANS512, we found that

their discovered axes had a significantly larger v I (i.e. approximate rate of image change) than
random vectors in that space in other words, their axes were significantly more aligned with the top
eigen space (P 1 0.05 for all axes). Further, we wanted to investigate whether their axes aligned with
individual eigenvectors identified by our Hessian or whether their axes randomly mixed with our top
than expected from projection of unit random vector. In fact, for each and every of the discovered
axes, we found 1:3 eigenvectors that they are significantly (p < 5 x 10_%) aligned to. Moreover,
these strongly aligned eigenvectors are all in our top 60 eigen dimensions, in fact, 3 of their axes

aligned with eigenvector 11 and 2 of their axes aligned with our eigenvector 6. (Fig{§|A) Moreover,

e “purify”’ their axes by a) retaining projection coefficients only in top 60 eigenvectors, or b
retaining the coefficients only in the 1-3 strongly aligned eigen vectors and set all the other 500+
coefficients to zero, and compared their effect on a same set of reference vectors, using the same
step size._ We found that by project out coefficients in the lower space, the image transformation
is perceptually very similar (Figl8| B,C). If we only retains the eigenvectors that it highly aligns to,

the image transform will be more different, but the annotated semantics in the transform seems to
keep (Figl8|D.E). Thus, their method also discovered that the top eigenspace of PGGAN contained
informative transformations, and further confirmed that optimizing interpretability may improve
alignment with individual eigen vectors rather than mixing all the eigen dimensions.

Note, as we project out coefficients, the resulting vector has a smaller than unit norm. thus we are
moyving a smaller distance in latent space using the same step size (8| B-E title). If we renormalize
the vector to unit norm we will need to take a smaller step size to achieve the same transform. This is
confirming our predictions in Sec. B Each interpretable axis has a family of equivalent axes, which
add a direction in the lower eigenspace or null space of the GAN. These axes encode the same
transforms but the speeds of image change on them are different. In this sense, the top eigenspace
could be used to provide a "purer” version of the interpretable axes discovered elsewhere.

Although both types of approaches are promising, by removing the need to train additional networks,
our method can be viewed as a more efficient way to identify informative axes. Further work
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comparing axes discovered by different methods will elucidate the connection between interpretable

axes and the Hessian structure more.

PGGAN512 Annotated Axes Proj Hess Frame

A LatentDiscovery Axes Aligned
9 0 5 10 15 20 25 30 35 40 Eigenvector Id
z 19 11,38
20 9,60
BD 6,11
T 16 6,11,25
6 43 40
€9 29
< eigen rank
RandomControI 0.06
g O 0.05
81 004
E % 0.03
s12 0.02
E 5 0.01
eigen rank
Original Axes 19, Annotation: Hair Original Axes 20, Annotation: Zooming

Figure 8: Analyzing interpretable axes from (Voynov & Babenko,2020) under the Hessian
framework. A. Projection power of their axes and 6 unit norm random vectors on the top 40 eigen
vectors. The color code is matched. The red line on colorbar denotes p < 1 x 104 threshold for the

ower value, and the significantly aligned axes p < 5 x 10~* are indicated. B,C, Image transforms
encoded by projection of 2 of their vectors (19, 20) into the top 60d eigenspace. D,E Similar to
B.C, but their vectors are projected onto the aligned eigenvectors only. The norms of the projected
vectors are noted on title. Panel B,D and C,E share the same reference image and the same step size
across each mini column, though the distance travelled along BC and DE is smaller as the vector is
shortened.
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ProgGrowGAN

Figure 9: Similar transforms encoded in the top eigendimension of GANs trained on same face
dataset. Linear exploration along top 20 eigenvectors from origin in latent space are showed for each
GAN. Linear equi-distance sampling on each eigenvector occupies a column and their eigenvalues
are sorted in descending order from left to right. Step size along each vector is adjusted according
to its eigenvalue for best continuity.
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StyleGAN2 Cat Eig1

s 3 )' L&
J

~ StyleGAN Face Eig1

Figure 10: Top eigenvectors encode similar transforms around different reference images. Lin-
ear equidistant explorations from six randomly chosen reference images along the eigenvectors of
averaged Hessians. These show qualitatively similar transforms to images — for example, proxim-
ity of Cat face (Eigl), proximity and cat number (Eig4), fur color darkening (Eig10) in StyleGAN2
Cat; face direction (Eigl), masculine vs feminine (Eig3), child vs adult (Eig5) in StyleGAN Face.
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