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ABSTRACT

Generative adversarial networks
::::::
(GANs)

:
have emerged as a powerful unsuper-

vised method to model the statistical patterns of real-world data sets, such as
natural images. These networks are trained to map random inputs in their la-
tent space to new samples representative of the learned data. However, the struc-
ture of the latent space is hard to intuit due to its high dimensionality and the
non-linearity of the generator, which limits the usefulness of the models. Un-
derstanding the latent space requires a way to identify input codes for existing
real-world images (inversion), and a way to identify directions with known im-
age transformations (interpretability). Here, we use a geometric framework to
address both issues simultaneously. We develop an architecture-agnostic method
to compute the Riemannian metric of the image manifold created by GANs. The
eigen-decomposition of the metric isolates axes that account for different levels of
image variability. An empirical analysis of several pretrained GANs shows that
image variation around each position is concentrated along surprisingly few major
axes (the space is highly anisotropic) and the directions that create this large vari-
ation are similar at different positions in the space (the space is homogeneous).
We show that many of the top eigenvectors correspond to interpretable transforms
in the image space, with a substantial part of eigenspace corresponding to minor
transforms which could be compressed out. This geometric understanding unifies
previous results of GAN inversion and interpretation

:::
key

:::::::
previous

::::::
results

::::::
related

::
to

::::
GAN

:::::::::::::
interpretability. We show that the use of this metric allows for more ef-

ficient optimization in the latent space (e.g. GAN inversion) and facilitates unsu-
pervised discovery of interpretable axes. Our results show

:::::::
illustrate

:
that defining

the geometry of the GAN image manifold can serve as a general framework for
understanding GANs.

1 BACKGROUND

Generative adversarial networks (GANs) learn patterns that characterize complex datasets, and sub-
sequently generate new samples representative of that set. In recent years, there has been tremendous
success in training GANs to generate high-resolution and photorealistic images (Karras et al., 2017;
Brock et al., 2018; Donahue & Simonyan, 2019; Karras et al., 2020). Well-trained GANs show
smooth transitions between image outputs when interpolating in their latent input space, which
makes them useful in applications such as high-level image editing (changing attributes of faces),
object segmentation, and image generation for art and neuroscience (Zhu et al., 2016; Shen et al.,
2020; Pividori et al., 2019; Elgammal et al., 2017; Ponce et al., 2019). However, there is no system-
atic approach for understanding the latent space of any given GAN or its relationship to the manifold
of natural images.

Because a generator provides a smooth map onto image space, one relevant conceptual model for
GAN latent space is a Riemannian manifold. To define the structure of this manifold, we have to
ask questions such as: are images homogeneously distributed on a sphere? (White, 2016) What
is the structure of its tangent space — do all directions induce the same amount of variance in
image transformation? Here we develop a method to compute the metric of this manifold and
investigate its geometry directly, and then use this knowledge to navigate the space and improve
several applications.
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To define a Riemannian geometry, we need to have a smooth map and a notion of distance on it, de-
fined by the metric tensor. For image applications, the relevant notion of distance is in image space
rather than code space. Thus, we can pull back the distance function on the image space onto the
latent space. Differentiating this distance function on latent space, we will get a differential geomet-
ric structure (Riemannian metric) on the image manifold. Further, by computing the Riemannian
metric at different points (i.e. around different latent codes), we can estimate the anisotropy and
homogeneity of this manifold.

The paper is organized as follows: first, we review the previous work using tools from Riemannian
geometry to analyze generative models in section 2. Using this geometric framework, we introduce
an efficient way to compute the metric tensor H on the image manifold in section 3, and empiri-
cally investigate the properties of H in various GANs in section 4. We explain the properties of
this metric in terms of network architecture and training in section 5. We show that this under-
standing provides a unified

:::::::
unifying

:
principle behind previous methods for GAN inversion and for

interpretable axes discovery in the latent space. Finally, we demonstrate other applications that this
geometric information could facilitate, e.g. gradient-free searching in the GAN image manifold in
section ??.

2 RELATED WORK

Geometry of Deep Generative Model Concepts in Riemannian geometry have been recently ap-
plied to illuminate the structure of latent space of generative models (i.e. GANs and variational
autoencoders, VAEs). Shao et al. (2018) designed algorithms to compute the geodesic path, parallel
transport of vectors and geodesic shooting in the latent space; they used finite difference together
with a pretrained encoder to circumvent the Jacobian computation of the generator. While promis-
ing, this method did not provide information of the metric directly and could not be applied to GANs
without encoders. Arvanitidis et al. (2017) focused on the geometry of VAEs, deriving a formula
for the metric tensor in order to solve the geodesic in the latent space; this worked well with shallow
convolutional VAEs and low-resolution images (28 x 28 pixels). Chen et al. (2018) computed the
geodesic through minimization, applying their method on shallow VAEs trained on MNIST images
and a low-dimensional robotics dataset. In the above, the featured methods could only be applied to
neural networks without ReLU activation. Here, we apply the geometric analysis to modern large-
scale GANs (e.g. BigGAN, StyleGAN2) and we show it is compatible with any activation function.
Finally, all previous works assumed a L2 distance in image space, and here we extend this approach
to any differentiable distance metric.

3 METHODS

Formulation A generative network, denoted by G, is a mapping from latent code z to image
I , G : Rn → I = RH×W×3, z 7→ I . Borrowing the language of Riemannian geometry, G(z)
parameterizes a submanifold in the image space with z ∈ Rn. Note for applications in image
domain, we care about distance in the image space. Thus, given a distance function in image space
D : I × I → R+, (I1, I2) 7→ L, we can define the distance between two codes as the distance
between the images they generate, i.e. pullback the distance function to latent space through G.
d : Rn × Rn → R+, d(z1, z2) := D(G(z1), G(z2)).

The Hessian matrix (second order partial derivative) of
:::
the

:
squared distance function d2 can be

seen as the metric tensor of the image manifold (Palais, 1957). The intuition behind this is as fol-
lows. Consider

:
:
::::::::
consider the squared distance to a fixed reference vector z0 as a function of z,

fz0
(z) = d2(z0, z). Obviously, z = z0 is a local minimum of fz0

(z), thus fz0
(z) can be locally

approximated by a positive semi-definite quadratic form H(z0) as in Eq.1. This matrix induces an
inner product and defines a vector norm, ‖v‖2H = vTH(z0)v. This squared vector norm approx-
imates the squared image distance, d2(z0, z0 + δz) ≈ ‖δz‖2H = δTzH(z0)δz. Thus, this matrix
encodes the local distance information on the image manifold up to second order approximation.
This is the intuition behind Riemannian metric. In this article, the terms ”metric tensor” and ”Hes-
sian matrix” are used interchangeably. We will call αH(v) = vTHv/vTv the approximate speed
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of image change along v as measured by metric H .

d2(z0, z) ≈ d2(0,0) +
∂d2(z0, z)

∂z
|z0δz+T

:

∂2d2(z0, z)

∂z2
|z0δz

2 =
∂2d2(z0, z)

∂z2
|z0δ

2,
::
H(z0) :=

∂2d2(z0, z)

∂z2
|z0

(1)

Numerical Method As defined above, the metric tensor H can be directly computed by doubly
differentiating the squared distance function d2. In this paper

::::
Here we use a CNN-based distance

metric called Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018)as our d2,
which is easily differentiable . Thus we can

:
,
::::
both

:::::::
because

::
it

::
is

::::::
doubly

:::::::::::
differentiable

::::
and

::::::
because

:
it
:::
has

:::::
been

:::::::::::
demonstrated

::
to
:::::::::::

approximate
:::::::::
perceptual

::::::::
similarity

:::::::::::
judgements.

:::
We

:
compute the Hes-

sian by building a computational graph towards the gradient g = ∂zd
2

:::::::::::::::
g(z) = ∂zd

2|z=z0:
and then

computing the gradient towards each element in g
:::
g(z). This method computes H column by col-

umn, thus
::::::::
therefore its time complexity is proportional to dimension of latent space

::
the

::::::::::
latent-space

::::::::::::
dimensionality n and backpropagation time

::
the

::::::::::::::
backpropagation

::::
time

:::::::
through

:::
this

:::::
graph.

For situations when computing the Hessian through brute-force
::::::::::::::::
column-by-column backpropagation

is too slow (e.g. FC6GAN, StyleGAN2), we developed an additional
:::::::::::
approximation

:
method to

compute the major eigen-dimensions of the Hessian more efficiently. The rationale is , we are
more interested in the top eigen pairs of the Hessian matrix than in the Hessianitself

:::
that

::::
these

:::
top

::::::::
eigenpairs

:::
are

:::::
more

::::::
useful

::::
than

:::
the

:::
full

:::::::
Hessian

::
in

::::::::::
applications

::::
like

:::::::::::
optimization

:::
and

::::::::::
exploration;

::::::::
moreover,

:::
the

:::
top

:::::::::
eigen-pairs

:::::
form

:::
the

:::
best

::::::::
low-rank

::::::::::::
approximation

::
to

:::
the

:::::::
Hessian. As we will later

discover, the spectra of these matrices have a fast decay, thus these Hessian matrices require far
less than n eigenvectors to approximate, cf. Sec 4. Specifically, we use forward or reverse mode
differentiation to define Hessian-vector

:::
As

:
a
::::::
matrix,

::::
the

::::::
Hessian

::
is
::

a
:::::
linear

::::::::
operator,

:::::
which

:::::
could

::
be

::::::
defined

::
as

::::
long

:::
as

:::
one

:::
can

::::::::
compute

:::
the

::::::
Hessian

::::::
vector product (HVP)operator as Eq.7. Then we

can use iterative algorithms to solve the large eigenvalues and eigenvectors for the HVP operator,
and these eigen pairs can in turn approximate

:
.
:::::
Since

:::
the

:::::::
gradient

::
to

::
z

::::::::
commutes

::::
with

:::::
inner

::::::
product

::::
with

::
v,

:::::
HVP

:::
can

:::
be

:::::::
rewritten

:::
as

:::
the

:::::::
gradient

::
to

:::::
vTg,

::
or

:::
the

::::::::::
directional

::::::::
derivative

::
to

:::
the

:::::::
gradient

::::::
vT∂zg ::::::

(Eq.2).
::::

The
::::

first
:::::
form

::::::::
∂z(vTg)

::
is

::::
easy

::
to
::::::::

compute
::
in

::::::::::::
reverse-mode

::::::::::::::::
auto-differentiation,

:::
and

:
the

::::::::
directional

:::::::::
derivative

::
is
:::::

easy
::
to

::::::::
compute

::
in

::::::::::::
forward-mode

::::::::::::::::
auto-differentiation

::::
(or

::::
finite

::::::::::
differencing

::
as

::
in

:::::
Eq.2).

::::::
Then,

:::::::
Lanczos

::::::::
iterations

:::
are

::::::
applied

:::
to

:::
the

::::
HVP

:::::::
operator

:::::::
defined

::
in

::::
these

:::
two

:::::
ways

::
to

:::::
solve

:::
the

::::::
largest

:::::
eigen

:::::
pairs,

::::::
which

:::
can

::::::::::
reconstruct

::
an

:::::::::::
approximate

:
Hessian matrix.

:::
The

:::::::
iterative

:::::::::
algorithm

::::
using

:::
the

::::
two

:::::
HVP

:::::::::
definitions

:::
are

::::::
termed

::::::::
Backward

::::::::
Iteration

:::
and

:::::::
Forward

:::::::
Iteration

::::::::::
respectively.

:
For details and efficiency comparison, see Appendix A.2.

HV P : v 7→ Hv = ∂z(vTg(z)) = vT∂zg(z) ≈ (g(z + εv)− g(z − εv))/2‖εv‖
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(2)

Note a similar computational method has been employed to understand the optimization landscape of
deep neural networks recently (Ghorbani et al., 2019), although it has not been applied to understand
::::::
towards

:
the geometry of latent space of GANs before.

Connection to Jacobian This formulation and computation of the Riemannian metric can be gen-
eralized to any representational space beyond that of images. Consider a mapping φ(z) : Rn → RM ,
which could be the feature map of a middle layer in the GAN, or a CNN processing the gen-
erated image. We can pull back the squared L2 distance and metric from RM , d2φ(z1, z2) =
1
2‖φ(z1) − φ(z2)‖22, and define a manifold. The metric tensor Hφ of this manifold can be de-
rived as Hessian of d2φ. Note, there is a simple relationship between the Hessian of d2φ, Hφ and the
Jacobian of φ, Jφ (Eq. 3). Through this we know the eigen spectrum of the Hessian matrix Hφ is
the square of

::
the

:
singular value spectrum of

:::
the Jacobian Jφ, and the eigenvectors of Hφ is the same

as the right singular vectors of Jφ. This allows us to examine the geometry of the representation
through out the GAN, and analyze how the geometry in the image space builds up.

Hφ(z0) =
∂2

∂z2

1

2
‖φ(z0)− φ(z)‖22|z0

= Jφ(z0)TJφ(z0) (3)

vTHφ(z0)v = ‖Jφ(z0)v‖2, Jφ(z0) = ∂zφ(z)|z0
(4)
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In this work, we use LPIPS, which defines image distance based on the squared L2 distance of
the first few layers of a pretrained CNN. If we concatenate the activations and denote this repre-
sentational map by ϕ(I) : I → RF , then the metric tensor of the image manifold can be derived
from the Jacobian of

::
the

:
generator compositing representation map ϕ, H(z) = JTϕ◦GJϕ◦G, Jϕ◦G =

∂zϕ(G(z)). This connection is crucial for understanding how geometry depends on the network
architecture.

4 EMPIRICAL OBSERVATIONS

Using the above method, we analyzed the geometry of the latent space of the following GANs:
DCGAN (Radford et al., 2015), DeePSiM/FC6GAN (Dosovitskiy & Brox, 2016), BigGAN (Brock
et al., 2018), BigBiGAN (Donahue & Simonyan, 2019), Progressive Growing of GANs (PGGAN)
(Karras et al., 2017), StyleGAN 1 and 2 (Karras et al., 2019; 2020) . (models specificities

:
-
:::::
model

:::::::::::
specifications

:
reviewed in Sec. A.3. ) These GANs are progressively deeper and more complex,

and some employ a style-based architecture instead of a more conventional DCGAN architecture
(e.g. StyleGAN1,2). This diverse set of models allowed us to test the broad applicability of this new
approach. In the following sections, ”top” and ”bottom” eigenvectors refer to the eigenvectors with
large and small eigenvalues.

Top Eigenvectors Capture Perceptually Relevant
:::::::::
Significant

::::::
Image

:
Changes. In differential

geometry, a metric tensor H captures an infinitesimal notion of distance. To determine whether this
quantity represents perceptually meaningful

::::::
evident

:
image changes, we randomly picked a latent

code z0, computed the metric tensor H(z0) and its eigendecomposition H(z0) =
∑
i λiviv

T
i .

Then we explored linearly in the latent space1along the eigenvectors G(z0 + µivi). We found
that images changed much faster when moving along top than along bottom eigenvectors, both per
visual inspection and LPIPS (Fig 1). More intriguingly, eigenvectors at different ranks encoded
qualitatively different types of changes; for example, in BigGAN noise space, the top eigenvectors
encoded head direction, proximity and size; while lower eigenvectors encoded background changes,
shading or

:::::
much more subtle pixel-wise changes. Moreover, PGGAN and StyleGANs trained on

the face dataset
::::::
(FFHQ)

:
have top eigenvectors that represent similar interpretable transforms of

faces, such as head direction, sex or age (Fig. 9).
::::
These

:::::::::::
observations

::::::
raised

:::
the

:::::::::
possibility

:::
that

:::
top

::::::::::
eigenvectors

::::
also

::::::::
captured

::::::::::
perceptually

:::::::
relevant

:::::::
changes:

:::
we

:::::
tested

::::
this

::::::
directly

:::::
with

::::::
positive

:::::
results

::::
(see

::::
Sec.

:::
6).

Spectrum Structure of GANs. To explore how eigenvalues were distributed, for each GAN, we
randomly sampled 100-1000 z in the latent space, used backpropagation to compute H(z) and then
performed the eigendecomposition. In Fig. 2, we plotted the mean and 90% confidence interval of
the spectra and found that they spanned 5-10 orders of magnitude, with fast decays; each spectrum
was dominated by a few eigenvectors with large eigenvalues. In other words, only a small fraction of
dimensions were responsible for major image changes (Table 2), while most dimensions introduced
nuanced changes (e.g. shading, background) — GAN latent spaces were highly anisotropic.

We found this anisotropy in every GAN we tested, which raises the question of why it had not been
reported previously. One possibility is that the statistical properties of high dimensionality create
an illusion of isotropy. When traveling along a random direction v in latent space, the approximate
rate of image change αH(v) = vTHv/vTv is a weighted average of all eigenvalues as in Eq.
9. In Sec A.6, we show analytically that the variance of α(v) across random directions will be
2/(n+2) times smaller than the variance among eigenvalues. For example, in BigGAN latent space
(256 dimensions), the eigenvalues span over six orders of magnitude, while the α(v) for random
directions has a standard deviation less than one order of magnitude (Figs. 2, 6). Further, the center
of this distribution was closer to the top of the spectrum, and thus provided a reasonable rate of
change, while masking the existence of eigendimensions of extremely large and small eigenvalues.

Global Metric Structure Because the metric H(z) describes local geometry, the next question is
how it varies at different positions in the latent space. We computed the metric H(z) at randomly

1For some spaces, we used spherical linear exploration, where we restrict ourselves to a spherical manifold
of certain norm. We project vi onto tangent space of z0 and then exponential map

::::
travel

:::
on

::
the

:::
big

:::::
circle from

z0::::
along

::
vi.
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Figure 1: Images change at different rates along top vs bottom eigenvectors. Each panel (A-D)
shows perturbations around a randomly chosen reference image (center column); each row shows
perturbations introduced by moving along each of five eigenvectors; each contiguous column is
separated by the same distance in latent space. Eigenvectors are shown in descending order of their
eigenvalues. Line plots under each montage show the LPIPS image distance to the reference image
as a function of positively and negatively perturbed distance along each eigenvector (x-axis). The
rate of image change differed across eigenvectors; top vs bottom eigenvectors encoded changes such
as object class, head direction, pose, color, shading or other subtle details (e.g. fur variations in panel
A, bottom). A. BigGAN Class subspace; B. BigGAN Noise subspace; C. StyleGAN2 trained on cat
images; D. StyleGAN2 trained on faces images. Eigenvector rank and associated eigenvalue labeled
in the legend.
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Figure 2: Spectra of GANs, shown as a function of individual model (A) and types of architecture
(B, C). DCGAN-type (green-blue), Z and W space for StyleGAN (SG1, 2) (red, orange). Lines
and shaded areas show the averaged spectra and the 5-95% percentile of each eigenvalue among
samples (for quantification, see Table 2). D. Histogram of approximate speed of image change α(v)
for eigenvectors and random directions, visualizing the ”illusion of isotropy”.

selected z and examined their similarity using a statistic adopted from Kornblith et al. (2019). In
this statistic, we applied the eigenvectors Ui = [u1, ...un] from a metric tensor Hi at position zi to
the metric tensor Hj at zj , as uTi Hjui. These values formed a vector Λij , representing the effects
of metric Hj on eigenvectors of Hi. Then we computed the Pearson correlation coefficient between
Λij and the target eigenvalues, Λj , as corr(Λj ,Λij). This correlation measured the similarity of
the action of metric tensors on eigenframes around different positions. As the spectrum usually
spanned several orders of magnitude, we computed the correlation on the log scale CHlogij , where
the eigenvalues distribute more uniformly.

Λij = diag(UTi H(zj)Ui) (5)

CHij = corr(Λij ,Λj), C
Hlog
ij = corr(log(Λij), log(Λj)) (6)
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Using this correlation statistic, we computed the consistency of the metric tensor across hundreds
of positions within each GAN latent space. As shown in Fig. 3C, the average correlation between
eigenvalues and vHv values of two points CHlogij was 0.934 in BigGAN. For DCGAN-type architec-
ture, mean correlations on the log scale ranged from 0.92-0.99; for StyleGAN-1,2, 0.64-0.73 in the
Z space, and 0.87-0.89 in the W space (Fig. 3D, Tab.4). Overall, this shows that the local directions
that induce image changes of different orders of magnitude are highly consistent at different points
in the latent space. Because of this, the notion of a ”global” Hessian makes sense, and we estimated
it for each latent space by averaging the Hessian matrices at different locations.

::::::::::
Implication

::
of

:::
the

:::::
Null

:::::
Space

:::
As

:::
the

::::::
spectra

::::
have

::
a
::::
large

:::::::
portion

::
of

:::::
small

::::::::::
eigenvalues

:::
and

:::
the

:::::
metric

::::::
tensors

:::
are

:::::::::
correlated

::
in

::::::
space,

:::
the

::::::
bottom

:::::::::::
eigenvectors

:::::
create

::
a
:::::
global

:::::::::
subspace,

::
in

:::::
which

::::
latent

::::::::
traversal

::::
will

:::::
result

::
in

:::::
small

::
or

::::
even

::::::::::::
imperceptible

:::::::
changes

::
in
:::
the

::::::
image.

:::::
This

::
is

::::::::
supported

::
by

:::
our

:::::::::
perceptual

::::::
study,

::
as

::::
over

::::
half

::
of

:::
the

::::::::
subjects

::::::
cannot

:::
see

:::
any

:::::::
change

::
in

:::::
image

:::::
when

:::::
latent

:::::
vector

:::::
move

::
in

::::::
bottom

::::::::::
eigenspace.

:::::
(Sec.

:::
6).

::::
This

::::::::::
perceptually

::::::
”null”

:::::
space

:::
has

:::::::::::
implications

::::
about

:::::::::
exploration

::
in

:::
the

:::::
GAN

:::::
space

::::
and

::::::::::
interpretable

:::::
axes

::::::::
discovery.

:::
As

::::::::::::::::
G(z + v) ≈ G(z),

::
if
::::
one

:::
axis

:
u
:::::::

encodes
:::

an
:::::::::::
interpretable

::::::::
transform

:::::::::::::::::
G(z)→ G(z + u),

::::
then

:::::::
shifting

::::
this

:::::
vector

:::
by

::
a

:::::
vector

::
in

::
the

::::
null

:::::
space

::
v

:::
will

::::
still

:::::
result

::
in

::
an

:::::::::::
interpretable

:::
axis

:::::::::::::::::::::::::::::::
G(z)→ G(z + v + u) ≈ G(z + u).

:::::
Thus,

::::
each

::::::::::
interpretable

::::
axis

::::
have

:
a
::::::
family

::
of

:::::::::::
”equivalent”

:::
axis

::::::
which

::::::
encode

::::::
similar

:::::::::
transforms,

:::::::
differing

::::
from

::::
each

:::::
other

::
by

::
a
::::::
vector

::
in

:::::
”null”

::::::
space.

::::::::
However,

::::::
adding

::::::::::
component

::
v

::
in

:::
the

::::
null

:::::
space

:::
will

:::::::
decrease

:::
the

:::
rate

::
of

::::::
image

::::::
change

:::::
along

:::
that

::::
axis.

::
In
::::
this

:::::
sense,

:::
the

::::::
vectors

:::::
using

:
a
:::::::
smallest

::::
step

:::
size

::
to

::::::
achieve

::::
that

::::::::
transform

::::::
should

:::
be

:::
the

:::::::
”purest”

::::
axis

::
of

:::
the

::::::
family.

::::::::
Further,

:::::
cosine

:::::
angle

:::::::
between

:::
two

:::::::::::
interpretable

:::
axis

::::
may

:::
not

::::::::
represent

:::
the

::::::::
similarity

::
of

:::
the

:::::::::
transforms

::::
they

:::::::
encodes.

::
A
:::::
large

::::
angle

:::
can

::
be

:::::
found

:::::::
between

::::
two

::::
axes

::
of

:::
the

::::
same

::::::
family

:::
but

:::::::
different

:::::
image

:::::::
traversal

::::::
speed.

:::
We

::::::::
compared

::
the

:::::
axes

::::
from

:::::::
previous

::::::
works

::
in

:::
A.9

::::
and

:::::::
observed

::::
that

:::::::::
projecting

:::
out

:
a
:::::
large

:::
part

:::
of

::::
their

::::
axes

:::
will

:::
not

:::::
affect

:::
the

::::::::
semantics

:::::::
encoded

::
in

::
it

::::
(Fig.

:::
8).
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Figure 3: Globalization of metric structure: A. Conceptual schematic behind
::::::::
Schematic

::
of

:
the

geometric picture. In the latent space (green area), the metric eigenvectors at each point (blue and
violet) form a local frame, which map to transformations in image space (blue area); the length
and saturation of image-space vectors represent the eigenvalue (i.e. amplification factor) of G. We
show the directions with large amplification factors are relatively aligned at different positions. B.
Distributions of log(Λij) and log(Λj), showing the action of metric are correlated at 3 different
points. C. Histogram of correlation CHlogij between all pairs among 1000 points in BigGAN space.
D. Comparison of correlation values on linear and log scales for different GAN models. DCGAN-
type (blue), Z and W space for StyleGAN1,2 (red and orange).

5 MECHANISM

Above, we showed an intriguingly consistent geometric structure across multiple GANs. Next, we
sought to understand how this structure emerged through network architecture and training.

To link the metric tensor to the generator architecture, it is helpful to highlight the relationship be-
tween the metric tensor and Jacobian matrix H(z) = JTϕ◦GJϕ◦G (Eq. 3). As latent space gets

6
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warped and mapped onto image space, directions in latent spaces are scaled differently by the Ja-
cobian of the map; specifically, directions that undergo the most amplification will become the top
eigenvectors (Fig. 4A). As the Jacobian of the generator is a composition of Jacobians of each layer
dψi, the scaling effect on the image manifold is a product of the scaling effects of each interme-
diate layer. We can analyze the scaling effect of different layers ψi by applying a set of vectors
onto the metric tensors of these layers Hψi

. In BigGAN, when we apply the eigenvectors of the
first few layers onto the metric of other layers, the top eigenvectors are still strongly amplified by
subsequent layers, thus forming the top eigendimensions of the manifold. Of note, this is not true
for a weight-shuffled control BigGAN: in that case, the top eigendimension of the first few layers
was not particularly amplified on the image manifold, and vice versa (Fig. 4 B). This shows that
, the amplification effect of layers become

:::::::
becomes

:
more aligned through training, with the top

eigenspace shared across layers. Further, as the amplification effects are not lined up across layers
of weight shuffled networks, these networks should exhibit a more isotropic geometry on their image
manifold. Indeed, we find their spectra to be flatter and the largest eigenvalue smaller (Fig. 7).

This finding unifies previous unsupervised methods that discover interpretable axes in the GAN
space (Härkönen et al., 2020; Shen & Zhou, 2020; Voynov & Babenko, 2020). As we have showed,
the top right singular vectors of the weights (i.e. Jacobian) of the first few layers (as used in
Shen & Zhou (2020)), correspond to the top eigenvectors of the metric tensor of image manifold,
and these usually relate to interpretable transforms. Similarly, the top principal components (PC)
of intermediate layer activations Härkönen et al. (2020) roughly correspond to the top left singular
vectors of the Jacobian, thus also to the interpretable top eigenvectors of the metric on the image
manifold (although note that these PCs measure the global amplification of the map, not the local
amplifications measured by our metric tensor). Finally, (Voynov & Babenko, 2020) discovered
interpretable axes by optimizing for axes such that when two latent codes differed by a certain
distance along this direction, a trained model could decode this direction out from the generated
images. In our framework, it follows that when the axes lie in the top eigenspace, the image
difference created will be the largest and thus easier to classify. Thus we show the geometric
understanding of GAN image manifold has great explanatory power to all the methods above.
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Figure 4: Anisotropy is induced and maintained throughout the GAN architecture. A. As latent
space gets warped and mapped into image space, directions in latent spaces are scaled differently by
the Jacobian of the map. B. Amplification of eigenvectors of the metric tensor of the first conv layer
(GenBlock00) in all major layers in BigGAN. C. Same, but for weight-shuffled BigGAN.

6 APPLICATION
:::::::::::::::
APPLICATIONS

By defining the geometry of the latent space via the metric tensor, we gain an understanding of which
directions in this space are more informative than others. This understanding leads to improvements
in three applications: 1) gradient descent-based optimizers, 2) accelerating gradient-free search, 3)
finding human-interpretable axes in the latent space.

Improving Gradient-Based GAN Inversion. For applications like GAN-assisted drawing and
photo editing (Zhu et al., 2016; Shen et al., 2020), one crucial step is to find a latent code correspond-
ing to

:
a
:
given natural image (termed GAN inversion). For this problem, one basic approach is to

minimize the distance between a generated image and the target image z∗ = arg minzD(G(z), I).
Although second-order information (Hessian) is valuable in optimization, they are seldom used as
they are expensive to compute and update. However, because we find that local Hessian information
is highly correlated at different points in latent space, we can pre-compute it once for each latent
space and use the average Hessian information to boost first-order optimization. As an example,

7
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ADAM is a first-order optimization algorithm that adapts the learning rate of each parameter sepa-
rately according to the moments of gradients on that parameter (Kingma & Ba, 2014). It can be seen
as a quasi-second order optimizer that approximates a diagonal Hessian matrix based on first-order
information. However, if the true Hessian is far from diagonal, i.e. the space is anisotropic and the
valley is not aligned with the coordinates, then this approximation could work poorly.
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Figure 5: Left
:::::::::::
Applications

::
of

:::
the

::::::
metric

::::::
tensor

::
A.

:::::::::
Perceptual

::::::::::
properties

::
of

:::::::::::
eigenvectors.

:::::
Word

::::
cloud

::::::
shows

:::::::
subjects’

::::::::::
descriptions

:::
(N

:
=
::::
24)

::
of

:::
the

:::::
image

:::::::::
transforms

:::::::
induced

::
by

:::
the

:::
top-

:::::
(red)

::
vs.

:::
the

::::::
bottom

:::::::::
eigenvector

:::::::
(black)

::
in

:::::::::::::::
StyleGAN2-Face.

::
B.

::::::::::
Distribution

::
of

::::::::
difficulty

::::::
scores

::::::::
associated

::::
with

:::
top-

:::
vs.

:::::::
bottom

::::::::::
eigenvectors

::::
(red, BasinCMA with Hessian eigenbasis parametrization (Hess)

outperform method using normal basis (None)
:::::
black)

::::::
across

::
all

::::
four

::::::
GANs

:::
for

::::::
N=185

:::::::
subjects.

::::
Lines

:::::
show

:::::
mean

:::::::::
frequency

::
±

:::::::
standard

:::::
error

::::
(per

:::::::::
bootstrap).

:::::
C-E.

::::::::::
Eigenbasis

::::::::::::::
pre-conditioning

::::::::
improves

:::::
GAN

:::::::::
inversion.

::
C.

::::::::::
BasinCMA

::::
with

:::::::::
eigenbasis

:::::::::::::
pre-conditioning

::::::::
(Hess,H)

:::::::::::
outperformed

:
a
::::::
method

:::::
using

:::::::
normal

::::
basis

::::::::
(None,N)

:
in minimizing distance to

:::::::
inverting ImageNet and BigGAN

generated images; Right, Hessian-CMAES (Hess) outperforms CMAES (Orig) in maximizing
CNN activation

::
D.

::::::::
Examples

::
of

:::::
fitted

::::::::
ImageNet

:::
and

::::::::
BigGAN

::::::
images

::::
with

:::
our

:::::::
Hessian

:::::::::
BasinCMA

:::
and

:::::::
original

:::::::
method

::::::
(LPIPS

::::::::
distance

::::::
below).

:::
E.

:::::::
Results

:::
for

::::::::
PGGAN

:::
and

:::::::::::
StyleGAN2

:::::::
inverting

::::::
samples

:::::
from

:::::::
CelebA

::::
and

::::::
FFHQ.

::
F.

::::::::::::::::
Hessian-CMAES

::::::
(Hess)

:::::::::::
outperforms

::::::::
CMAES

::::::
(Orig) in

::::::::::
maximizing

::::
CNN

::::::::
activation

::
in

:
BigGAN, and increases sampling efficiency in FC6GAN latent space.

Color denotes the
::::
Each

:::
line

:::::::::
represents

:
a
::::::::
different layer of the optimized units in AlexNet. Bottom,

two examples of fitting ImageNet and BigGAN images with our Hessian BasinCMA and original
method, with LPIPS distance below.

:::
***

:::::::
denotes

:::::
paired

:::::
t-test

:::::::::::
p < 1× 10−6

To test whether the metric can help overcome this problem, we used the eigenvectors of the average
Hessian to rotate the latent space; this orthogonal change of variables should make the Hessian
more diagonal and thus accelerate ADAM. This method can be seen as a preconditioning step which
could be inserted into any pipeline involving ADAM. We tested this modification on the state-of-the-
art algorithm for inverting BigGAN, i.e. BasinCMA (Huh et al., 2020), which interleaves ADAM
and CMAES steps. We used our Hessian eigenbasis in the ADAM steps, and found that we could
consistently lower the fitted distance to the target when inverting ImageNet and BigGAN-generated
images (Zhang et al., 2018). (Fig. 5). Thus this

::::::::
Similarly,

:::::::::
eigenbasis

:::::::::::::
preconditioning

::::::::::
consistently

::::::::
improved

:::::::
inversion

:::
of

:::::::
PGGAN

::::
and

::::::::::::::
StyleGAN2-Face

:::
for

:::
real

::::::
image

:::::::
sampled

::::
from

::::
both

::::::
FFHQ

:::
and

::::::
CelebA

:::::
using

:::::::
ADAM

:::::::
method.

:::
In

:::::
short,

:::
the

:
understanding of homogeneity and anisotropy of the

::::
latent

:
space can improve gradient-based optimization.

Improving Gradient-Free Search in Image Space In some domains, it is important to optimize
objectives in the absence of a gradient, for example, in black-box attacks against image recogni-
tion systems via adversarial images, or when searching for activity-maximizing stimuli for neurons
in primate visual cortex(Ponce et al., 2019; Xiao & Kreiman, 2020)

:
,
::
or

:::::
when

:::::::::
optimizing

::::::::
perceptual

::::::::
evaluation

::
in

:::
the

::::
user

::::::::::::::::::::::::::::::::::::::::::::::::::
(Ponce et al., 2019; Xiao & Kreiman, 2020; Chiu et al., 2020). These applica-

tions usually involve a low-dimensional parameter space (such as GANs) and an efficient gradient-

8
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free search algorithm, such as covariance matrix adaptation evolution strategy or CMAES. CMAES
explores the latent space using a Gaussian distribution and adapts the shape of the Gaussian (co-
variance matrix) according to the search history and local landscape. However, online learning of a
covariance matrix in high-dimensional space is computationally costly, and inaccurate knowledge of
it can be detrimental to optimization. Here we applied the prior geometric knowledge of the space
to build the covariance matrix instead of learning it from scratch. For example, as illustrated by
natural gradient descent (Amari, 1998), one simple heuristic for optimizing on the image manifold
is to move in smaller steps along dimensions that change the image faster and vice versa. We used
this heuristic to improve CMAES (a combined approach we refer to as CMAES-Hessian). With
our method, the search can be limited to the most informative directions, which should increase
sampling efficiency, and as the space is anisotropic, our method further tunes the exploration step
size in a way that is inversely proportional to the rate of image change. To test this approach, we
applied the novel CMAES-Hessian algorithm to the problem of searching for activation maximizing
stimuli for units in AlexNet (Nguyen et al., 2016) in the latent space of two GANs (FC6GAN and
BigGAN). We found that the dimensionality of the search space could be reduced from 4096 to 500
for FC6GAN GAN without impairing maximal activation values. Further, we found that CMAES-
Hessian consistently led to higher activation values compared to the classic CMAES algorithm in
BigGAN space (Fig. 5).

Interpretable Axes Discoveryfor Image Manipulation When users wish to manipulate GAN-
based images via their latent code, it would be

::
is useful to reduce the number of variables needed

to effectuate this given manipulation. Our method provides a systematic way to compute the most
informative axes (top eigenspace) in the latent space to use as variables, and the resulting eigen-
values can serve to compute appropriate step sizes along each corresponding axes. We applied this
method to FC6GAN, BigGAN, BigBiGAN, StyleGAN1,2, PGGAN, and plotted the changes corre-
sponding to the top eigenvectors (Fig. 1). These eigenvectors corresponded to semantic meaningful
transformations like zooming-in and out

:::::::
appeared

:::
to

:::::::
capture

:::::::::::
interpretable

::::::::::::::
transformations

:::
like

:::::::
zooming, head direction and object location. Moreover, eigenvectors usually corresponded to a
similar

:::::::
position.

:

::
To

:::
test

::
if
::::
this

:::
was

::::::::
apparent

::
to

::::::
people

::::
other

::::
than

:::
the

:::::::
authors,

:::
we

:::::::::
conducted

:
a
:::::
study

:::::
using

::::::::
Amazon’s

:::::::::
Mechanical

:::::
Turk.

::::
We

:::::
tested

:::
the

:::::::::
perceptual

:::::::::
properties

::
of

::::
the

::::
axes

::::::::
identified

:::
by

:::
the

::::::
metric

:::::
tensor,

::::::::
including

::
the

:::
top

:::
10

:::::::::::
eigenvectors,

:::::::
random

::::::
vectors

:::::::::
orthogonal

::
to

:::
the

:::
top

:::
15d

::::::::::
eigenspace,

:::
and

::::::
bottom

::
10

:::::::::::
eigenvectors.

::::::
Images

:::::
were

::::::::
generated

:::::
using

:::
four

::::::::
different

:::::
GANs

:::::::::
(PGGAN,

:::::::
BigGAN

:::::
noise

:::::
space,

:::::::::::::
StyleGAN2-Cat

:::
and

:::::::
-Face),

:::
and

:::::
were

::::::::
presented

:::
to

:::
185

:::::::::::
participants.

:::
In

::::
each

::::
trial,

::::
five

::::::::
randomly

:::::::
sampled

::::::::
reference

::::::
images

:::::
were

::::::::
perturbed

:::::
along

::
a
:::::
given

::::
axis,

::::
and

::::::::::
participants

::::
were

::::::
asked

:
if
::::

they
::::
could

:::
a)

:::::::
perceive

::
a
:::::::
change,

:::
b)

:::::::
indicate

:::
an

:::::::
estimate

:::
of

::
its

::::::::::
magnitude

:
[
::::::::
0%-100%]

:
c)

::::::::
describe

:
a

:::::::
common

::::::
change

::
in

::::
their

::::
own

:::::
words

::::
and

::::
how

:::::
many

::
of

:::
the

:::
five

::::::
images

::::::
shared

:::
this

:::::::
change,

::
c)

::::::
indicate

:::
how

::::::
similar

:::::
were

:::
the

:
5
:::::
image

:::::::
changes

:::::::::::
(consistency,

:::::
score

::
of

::::
1-9,

:
9
::::
most

:::::::
similar)

:::
and

::::::
finally,

::
d)

::::
state

:::
how

:::::::
difficult

::
it

:::
was

::
to
::::::::
describe

:::
this

::::::
change

:::::::::
(difficulty

:::::
score,

::::
scale

::
of
::::
1-9,

::
9

::::
most

::::::::
difficult).

:

::::
Only

::::::
48.5%

::
of

:::
the

:::::::
subjects

:::::::
reported

::
to

:::
see

:::
any

:::::::
change

::::::
happen

:::
for

::::::
bottom

:::::::::::
eigenvectors,

:::
the

::::::
fraction

:::
was

::::::
93.5%

::::
and

::::::
89.8%

:::
for

::::
top

:::
and

::::::::::
orthogonal

:::::::::
directions

:::::::::::
respectively.

::::::::
Further,

:::::
when

:::::::
subjects

:::::::
observed

:::::
some

:::::::
change,

::::
they

:::::::
reported

::::
that

:::
the

::::::
image

:::::::::::::
transformations

:::::::
induced

:::
by

:::
top

::::::::::
eigenvectors

::::
were

:::::
larger

::::::::::::::
(70.3%± 0.6%)

::::
than

:::::
those

::
of

:::::::::
orthogonal

:::::::::
directions

:::::::::::::::::::::::::::
(66.8%± 0.9%, P = 7.0× 10−4,

:
2
:::::::

sample
::::::

T-test)
::::

and
:::::

than
:::::

those
:::

of
:::::::

bottom
:::::::::::

eigenvectors
::::::::::::::::::::::::::::::

(61.5%± 1.6%, P = 2.1× 10−10).
::::
This

::::
was

:::::
true

:::::
even

::::::::
though

::::
we

:::::::
picked

::
a
::::::

5-10
::::::

times
:::::::

smaller
:::::

step
:::::

size
:::

in
::::

the
::::

top
:::::::::
eigenspace

::::
than

:::
in

::::
the

:::::::::
orthogonal

::::
and

:::::::
bottom

:::::::::::
eigenspaces.

:::::::::
Further,

::::::::
subjects

::::::::
reported

:::
the

:::
top

:::
10

:::::::::::
eigenvectors

::::
had

::
a
::::::
higher

:::::
mean

::::::::::
perceptual

::::::::::
consistency

::::::
score

:::::::::::::::::::
(6.72± 0.06), n = 929

::::::::
responses)

:::::
than

:::
the

:::::::::
orthogonal

::::::::::::::::::::::::::::::::::
(6.42± 0.09, P = 5.8× 10−3, n = 448)

:::
and

:::::::
bottom

::::::::::
eigenvectors

:::::::::::::::::::::::::::::::::
(6.12± 0.14, P = 1.3× 10−5, n = 242).

::::::::::::
Participants

::::::::
reported

::::
that

:::
the

::::
top

:::::::::::
eigenvectors

::::
were

:::::
easier

::
to

:::::::
interpret

:::::::::::
(4.91± 0.08)

::::
than

:::
the

:::::::
bottom

::::::::::
eigenvectors

::::::::::::::::::::::::::
(5.69± 0.14, P = 3.8× 10−6,

::::
albeit

:::::::::
comparably

:::
to

:::
the

:::::::::
orthogonal

:::::::::::
eigenvectors

:::::::::::::::::::
4.82± 0.11, P = 0.5).

:::::
Thus,

::::::
overall

:::
we

::::::::
conclude

:::
that

::
the

:::::::
Hessian

:::::::::::
eigenvectors

:::
not

::::
only

::::::
capture

::::::::::
informative

::::
axes

::
of

::::::
image

:::::::::::::
transformations,

:::
but

::::
that

::::
these

::::
were

::::
also

::::::::::
perceptually

:::::::
relevant,

::::::::::::
corresponding

::
to

::::::
similar semantic changes when applied to different

reference vectors (Fig. 10) , so the eigenvectors we discovered were
::
—

::::
axes interpretable not just in

local sense, but in a global sense. Thus we could compute the average metric tensor once for each
latent space and use their top eigendimensions as handles for image manipulation.
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7 DISCUSSION AND FUTURE DIRECTIONS

In this work, we developed an efficient and architecture-agnostic way to compute the geometry of
the manifold learnt by generative networks. This method discovers axes accounting for the largest
variation in image transformation, which frequently represent semantically interpretable changes.
Subsequently, this geometric method can facilitate image manipulation, increase explainability, and
accelerate optimization on the manifold (with or without gradients).

:::::
There

:::::::
have

:::::::
been

:::::::::::
multiple

::::::::
efforts

::::::::::
directed

:::::
at
:::::::::::::

identifying
:::::::::::::

interpretable
::::
axes

::::::
in

:::::::::
latent

::::::::::
space

:::::::::
using

::::::::::::::::
unsupervised

::::::::::::
methods,

:::::::::::::
including

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Härkönen et al., 2020; Shen & Zhou, 2020; Voynov & Babenko, 2020)

:
.
::::
Our

::::::::
described

:::::::::
connection

:::::::
between

:::
the

::::::
metric

::::::
tensor

:::
of

:::
the

::::::
image

:::::::::
manifold

:::
and

::::
the

::::::::
Jacobian

::::::::
matrices

::
of
:::::::::::

intermediate
:::::
layers

::::::
unifies

:::::
these

:::::::
previous

:::::::
results.

::::
As

:::
we

::::
have

::::::::
showed,

:::
the

:::
top

:::::
right

:::::::
singular

:::::::
vectors

::
of

:::
the

::::::
weights

::::
(i.e.

::::::::::
Jacobian)

:::
of

:::
the

::::
first

::::
few

::::::
layers

:::
(as

:::::
used

:::
in

:::::::::::::::::
Shen & Zhou (2020)

:
),
::::::::::

correspond
::
to

:::
the

:::
top

:::::::::::
eigenvectors

:::
of

:::
the

::::::
metric

:::::
tensor

:::
of

:::
the

::::::
image

::::::::
manifold,

::::
and

:::::
these

:::::::
usually

:::::
relate

::
to

::::::::::
interpretable

::::::::::
transforms

:::
(as

::::
will

:::
be

::::::
shown

::
in

::::::
Sec.6).

::::::::::
Similarly,

::::
the

:::
top

::::::::
principal

::::::::::
components

:::::
(PCs)

::
of

:::::::::::
intermediate

:::::
layer

:::::::::
activations

:::::::::::::::::::
Härkönen et al. (2020)

:::::::
roughly

:::::::::
correspond

::
to
::::

the
:::
top

:::
left

::::::
singular

:::::::
vectors

::
of

:::
the

::::::::
Jacobian,

::::
thus

::::
also

::
to

:::
the

::::::::::
interpretable

::::
top

::::::::::
eigenvectors

::
of

:::
the

::::::
metric

:::
on

::
the

:::::
image

::::::::
manifold

::::::::
(although

::::
note

:::
that

:::::
these

::::
PCs

:::::::
measure

:::
the

::::::
global

:::::::::::
amplification

::
of

:::
the

::::
map,

::::
not

::
the

::::
local

::::::::::::
amplifications

::::::::
measured

:::
by

::::
our

:::::
metric

:::::::
tensor).

::::::::::
Regarding

:::::::::::::::::::::::
(Voynov & Babenko, 2020),

:::
we

:::::::::
empirically

:::::::::
compared

::::
their

:::::::::::
interpretable

::::
axes

:::
and

::::
our

:::::::::::
eigenvectors,

:::
and

::::::
found

:::
that

::
in

:::::
some

::
of

:::
the

::::::
GANs,

:::
the

:::::::::
discovered

::::
axes

::::
have

::
a
::::::::::
significantly

:::::
larger

:::::::::
alignment

::::
with

:::
our

::::
top

:::::::::
eigenspace

:::
and

::::
they

::
are

::::::
highly

:::::::::::
concentrated

:::
on

:::::::::
individual

:::
top

::::
axes

::::
than

::::::::
expected

::::
from

:::::::
random

:::::::
mixing.

::::
We

::::
refer

:::
the

:::::
reader

::
to

::::::::
Appendix

::::
A.9

:::
and

:::::
Fig.8

:::
for

::::::
further

::::::::::
information.

:

Although we have answered how the anisotropy comes into being mechanistically, there remains
the question of why it should exist at all. Anisotropy may result from gradient training: theoretical
findings on deep-linear networks for classification show that gradient descent aligns the weights
of layers, resulting in a highly anisotropic Jacobian (Ji & Telgarsky, 2018). Whether that analysis
transfers to the setting of generative networks remains to be investigated.

Alternatively, assuming that a well-trained GAN faithfully represents the data distribution, this
anisotropy may reveal the intrinsic dimensionality of the data manifold. Statistical dependencies
of variation in real-world images (e.g. uniform changes in skin color, head direction) imply that the
images reside in a statistical manifold of much lower dimension. Further, among transformations
that happen on this manifold, there will be some dimensions that transform images a lot and some
that do not (e.g. skin color versus facial expression). In that sense, our method may be equivalent to
performing a type of nonlinear PCA of the image space through the generator map. In fact, we have
found that GANs trained on similar datasets (e.g. PGGAN, StyleGAN1,2 trained on the human face
dataset [CelebA,FFHQ]) have top eigenvectors that represent the same set of transforms (e.g. head
direction, gender, age; Fig. 9). This supports the ”PCA” hypothesis, as these transformations may
account for much of the pixelwise variability in face space; the GANs are able to learn to represent
these transformations as linear directions, which our method can then identify.

This further raises the intriguing possibility that if the dataset is actually distributed on a lower
dimensional space, one could learn generators with smaller latent spaces; or alternatively, it may be
easier to learn generators with large latent spaces and reduce them after intensive training. These
are questions worth exploring.
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A APPENDIX

A.1 CONNECTION TO INFORMATION GEOMETRY

It is useful to compare our work to the ”information geometry”(Amari, 2016) on the space of distri-
butions. In this formulation, KL divergence is a pseudo-metric function on the space of distributions,
and its Hessian matrix towards parameters of distribution is the Fisher information matrix. In infor-
mation geometry, this Fisher information matrix could be considered as the metric on the manifold
of distributions; this metric information can be further used to assist optimization on the manifold of
distributions, termed natural gradient descent.(Amari, 1998) In our formulation, the squared image
difference function D2 is analogous to this KL-divergence; the image G(z) as parameterized by
latent code z is analogous to the distribution pθ parameterized by θ. The metric tensor we com-
puted is comparable to the Fisher information matrix in their setting. Thus our way of using metric
information to assist optimization on manifold is analogous to natural gradient descent.
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Table 1: Computational Cost for Three Methods: Computation time is measured on a GTX 1060
GPU. Note that the iterative method are

:::
has

:
a
:

variable in runtime due to different speed
::::
which

:::::::
depends

::
on

:::
the

:::::::
number of convergence

::::::::
eigenpairs

:::
you

:::::::
require.

::
In

:::
this

:::::
table,

:::
we

:::
all

:::
use

::::
one

:::
half

::
of

::
the

::::
full

:::::::::
dimension

::
as

:::
the

::::::::::
eigenpaired

::::::::
required,

:::::
which

::
is

:::
the

::::::
largest

:::
we

:::
can

::::::
require

:::::
using

::::::::
ARPACK

:::::::::::::
implementation

::
of

::::::::
Lanczos.

::::::
Thus

::::
these

::::::::
numbers

::::::
should

:::
be

::::
seen

:::
as

:::
an

:::::
upper

:::::
limit

::
of

::::
time

:::
for

::::::::
Backward

::::
and

:::::::
Forward

::::::::
Iteration

:::::::
method.

:
A shallower or narrower network will result in faster

computation time. For StyleGAN2 which has configurable depth and width, we use the config-f.

Dimension Full BackProp Backward Iter Forward Iter
Time Time Time

DCGAN 120 12.5 13.4 6.9
FC6 GAN 4096 282.4 101.2 90.2
BigGAN 256 69.4 70.6 67
BigBiGAN 120 15.3 15.2 13.3
PGGAN 512 95.4 95.7 61.2
StyleGAN 512 112.8 110.5 64.5
StyleGAN2* 512 221 217 149

A.2 METHODS FOR COMPUTING THE HESSIAN

One direct way to compute the Hessian towards a given objective (e.g. squared distance d2 in
our case), is to compute gz0

(z) = ∂zd
2|z=z0

, create a computational graph from code z to the
gradient gz0

(z), and back propagate from gradient vector gz0
(z) element by element. In this way

the computational time is linear to time of a single backward pass times the hidden space dimension
n.

Given a large hidden space or a deep network (e.g. 4096d in FC6GAN, or 512d in StyleGAN2), this
method can be very slow. However, as the eigenspace of small eigenvalues represent directions that
do not change images much, the exact eigenvector does not matter. An efficient way is to use the
Hessian vector product (HVP) operator and iterative eigenvalue algorithms to find the eigenvectors
corresponding to eigenvalues of high amplitudes. In Power Iteration or Lancsoz Iterations, the
Hessian vector product is used to find the largest amplitude eigen pairs. However, to find the smallest
amplitude eigen pairs, Inverse Hessian vector product operator is required, it is much more expensive
to compute such operator, but practically, there is little practical use for those dimensions. Thus
we can define an arbitrary basis in the ”null” space complementing to the eigenspace with higher
amplitude eigenvalues.

There are two ways of constructing a Hessian vector product operator: one way requires the
computational graph from z to the gradient g(z), and computes the HVP by back-prop, i.e.
HV Pbackward; the other way is to use the first-order gradient and finite difference to compute HVP
i.e. HV Pforward. As it doesn’t require backpropagation, a single operation of HV Pforward is
much faster than HV Pbackward but it is less accurate and takes more iterations to converge. We
use the ARPACK(Lehoucq et al., 1998) implementation of the Lancosz algorithm as the iterative
eigenvalue solver,

HV Pbackward : v 7→ ∂z(vT g(z)) (7)

HV Pforward : v 7→ g(z + εv)− g(z − εv)

2ε‖v‖
(8)

We denote the direct method Full BackProp (BP), the iterative method using HV Pbackward and
HV Pforward Backward Iteration and Forward Iteration respectively. Empirically, we computed the
Hessian at the same z0 using these three methods in different GANs and compared their temporal
cost in Table A.2.

Note, our method can be employed to compute the singular values and right singular vectors of the
Jacobian from latent space towards any intermediate layer representation. To obtain the left singular
vector, we need to push forward the right singular vectors through the Jacobian, which is feasible
through forward-mode autodiff or finite difference.
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A.3 SPECIFICATION OF GAN LATENT SPACE

The pretrained GANs used in the paper are from the following sources.

DCGAN model is obtained from torch hub https://pytorch.org/hub/
facebookresearch_pytorch-gan-zoo_dcgan/. It’s trained on 64 by 64 pixel
fashion dataset. It has a 120d latent space, using Gaussian as latent space distribution.

Progressive Growing GAN (PGGAN) is obtained from torch hub https://pytorch.org/
hub/facebookresearch_pytorch-gan-zoo_pgan/ and we use the 256 pixel version.
It’s trained on celebrity faces dataset (CelebA). It has a 512d latent space, using Gaussian as latent
space distribution.

DeePSim, FC6GAN model is customly rewritten and translated into pytorch, with weights
obtained from official page https://lmb.informatik.uni-freiburg.de/people/
dosovits/code.html of Dosovitskiy & Brox (2016). The architecture is designed to mir-
ror that of AlexNet, and the FC6GAN model is trained to invert AlexNet’s mapping from image to
FC6 layer. Thus it has 4096 d latent space. This model is highly expressive, but not particularly
photorealistic.

BigGAN model is obtained through huggingface’s translation of DeepMind’s Tensorflow imple-
mentation https://github.com/huggingface/pytorch-pretrained-BigGAN, we
use biggan-deep-256 version. It’s trained on ImageNet dataset in a class conditional way. It has a
128d latent space called noise space, and a 128d embedding space for the 1000 classes called class
space. The 2 vectors are concatenated and sent into the network. The distribution used to sample in
noise space is truncated normal. Here we analyze the metric tensor computed in the concatenated
256d space (BigGAN) or in the 128d noise space or class space separately (BigGAN-noise, class).

BigBiGAN model is obtained via a translation of DeepMind’s Tensorflow implementation https:
//tfhub.dev/deepmind/bigbigan-resnet50/1, we use bigbigan-resnet50 version. It’s
trained on ImageNet dataset in unconditioned fashion. It has a 120d latent space, using Gaussian as
latent distribution. Note, the latent vector is split into six 20d trunks and sent into different parts of
the model, which explains why the spectrum of BigBiGAN has the staircase form (in Fig. 2).

StyleGAN model is obtained via a translation of NVIDIA’s Tensorflow implementation https://
github.com/rosinality/style-based-gan-pytorch. We use the 256 pixel output.
It has a 512d latent space called Z space, where the latent distribution is Gaussian distribution.
This Z distribution gets warped into another 512d latent space called W space, by a multi-layer
perceptron. The latent vector W is sent into a style-based generative network, in which the latent
vector modulates the feature maps in the conv layers, instead of just serves as a spatial input as in
DCGAN,FC6GAN,PGGAN. We analyzed the geometry of Z space and W space separately, and
find that the metric in W space is significantly flatter and more homeogeneous!

StyleGAN2 models are obtained via a translation of NVIDIA’s Tensorflow implementation
https://github.com/rosinality/stylegan2-pytorch. It’s similar to Style-
GAN: it has a similar structure of the 512d Z and W space, and the style-based generative
network. The various pre-trained models are fetched from https://pythonawesome.com/
a-collection-of-pre-trained-stylegan-2-models-to-download. More
specifically StyleGAN2-Face256 and 512 are both trained on FFHQ dataset, while Face256
generate lower resolution images and use narrower conv layers. StyleGAN2-Cat is trianed on
LSUN cat dataset at 512 resolution.

:::::::::
WaveGAN

:::::
model

::::
is
::::::::::

obtained
:::::::

from
:::::

the
:::::::::::

repository
:::

https://github.com/
mostafaelaraby/wavegan-pytorch/

:
.
:::::

Its
:::::::::::

architecture
:::::::::

resembles
:::::

that
:::
of

::::::::
DCGAN,

:::
but

::::::
applied

::
in
::

1
:::::::::
dimension

:::::
wave

:::::
form

:::::::::
generation

::::::::
problem.

::::
We

::::::::
customly

::::::
trained

::
it

::
on

::::
the

::::
wave

:::::
forms

::::
from

:::::
clips

::
of

:::::
piano

:::::::::::
performance.

::
It
::::
has

:
a
:::::
100d

:::::
latent

:::::
space,

:::::
using

::::::::
Gaussian

::
as

:::::
latent

:::::
space

::::::::::
distribution.

A.4 QUANTIFICATION OF POWER DISTRIBUTION IN SPECTRA

We quantified the anisotropy of the space, i.e. the low rankness of the metric tensor in Table 2.
To do this, we computed the number of eigenvalues needed such that their sum will account for a
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Table 2: Quantification of Spectra anisotropy
:::::::
(Models

:::::::
marked

::::
with

::
†
:::
are

::::::
audio

:::::
wave

::::
form

::::::::
generating

:::::::
GANs.)

:

dimen dim.99 dim.999 dim.9999 dim.99999
FC6 4096 297 502 661 848
DCGAN-fashion 120 17 35 65 97
BigGAN 256 10 53 149 224
BigGAN noise 128 29 88 120 127
BigGAN class 128 8 38 98 123
BigBiGAN 120 21 41 62 73
PGGAN-face 512 57 167 325 450
StyleGAN-face Z 512 12 27 52 84
StyleGAN2-face512 Z 512 7 17 41 78
StyleGAN2-face256 Z 512 13 28 63 103
StyleGAN2-cat Z 512 8 14 31 62
StyleGAN-face W 512 124 355 480 507
StyleGAN2-face512 W 512 153 345 471 506
StyleGAN2-face256 W 512 157 350 473 506
StyleGAN2-cat W 512 23 57 126 269
:::::::::::::::
WaveGAN MSE†

:::
100

: ::
17

::
38

: ::
74

::
94

:

:::::::::::::::
WaveGAN STFT†

:::
100

: :
2
: :

9
::
19

::
42

:

fraction of 0.99, 0.999, 0.9999, 0.99999 of the sum of all eigenvalues. This can be thought of as the
fraction of dimensions one needs to achieve a low rank approximation of the Jacobian with 0.01,
0.001, 0.0001, 0.00001 residue in terms of the Frobenius norm.

A.5
:::::::::::
GEOMETRIC

:::::::::::
STRUCTURE

::
IS

:::::::
ROBUST

:::
TO

::::
THE

::::::
IMAGE

::::::::::
DISTANCE

:::::::
METRIC

:::
Our

:::::
work

::::
used

:::
the

::::::
LPIPS

:::::::
distance

::::::
metric

::
to

:::::::
compute

:::
the

::::::::::
Riemannian

::::::
metric

::::::
tensor.

:::
To

::::::::
determine

:::
how

:::::
much

:::
of

:::
the

::::::
results

::::::::
depended

:::
on

:::
this

::::::
choice

::
of

:::::::
metric,

:::
we

::::::::
computed

:::
the

::::::
metric

:::::
tensor

::
at
:::

the
::::
same

::::::
hidden

::::::
vector

:::::
using

::::::::
different

:::::
image

::::::::
distance

::::::::
functions,

::::::::::
specifically

:::
a)

::::::::
structural

::::::::
similarity

::::
index

::::::::
measure

:::::::
(SSIM)

:::
and

:::
b)

:::::
Mean

:::::::
Squared

:::::
Error

::::::
(MSE)

:::
in

::::
pixel

::::::
space,

::::::
which

:::
do

:::
not

::::::
depend

::
on

::::::
CNN.

:::
We

:::::::::
computed

:::
the

::::::::
Hessian

::
at

::::
100

:::::::
random

::::::::
sampled

::::::
vectors

:::
in

::::::::
BigGAN,

::::::::::
Progressive

:::::::
Growing

:::::
GAN

::::::
(Face),

::::::::::
StyleGAN2

:::::
(Face

:::::
256),

:::::
using

:::::
MSE,

::::::
SSIM

:::
and

::::::
LPIPS,

::::
and

::::
then

::::::::
compared

::
the

:::::::
Hessian

::::::::
spectrum

:::
and

:::::::::::
eigenvectors.

::::
We

:::::
found

:::
that

:::
the

:::::::::
entry-wise

:::::::::
correlation

::::::
across

:::
the

::::::
Hessian

:::::::
matrices

:::
(d2

::::::::
elements)

::::::
ranged

:::::
from [

:::::::
0.94-0.99]

:
.
:::
The

::::::::::
correlation

::
of

:::::::::
eigenvalue

::::::
spectra

::::::
ranged

::::
from

[
:::::::::
0.987-0.995].

:::::::::::
Measuring

:::::::
Hessian

::::::::
similarity

::::::
using

:::
the

::::::::
statistics

:::
we

:::::::
derived

::::::
CHlog

:::
and

::::::
CHlin

::::::
resulted

::
in

::::::::::
correlations

:::::::::::
concentrated

::
at

:::::
0.99.

:::::
Thus,

:::
we

:::::
found

:::
that

:::
the

:::::::
Hessian

::::::
matrix

:::
and

::
its

::::::
spectra

::::
were

::::::
highly

::::::::
correlated

::::::
across

:::::
image

::::::::
distance

:::::::
metrics,

:::
and

::::
that

:::
the

:::::::
Hessian

:::::::
matrices

::::
had

:
a
::::::
similar

:::::
effect

::
on

:::
the

::::::::::
eigenvectors

:::
of

::::
each

:::::
other.

:::
One

::::::
major

:::::::::
difference

:::::
across

::::::::
Hessians

:::::
from

::::::::
different

:::::
Image

::::::::
Distance

::::::
Metric

::::
was

:::::::
evident

::
in

:::
the

::::
scale

::
of

:::
the

:::::::::::
eigenvalues.

:::
We

::::::::
regressed

:::
the

:::
log

:::::::
Hessian

:::::::
spectra

:::::::
induced

::
by

:::::
SSIM

:::
or

::::
MSE

::::
onto

:::
the

:::
log

:::::::
Hessian

::::::::
spectrum

:::::::
induced

::
by

:::::::
LPIPS,

:::
and

::::::
found

:::
the

::::::::
intercepts

::
of
::::

the
::::::::
regression

:::::
were

::::::
usually

:::
not

::::
zeros

:::::
(Tab.

:::
5).

:::::
This

:::::
result

::::::
showed

::::::::
different

:::::
image

::::::::
distance

::::::
metrics

::::::
exhibit

::::::::
different

:::::
”unit”

::
or

:::::::
intrinsic

:::::
scale,

:::::::
although

::::
they

::
all

:::::::
factored

::::
out

::
the

:::::
same

::::::::
structure

::
in

:::
the

:::::
GAN.

::::
This

::::
result

::
is
::::::::::::
contextualized

:::
by

::::::
Section

::
5.

:::
As

:::::::
equation

::
3
:::::::
showed,

:::
the

::::::::::
Riemannian

::::::
metric

::
or

::::::
Hessian

::
of

:::
the

:::::
GAN

:::::::
manifold

::
is
:::
the

:::::
inner

:::::::
product

::::::
matrix

::
of

:::
the

:::::::
Jacobian

:::
of

:::
the

:::::::::::::
representational

:::::
map.

:::
The

:::::
effect

::
of

:::::
image

:::::::::
difference

:::::
metric

:::
on

:::
the

::::::::::
Riemannian

::::::
metric

:
is
::
to
::::
add

:
a
::::
few

::::
more

:::::
terms

::
to

:::
the

:::
top

::
of

::
the

:::::
chain

::
of

:::::::::
Jacobians.

::::
The

:::::::
Jacobian

:::::
terms

::::
from

:::
the

::::::
layers

::
of

::::
GAN

:::::
seem

::
to

::::
have

::
a

:::::
larger

:::::
effect

:::
than

::
the

::::
final

:::::
terms

:::::::
coming

::::
from

:::
the

::::::
image

::::::::::
dissimilarity

::::::
metric.

:

::::
Note

:::
that

::::
this

::::::
doesn’t

:::::
mean

::::
that

:::
the

::::::
choice

::
of

::::::
sample

:::::
space

::::::::
distance

:::::::
function

::
is

:::::::::
irrelevant.

:::::
Going

::::::
beyond

:::::
image

::::::::::
generation,

:::::
when

:::::::
applying

:::
our

:::::::
method

::
to

::
an

:::::
audio

:::::::::
generating

::::::
GAN,

:::
the

:::::::::
WaveGAN,

::
we

::::::
found

:::
that

:::
the

::::::
choice

::
of

:::::::
distance

::::::::
function

::
in

:::
the

:::::
space

::
of

::::::
sound

:::::
waves

::::
will

::::::::::
substantially

:::::
affect

::
the

::::::::
Hessian

::::::::
obtained.

::::
We

::::
used

:::
the

:::::
MSE

::
of

:::::
wave

::::::
forms

:::
and

:::::
MSE

:::
of

:::::::::::
spectrograms

::::::::
(denoted

::
by

:::::
STFT)

::
to
::::::::
compute

:::::
metric

::::::
tensor

::
of

::::
that

:::::
sound

:::::
wave

::::::::
manifold.

:::
We

:::::
found

:::
the

::::::::::::
element-wise

::::::
Hessian

:::::::::
correlation

:::::::
between

:::::
these

::
is

::::::
around

::::
0.53,

::::::
while

:::
the

::::
other

:::::::
Hessian

:::::::::
similarity

:::::
metric

::::
are

:::
also

:::::
lower
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Table 3:
::::::::
Similarity

:::
of

:::::::
Hessian

::::::::::
Computed

::::
with

:::::::::
Different

:::::::
Sample

::::::::::::
Dissimilarity

::::::
Metric

::
d

::
We

:::::::::::
experimented

::::
with

::::::::
BigGAN,

::::::::
PGGAN

::::
and

::::::::::
StyleGAN2

::::::
(FFHQ

::::
256

::::::::::
resolution),

:::
we

::::::::
compared

:::
the

::::::
Hessian

:::::::::
computed

:::
by

:::::
LPIPS

::::
and

::::
that

::
by

:::::
MSE

:::
or

:::::
SSIM

::
at

::::
100

::::::
hidden

:::::::
vectors.

::::
The

:::::::
statistics

:::
we

::::::
showed

::::
are:

:::::::::::
element-wise

:::::::
Hessian

:::::::::
correlation

:::
(H

:::::
corr),

:::::
eigen

::::::
spectra

:::::::::
correlation

::::::
(eigval

:::::
corr),

:::
the

::::::
Hessian

::::::::::
consistency

::::::::
measure

:::::
CHlin

::::
and

::::::
CHlog .

::::
The

::::::
linear

::::::::
regression

::::::::
between

:::
the

:::
log

::::::
spectra

::
of

:::::
LPIPS

:::
the

::::
and

:::
that

::
of

:::
the

:::::::::
alternative

::::::
(SSIM

::
or

::::::
MSE)

:::::
yields

:::
the

:::::
slope

:::
(reg

::::::
slope)

:::
and

::::::::
intercept

:::
(reg

::::::::
intercept).

::::
The

:::::
mean

:::
and

::::::::
standard

::::::::
deviation

::
(in

:::::::::::
parenthesis)

::
of

:::
the

:::
the

:::
100

::::::::
statistics

:::
are

::::::
shown.

::
In

::
the

:::::
final

::::
row,

::::::::::
WaveGAN†

::
is

::
an

:::::
audio

:::::::::
generating

::::::
GAN.

:::
We

::::::::
measured

:::
the

::::::::
similarity

:::
of

:::
the

::::::
Hessian

::::
using

:::::
MSE

::
of

:::::
wave

::::::
forms

::::::
(MSE)

:::
and

:::
the

:::::
MSE

::
of
:::::::::::

spectrogram
::::::
(noted

::
by

::::::
STFT)

:::
as

::::::::::
dissimilarity

::::::
metric.

:::::::
Hessian

::::::::
computed

:::::
using

::::
these

::::
two

::::::::
measures

:::
are

:::
less

::::::
similar

::
to
:::::
each

:::::
other.

::
H

:::
corr

: :::::
eigval

::::
corr

:::::::
CHlinn

:::::
CHlog

: :::
reg

::::
slope

: :::
reg

:::::::
intercept

:

:::::::
BigGAN

::::
MSE

: :::::::::::
0.973(0.033)

:::::::::::
0.995(0.008)

:::::::::::
0.996(0.014)

:::::::::::
0.999(0.001)

:::::::::::
1.006(0.027)

:::::::::::
1.467(0.219)

:::::
SSIM

:::::::::::
0.988(0.012)

:::::::::::
0.997(0.003)

:::::::::::
0.999(0.002)

:::::::::::
0.999(0.001)

:::::::::::
1.057(0.021)

:::::::::::
-0.404(0.072)

:

:::::::
PGGAN

::::
MSE

: :::::::::::
0.938(0.047)

:::::::::::
0.987(0.016)

:::::::::::
0.987(0.038)

:::::::::::
0.999(0.000)

:::::::::::
1.023(0.020)

:::::::::::
1.746(0.193)

:::::
SSIM

:::::::::::
0.970(0.020)

:::::::::::
0.993(0.009)

:::::::::::
0.997(0.007)

:::::::::::
0.999(0.000)

:::::::::::
1.056(0.012)

:::::::::::
-0.234(0.107)

:

:::::::::
StyleGAN2

::::
MSE

: :::::::::::
0.945(0.035)

:::::::::::
0.989(0.011)

:::::::::::
0.990(0.020)

:::::::::::
0.987(0.011)

:::::::::::
1.133(0.155)

:::::::::::
1.324(0.337)

:::::
SSIM

:::::::::::
0.945(0.047)

:::::::::::
0.987(0.015)

:::::::::::
0.988(0.027)

:::::::::::
0.991(0.008)

:::::::::::
1.075(0.182)

:::::::::::
-0.174(0.263)

:

::::::::::
WaveGAN†

::::::::::
MSE-STFT

:::::::::::
0.529(0.229)

:::::::::::
0.892(0.088)

:::::::::::
0.661(0.313)

:::::::::::
0.938(0.062)

:::::::::::
1.088(0.052)

:::::::::::
4.673(0.303)

:::
than

:::
the

:::::::::::
counterparts

::
for

::::::::
BigGAN,

::::::::
PGGAN

:::
and

::::::::::
StyleGAN2

:::
(5).

:::
We

:::::
think

:::
the

::::
MSE

::
of

:::::::::::
spectrograms

::
are

::::::
better

:::
and

:::::
more

:::::::::
perceptual

:::::::
distance

:::::::
measure

::
of

::::::
sound

::::
wave

::::
than

:::::
MSE

::
of

:::::
wave

::::::
forms,

:::
and

:::
this

::::::::
difference

:::
are

::::::::
reflected

::
in

:::::
their

::::::::
geometry

:::::::
property

:::
i.e.

::::::::::
anisotropy

::::
and

:::::::::::
homogeneity

:::::
(Tab.

:::
2,

::
4).

:::::
Thus,

::::
when

::::
and

::::
how

:::
the

::::::
sample

:::::
space

:::::::
distance

:::::
metric

::::
will

:::::
affect

:::
the

::::::::
geometry

::
of

:::::::::
generative

:::::
model

:::
still

:::::::
requires

:::::
more

::::::::::
development

::
to
:::
be

::::::::
answered.

:

A.6 RANDOM MIXING OF SPECTRA

Here we give a simple derivation of why a highly ill-conditioned Hessian matrix may appear normal,
under the probe of random vectors. Given a symmetric matrix H , and its eigen decomposition
UΛUT , we computed its effect on an isotropic random vector v, α(v) = vTHv/vTv, and v ∼
N (0, I). This random variable represents the effect of the symmetric matrix on random directions.

Note that a change of variable using the orthogonal matrix w = UTv will not change the distribution
w ∼ N (0, I). Through this the random variable α could be rewritten as

α(v) =
vTHv

vTv
=

∑
i

λi
‖uTi v‖22
‖v‖22

, v ∼ N (0, I) (9)

=
∑
i

λiw
2
i /

∑
i

w2
i , wi ∼ N (0, I) i = 1, 2...d (10)

=
1∑
i w

2
i

∑
i

λiw
2
i =

∑
i

ciλi (11)

ci := w2
i /

∑
i

w2
i (12)

As each element in w is distributed as i.i.d. unit normal, w2
i is distributed as i.i.d. chi-square

distribution of parameter 1. w2
i ∼ χ2(1) ∼ Γ( 1

2 ,
1
2 ). Thus the normalized weights ci = w2

i /
∑
i w

2
i

conform to a Dirichlet distribution c ∼ Dirichlet( 1
2 ,

1
2 , ...

1
2 ). Through moment formula of Dirichlet

distribution, it is straightforward to compute the mean and variance of α(w) = cTλ

E[α] =λTE[c] =
1

n

∑
i

λi (13)

V ar[α] =λTCov[c]λ =
2

n(n+ 2)

∑
i

λ2i −
2

n2(n+ 2)
(
∑
i

λi)
2 (14)

V ar[λ] =
1

n

∑
i

λ2i −
1

n2
(
∑
i

λi)
2 =

n+ 2

2
V ar[α] (15)
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As we can see, the variance of the effect on random directions scales 1/n relative to the variance
of original eigenvalue distribution. This is why the distribution is much tighter than the whole
eigenvalue distribution.

This phenomenon may explain why the perceptual path length regularization as used in Karras
et al. (2020) doesn’t really result in a flat spectrum. This regularization is to minimize Ev‖α(v) −
b‖2, which is to minimize the variance of the distribution of α(v) with v sampled from normal
distribution, as in Fig. 6. The global minimizer for this regularization is indeed a mapping with flat
spectrum. However, through our derivation, we can see even for highly anisotropic spectrum, this
variance will not be very large. Thus we should expect a limited effect of this regularization.
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Figure 6: Spectral Histogram compared to Apparent Anistropy in Different GAN models
(FC6GAN, DCGAN, BigGAN, BigBiGAN, PGGAN, StyleGAN, StyleGAN2) The apparent speed
of image change α(v) has much smaller variability than the variability in the whole spectra. Eq. 13
can predict the mean and std of the apparent variability.

A.7 METHOD TO QUANTIFY METRIC SIMILARITY

We developed our own statistic to quantify the similarity of metric tensor between different points.
Here we discuss the benefits and caveats of it.

Angles between eigenvectors per se are not used, because eigenvectors are likely to rotate into each
other when computing eigendecomposition in the presence of close-by eigenvalues (Van der Sluis
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& Van der Vorst, 1987). However, the statistics should be invariant to this eigenvector mixing,
and take the eigenvalues into account. We applied the eigenvectors U1 = [u1,i, ...] of one matrix
H1 to the other H2 and examined the length of these vectors as measured by the other matrix
as the metric tensor, αH2

(u1,i) = uTi H2ui. Recall that αH1
(u1,i) = uT1,iH1u1,i = λ1,i and

αH2
(u2,i) = uT2,iH2u2,i = λ2,i. If the eigenvectors fall in the eigenspace of the same eigenvalue

in H2, then α(u1,i) will equal the eigenvalue, and thus our statistic is invariant to rotation within
the eigenspace. If the eigenvectors are totally uncorrelated, the resulting α(u1,i) will distribute in a
tight distribution. As we compute the correlation between the eigenvalue λ2,i = αH2(u2,i) and the
αH2(u1,i), we summarize the similarity of action of H2 on eigenvectors U1 and U2.

However, this method assumes an anisotropy of spectra in both metric tensors. For example, if both
tensors are identity matrices H1 = H2 = I , then this correlation will give NaN, as there is no
variation in the spectra to be correlated. Similarly,if metric has has a spectrum closer to flat, then
it will generally have a smaller correlation with others. In that sense, spectral anisotropy also plays
a part in our statistics for metric similarity or homogeneity of the manifold. In all the GAN space
we examined, there is a strong anisotropy in the metric spectra, thus this correlation works fine. But
there is caveat for comparing this correlation between two GANs when there is also difference in
the anisotropy in their spectra, as a smaller anisotropy can also results in a smaller metric similarity.

Finally, we are aware that several measures of distance in the space of symmetric positive definite
matrices (SPSD) have been proposed (Yuan et al., 2020). Thus, there are different ways to compute
an average metric tensor using these distance function. Here we picked the simplest one: averaging
the metric tensors element by element.

Table 4: Quantification of Manifold Homogeneity by metric conisistency CHij on log scale and
linear scale. Same data generating Fig. 3 D.

:::::::
Models

::::::
marked

::::
with

::
†

:::
are

:::::
audio

::::
wave

:::::
form

::::::::
generating

::::::
GANs.

Log scale Linear Scale
mean std mean std

FC6GAN 0.984 0.002 0.600 0.119
DCGAN 0.920 0.028 0.756 0.192
BigGAN 0.934 0.024 0.658 0.186
BigBiGAN 0.986 0.007 0.645 0.180
PGGAN 0.928 0.014 0.861 0.123
StyleGAN-Face Z 0.638 0.069 0.376 0.160
StyleGAN2-Face512 Z 0.616 0.052 0.769 0.181
StyleGAN2-Face256 Z 0.732 0.037 0.802 0.130
StyleGAN2-Cat256 Z 0.700 0.040 0.689 0.151
StyleGAN-Face W 0.878 0.037 0.780 0.190
StyleGAN2-Face512 W 0.891 0.048 0.838 0.127
StyleGAN2-Face256 W 0.869 0.052 0.756 0.159
StyleGAN2-Cat256 W 0.895 0.118 0.539 0.216
:::::::::::::::
WaveGAN MSE†

:::::
0.906

:::::
0.022

:::::
0.776

:::::
0.139

:::::::::::::::
WaveGAN STFT†

:::::
0.809

:::::
0.096

:::::
0.467

:::::
0.285

A.8 GEOMETRIC STRUCTURE OF WEIGHT-SHUFFLED GANS

Here we show the geometric analysis for the shuffled controls for all our GANs. Specifically, we
shuffled the elements of each layer weight tensor to keep the overall weight distribution unchanged.
To show how learning affected the geometry of the image manifold, we computed the spectra and
the associated metric consistency statistic for weight-shuffled GANs2.

In Fig. 7, we showed that the shuffled controls exhibited a flatter spectrum and a smaller top eigen-
value. There, the correlation of metric tensors in shuffled GANs shows an unclear result. In some

2We were unable to obtain a sensible spectra for either shuffled or randomly initialized BigBiGAN possibly
due to its architecture; but we show the comparison for all other models.
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GANs, there remains strong correlations in the metrics across locations, while in some, the correla-
tion is close to zero. We think the reason is that our statistic for homogeneity (i.e. a correlation of
action of metric tensors CHlogij ) somewhat entangles homogeneity with the anisotropy of the space.
That is, when the space has a totally flat spectrum (the map is isometric), then the correlation co-
efficient of action will be zero, although the metric tensor will be the same everywhere. Thus the
change of anisotropy and the change of homogeneity may interfere with each other, thus shuffling
can result in a mixed result. We are working to develop new statistics that will measure the similarity
of the Hessian, invariant of anisotropy.
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Figure 7: Comparing Spectra of Original and Weight Shuffled GANs: Most Shuffled GAN
shows a slower spectral decay and a smaller maximum eigenvalue.

A.9
:::::::::
DETAILED

::::::::::::
COMPARISON

:::
TO

:::::::::
PREVIOUS

::::::::::::::
UNSUPERVISED

::::::
WAYS

:::
TO

:::::::::
DISCOVER

::::::::::::::
INTERPRETABLE

:::::
AXES

::::
Here

::::
we

::::::::
compare

:::::
the

:::::
axes

::::::::::
discovered

::::
by

::::
our

::::::::
method

:::::
with

::::::
those

:::::
from

:::
a
::::::::

previous
::::::::
approach.

:::::::::::::
Specifically,

::::
we

:::::::
applied

::::
our

:::::::
method

:::
to

::::
the

:::::
same

::::::::::
pre-trained

:::::::
GANs

:::::
used

::
in

::::::::::::::::::::::
Voynov & Babenko (2020),

::::::::::
comparing

:::
the

:::::
axes

::::
they

::::::::::
discovered

::::::
versus

::::
our

:::::::
Hessian

::::::::
structure.

::::::::
Although

:::
this

:::::::
method

:::::::
follows

::
a

:::::
much

:::::
more

::::::::
different

::::::::
approach

::::::::
compared

:::
to

::::
ours

::::
and

:::::
those

::
of
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Table 5:
:::::::
Hessian

::::::::::::::
preconditioning

::::::::
improves

:::::
GAN

::::::::
inversion

::::
The

::::
mean

::::
and

:::::::
standard

::::
error

::
of

:::::
fitting

::::
score

:::::::::
(minimum

::::::
LPIPS

::::::::
distance

::
to

:::::
target

:::::
using

::
4
:::::::
random

:::::
initial

:::::::
vectors)

::::
are

:::::
noted

::
in

:::
the

:::::
table,

:::::
which

::
is

:::
the

::::
same

::::
data

:::::::::
generating

::
5

Hessian None
:::::
GAN

:::::
Target

::::::
Image

:::::
Mean

::::
SEM

: :::::
Mean

::::
SEM

:

:::::::::::::
StyleGAN1024

::::::
CelebA

: :::::
0.334

:::::
0.002

:::::
0.344

:::::
0.002

:::::::::::::
StyleGAN1024

:::::
FFHQ

: :::::
0.231

:::::
0.003

:::::
0.236

:::::
0.003

:::::::::::::
StyleGAN1024

:::::::
GANgen

: :::::
0.055

:::::
0.002

:::::
0.060

:::::
0.003

:::::::
PGGAN

: ::::::
CelebA

: :::::
0.179

:::::
0.003

:::::
0.207

:::::
0.003

:::::::
PGGAN

: :::::
FFHQ

: :::::
0.175

:::::
0.003

:::::
0.197

:::::
0.003

:::::::
PGGAN

: :::::::
GANgen

: :::::
0.045

:::::
0.003

:::::
0.027

:::::
0.001

:::::::
BigGAN

: ::::::::
ImageNet

: :::::
0.162

:::::
0.003

:::::
0.189

:::::
0.003

:::::::
BigGAN

: :::::::
GANgen

: :::::
0.144

:::::
0.003

:::::
0.195

:::::
0.003

:::::::::::::::::::::::::::::::::::
(Härkönen et al., 2020; Shen & Zhou, 2020)

:
,
:::
we

::::::
thought

::
it
::::::
would

::
be

:::::::::
interesting

::
to

:::::::::
determine

::
if

::
the

::::::::::
interpretable

::::
axes

:::::::::
discovered

::
in

::::
their

::::::::
approach

::::
had

:
a
::::::::::
relationship

::::
with

:::
the

:::::::
Hessian

:::::::
structure

::::::
defined

:::::
above.

:::
If

:::
so,

::::
this

:::::
could

:::::
serve

::
as

:::::::::::
independent

:::::::::::
confirmation

::
of

:::
the

:::::::::::
effectiveness

:::
of

::::
both

:::::
types

::
of

:::::::::
approaches.

:

::
In

::::
their

::::::
work,

::::
for

:::::
each

:::::::::
generative

::::::::
network

:::
G,

::::
two

:::::::::
additional

:::::::
models

:::::
were

:::::::::::::
simultaneously

::::::
trained

::
to

:::::::
discover

:::::::::::
interpretable

:::::
axes:

::
a
::::::::::::
”deformator”

:::
M

:::
and

::
a
::::::
”latent

::::
shift

:::::::::
predictor”

:::
P .

::::
The

:::::::::::
”deformator”

:::
M

::::::
learned

:::
to

:::::::
propose

::::::
vectors

:::::
{vi}::

to
::::
alter

::::
the

::::::
image,

::::::
which

::::
were

:::::
used

::
to

:::::
create

::::::
images

::::
pairs

:::::::::::::::::
(G(z), G(z + vi)):::::

using
:::::::
random

::::::::
reference

:::::::
vectors

:::
z;

:::
the

::::::
”latent

:::::
shift

::::::::
predictor”

::
P

::::
took

::
in

:::
the

:::::::
images

::::
pairs

::::
and

:::::::
learned

::
to

:::::::
classify

:::
the

::::::::
direction

::
in

::::::
which

:::
the

:::::
latent

::::
code

::::::
shifted

::::::::::::::::::::::
v̂i = P (G(z), G(z + vi)).

::::
The

::::
axes

:::::::
learned

:::
by

:::
the

:::::::::
deformator

:::
M

:::::
were

:::::::::::
subsequently

::::::::
annotated

:::
and

:
a
::::::
subset

:::
was

:::::::
selected

:::
by

:::::::
humans.

:

:::::
Using

::::
their

:::::
code,

:::
we

:::::::::
compared

:::::
these

::::::::
annotated

::::
axes

::::
with

::::
the

:::::::
Hessian

:::::::
structure

:::
we

:::::::::
computed

::
on

::::
their

::::::
GANs

:::::::::::
(PGGAN512,

::::::::
BigGAN

:::::
noise

::::
and

:::::::::
StyleGAN

::::::
Face).

:::
In

:::::::::::
PGGAN512,

:::
we

::::::
found

:::
that

::::
their

:::::::::
discovered

::::
axes

:::
had

::
a
::::::::::
significantly

:::::
larger

::::::
vTHv

::::
(i.e.

::::::::::
approximate

::::
rate

::
of

::::::
image

:::::::
change)

:::
than

::::::
random

::::::
vectors

::
in

::::
that

:::::
space;

::
in

:::::
other

::::::
words,

::::
their

::::
axes

::::
were

:::::::::::
significantly

::::
more

:::::::
aligned

::::
with

::
the

:::
top

::::
eigen

:::::
space

:
(
::
P

:
¡
::::
0.05

::
for

:::
all

:::::
axes).

:::::::
Further,

:::
we

::::::
wanted

::
to

:::::::::
investigate

:::::::
whether

::::
their

::::
axes

::::::
aligned

::::
with

::::::::
individual

:::::::::::
eigenvectors

:::::::
identified

:::
by

:::
our

:::::::
Hessian

::
or

:::::::
whether

::::
their

::::
axes

::::::::
randomly

:::::
mixed

::::
with

::::
our

::
top

::::
eigen

::::::
space.

:::
To

::::::
achieve

::::
this

::::
goal,

:::
we

::::::
search

:::
for

:::
the

:::::
power

::::::::::
coefficients

:::
that

:::
are

:::::::::::
significantly

:::::
higher

:::
than

::::::::
expected

:::::
from

::::::::
projection

:::
of

:::
unit

:::::::
random

::::::
vector.

::
In

::::
fact,

:::
for

:::::
each

:::
and

:::::
every

::
of

:::
the

:::::::::
discovered

::::
axes,

:::
we

:::::
found

::::
1-3

::::::::::
eigenvectors

::::
that

::::
they

:::
are

:::::::::::
significantly

:::::::::::::
(p < 5× 10−4)

::::::
aligned

:::
to.

:::::::::
Moreover,

::::
these

:::::::
strongly

:::::::
aligned

::::::::::
eigenvectors

::::
are

::
all

::
in
::::

our
:::
top

:::
60

::::
eigen

:::::::::::
dimensions,

::
in

::::
fact,

::
3

::
of

::::
their

::::
axes

::::::
aligned

::::
with

::::::::::
eigenvector

::
11

::::
and

:
2
::
of

::::
their

::::
axes

:::::::
aligned

::::
with

:::
our

::::::::::
eigenvector

::
6.

:::::
(Fig.8

:::
A)

::::::::
Moreover,

::
we

::::::::
”purify”

::::
their

:::::
axes

::
by

:::
a)

::::::::
retaining

::::::::
projection

::::::::::
coefficients

:::::
only

::
in

:::
top

:::
60

::::::::::::
eigenvectors,

::
or

::
b)

:::::::
retaining

:::
the

::::::::::
coefficients

::::
only

::
in
:::

the
::::

1-3
:::::::
strongly

:::::::
aligned

::::
eigen

:::::::
vectors

:::
and

:::
set

:::
all

:::
the

:::::
other

::::
500+

:::::::::
coefficients

::
to
:::::

zero,
::::
and

::::::::
compared

::::
their

::::::
effect

::
on

::
a
::::
same

:::
set

:::
of

::::::::
reference

:::::::
vectors,

:::::
using

:::
the

::::
same

:::
step

:::::
size.

:::
We

::::::
found

:::
that

:::
by

::::::
project

:::
out

::::::::::
coefficients

::
in
::::

the
:::::
lower

:::::
space,

:::
the

::::::
image

::::::::::::
transformation

:
is
:::::::::::
perceptually

::::
very

::::::
similar

:::::
(Fig.8

:::::
B,C).

::
If
:::
we

::::
only

::::::
retains

:::
the

:::::::::::
eigenvectors

:::
that

::
it

::::::
highly

:::::
aligns

::
to,

::
the

::::::
image

::::::::
transform

::::
will

:::
be

::::
more

::::::::
different,

:::
but

:::
the

:::::::::
annotated

::::::::
semantics

::
in
:::

the
:::::::::

transform
:::::
seems

::
to

::::
keep

:::::
(Fig.8

:::::
D,E).

:::::
Thus,

::::
their

:::::::
method

::::
also

:::::::::
discovered

:::
that

:::
the

:::
top

::::::::::
eigenspace

::
of

:::::::
PGGAN

::::::::
contained

:::::::::
informative

::::::::::::::
transformations,

::::
and

::::::
further

:::::::::
confirmed

::::
that

:::::::::
optimizing

:::::::::::::
interpretability

::::
may

:::::::
improve

::::::::
alignment

::::
with

:::::::::
individual

::::
eigen

:::::::
vectors

:::::
rather

::::
than

::::::
mixing

::
all

:::
the

:::::
eigen

::::::::::
dimensions.

:

::::
Note,

:::
as

:::
we

::::::
project

:::
out

::::::::::
coefficients,

:::
the

::::::::
resulting

:::::
vector

::::
has

:
a
:::::::
smaller

::::
than

:::
unit

::::::
norm,

::::
thus

::
we

:::
are

::::::
moving

::
a

::::::
smaller

:::::::
distance

::
in

:::::
latent

:::::
space

:::::
using

:::
the

:::::
same

::::
step

:::
size

:::
(8

:::
B-E

:::::
title).

::
If
:::

we
::::::::::
renormalize

::
the

::::::
vector

::
to

:::
unit

:::::
norm

:::
we

:::
will

:::::
need

:
to
::::
take

::
a

::::::
smaller

::::
step

:::
size

::
to

::::::
achieve

:::
the

:::::
same

:::::::::
transform.

::::
This

:
is

:::::::::
confirming

:::
our

:::::::::
predictions

::
in
::::
Sec.

::
4:
:::::

Each
:::::::::::
interpretable

:::
axis

::::
has

:
a
::::::
family

::
of

:::::::::
equivalent

::::
axes,

:::::
which

:::
add

::
a

:::::::
direction

:::
in

:::
the

:::::
lower

::::::::::
eigenspace

::
or

::::
null

:::::
space

::
of
::::

the
:::::
GAN.

::::::
These

::::
axes

::::::
encode

::::
the

::::
same

:::::::::
transforms

:::
but

:::
the

::::::
speeds

::
of

:::::
image

:::::::
change

::
on

:::::
them

:::
are

::::::::
different.

::
In

::::
this

:::::
sense,

:::
the

:::
top

:::::::::
eigenspace

::::
could

:::
be

::::
used

::
to

:::::::
provide

:
a
:::::::
”purer”

::::::
version

::
of

:::
the

:::::::::::
interpretable

::::
axes

:::::::::
discovered

:::::::::
elsewhere.

::::::::
Although

::::
both

::::
types

::
of

::::::::::
approaches

::
are

:::::::::
promising,

:::
by

::::::::
removing

:::
the

::::
need

::
to

::::
train

::::::::
additional

::::::::
networks,

:::
our

::::::
method

::::
can

:::
be

::::::
viewed

:::
as

:
a
:::::

more
::::::::

efficient
::::
way

::
to

:::::::
identify

::::::::::
informative

:::::
axes.

::::::::
Further

::::
work
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:::::::::
comparing

::::
axes

:::::::::
discovered

::
by

:::::::
different

::::::::
methods

:::
will

::::::::
elucidate

:::
the

:::::::::
connection

:::::::
between

::::::::::
interpretable

::::
axes

:::
and

:::
the

:::::::
Hessian

:::::::
structure

:::::
more.

:
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Figure 8:
:::::::::
Analyzing

::::::::::::
interpretable

::::
axes

:::::
from

::::::::::::::::::::::::
(Voynov & Babenko, 2020)

:::::
under

::::
the

:::::::
Hessian

::::::::::
framework.

:::
A.

::::::::
Projection

::::::
power

::
of

::::
their

::::
axes

::::
and

:
6
::::
unit

:::::
norm

::::::
random

:::::::
vectors

::
on

:::
the

:::
top

:::
40

::::
eigen

::::::
vectors.

::::
The

::::
color

:::::
code

:
is
::::::::
matched.

::::
The

:::
red

:::
line

:::
on

:::::::
colorbar

::::::
denotes

::::::::::::
p < 1× 10−4

::::::::
threshold

:::
for

::
the

:::::
power

:::::
value,

::::
and

:::
the

::::::::::
significantly

::::::
aligned

::::
axes

::::::::::::
p < 5× 10−4

:::
are

:::::::::
indicated.

::::
B,C,

:::::
Image

:::::::::
transforms

:::::::
encoded

::
by

:::::::::
projection

::
of
::

2
:::
of

::::
their

::::::
vectors

::::
(19,

::::
20)

:::
into

:::
the

::::
top

:::
60d

::::::::::
eigenspace.

:::::
D,E

::::::
Similar

::
to

::::
B,C,

:::
but

::::
their

::::::
vectors

:::
are

::::::::
projected

::::
onto

:::
the

:::::::
aligned

::::::::::
eigenvectors

:::::
only.

::::
The

:::::
norms

:::
of

:::
the

:::::::
projected

::::::
vectors

:::
are

:::::
noted

::
on

::::
title.

:::::
Panel

::::
B,D

:::
and

::::
C,E

:::::
share

::
the

:::::
same

::::::::
reference

:::::
image

::::
and

:::
the

::::
same

::::
step

:::
size

:::::
across

::::
each

::::
mini

:::::::
column,

::::::
though

:::
the

::::::::
distance

:::::::
travelled

:::::
along

:::
BC

::::
and

:::
DE

::
is

::::::
smaller

::
as

:::
the

::::::
vector

:
is

::::::::
shortened.
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StyleGAN

ProgGrowGAN

StyleGAN2 Face256

StyleGAN2 Face512

StyleGAN2 Face1024

Figure 9: Similar transforms encoded in the top eigendimension of GANs trained on same face
dataset. Linear exploration along top 20 eigenvectors from origin in latent space are showed for each
GAN. Linear equi-distance sampling on each eigenvector occupies a column and their eigenvalues
are sorted in descending order from left to right. Step size along each vector is adjusted according
to its eigenvalue for best continuity.
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Consistency of Action 
of Eigenvector on 
Di�erence References

StyleGAN2 Cat Eig1

StyleGAN2 Cat Eig4

StyleGAN2 Cat Eig10

StyleGAN Face Eig1

StyleGAN Face Eig3

StyleGAN Face Eig5

Figure 10: Top eigenvectors encode similar transforms around different reference images. Lin-
ear equidistant explorations from six randomly chosen reference images along the eigenvectors of
averaged Hessians. These show qualitatively similar transforms to images — for example, proxim-
ity of Cat face (Eig1), proximity and cat number (Eig4), fur color darkening (Eig10) in StyleGAN2
Cat; face direction (Eig1), masculine vs feminine (Eig3), child vs adult (Eig5) in StyleGAN Face.
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